
A Reconfigurable Audio Beamforming Multi-Core
Processor

Dimitris Theodoropoulos, Georgi Kuzmanov, and Georgi Gaydadjiev
{D.Theodoropoulos, G.K.Kuzmanov, g.n.gaydadjiev}@tudelft.nl

Computer Engineering Laboratory, EEMCS, TU Delft, P.O. Box 5031,
2600 GA Delft, the Netherlands

Abstract. Over the last years, the Beamforming technique has been adopted by
the audio engineering society to amplify the signal of an acoustic source, while
attenuating any ambient noise. Existing software implementations provide a flex-
ible customizing environment, however they introduce performance limitations
and excessive power consumption overheads. On the other hand, hardware ap-
proaches achieve significantly better performance and lower power consumption
compared to the software ones, but they lack the flexibility of a high-level ver-
satile programming environment. To address these drawbacks, we have already
proposed a minimalistic processor architecture tailoring audio Beamforming ap-
plications to configurable hardware. In this paper, we present its application as
a multi-core reconfigurable Beamforming processor and describe our hardware
prototype, which is mapped onto a Virtex4FX60 FPGA. Our approach com-
bines software programming flexibility with improved hardware performance,
low power consumption and compact program-executable memory footprint. Ex-
perimental results suggest that our FPGA-based processor, running at 100 MHz,
can extract in real-time up to 14 acoustic sources 2.6 times faster than a 3.0 GHz
Core2 Duo OpenMP-based implementation. Furthermore, it dissipates an order
of magnitude less energy, compared to the general purpose processor software
implementation.

1 Introduction

For many decades, the Beamforming technique has been used in telecommunications
to strengthen incoming signals from a particular location. Over the last years, it has
been adopted by audio engineers to develop systems that can extract acoustic sources.
Usually, microphone arrays are used to record acoustic wavefronts originating from a
certain area. All recorded signals are forwarded to processors that utilize Beamforming
FIR filters [1] to suppress any ambient noise and strengthen all primary audio sources.

Research on literature reveals that the majority of experimental systems are based
on standard PCs, due to their high-level programming support and potential of rapid
system development. However, two major drawbacks of these approaches are perfor-
mance bottlenecks and excessive power consumption. In order to reduce power con-
sumption, many researchers have developed Beamforming systems based on Digital

This research is partially supported by Artemisia iFEST project (grant 100203), Artemisia
SMECY (grant 100230), FP7 Reflect (grant 248976)

2 Authors Suppressed Due to Excessive Length

Signal Processors (DSPs), however performance is still limited. Custom-hardware solu-
tions alleviate both of the aforementioned drawbacks. However, in the majority of cases,
designers are primarily focused on just performing all required calculations faster than
a General Purpose Processor (GPP). Such an approach does not provide a high-level
programming environment for testing the system that is under development. For exam-
ple, in many cases, the designers should evaluate the Signal-to-Noise-Ratio (SNR) of
an extracted source under different filter sizes and coefficients sets. Such experiments
can easily be conducted using a standard PC with a GPP, but they would take long time
to be re-designed in hardware and cannot be performed on the field at post-production
time. The latter problem can be alleviated by introducing reconfigurable hardware and
appropriate means to control it.

In our previous paper [2], we have proposed a minimalistic architecture for em-
bedded Beamforming. It supports nine high-level instructions that allow rapid system
configuration and data processing control. Moreover, the presented model provides a
versatile interface with a custom-hardware Beamforming processor, thus allowing faster
system re-testing and evaluation.

The main contribution of this paper is the analytical presentation and evaluation of a
Beamforming microarchitecture, which supports the high-level architecture proposed in
our previous work [2]. Our microarchitecture is specifically tailored to reconfigurable
multi-core implementations. We prove that our proposal combines the programming
flexibility of software approaches with the high performance, low power consump-
tion and limited memory requirements of reconfigurable hardware solutions. The ar-
chitecture implementation allows utilization of various number of processing elements,
therefore it is suitable for mapping on reconfigurable technology. With respect to the
available reconfigurable resources, different FPGA implementations with different per-
formances are possible, where all of them use the same architecture and programming
paradigm. More specifically, the contributions of this paper are the following:

– We propose a microarchitecture of a Multi-Core BeamForming Processor (MC-
BFP), which supports the high-level architecture, originally presented in our pre-
vious work. The new microarchitecture was mapped onto a Virtex4 FX60 FPGA.
The program-executable memory footprint is approximately 40 kbytes, thus makes
it a very attractive approach for embedded solutions with limited on-chip memory
capabilities.

– We compared our FPGA-based approach against an OpenMP-annotated software
implementation on a Core2 Duo processor running at 3.0 GHz. Experimental re-
sults suggest that our prototype can extract 14 acoustic sources 2.6 times faster than
the Core2 Duo solution.

– Our hardware design provides a power-efficient solution, since it consumes approx-
imately 6.0 Watts. This potentially dissipates an order of magnitude less energy,

Throughout this paper, we have adopted the terminology from [3]. According to the book, the
computer architecture is termed as the conceptual view and functional behavior of a computer
system as seen by its immediate viewer - the programmer. The underlying implementation,
termed also as microarchitecture, defines how the control and the datapaths are organized to
support the architecture functionality.

A Reconfigurable Audio Beamforming Multi-Core Processor 3

Fig. 1. A filter-and-sum beamformer.

compared to the Core2 Duo implementation that requires tens of Watts when fully
utilized.

The rest of the paper is organized as follows: Section 2 provides a brief background
on the Beamforming technique and references to various systems that utilize it. In Sec-
tion 3, we shortly describe our previously proposed architecture. In Section 4 we elab-
orate on the proposed microarchitecture, while Section 5 presents our hardware proto-
type and compares it against a software approach and related work. Finally, Section 6
concludes the paper.

2 Background and Related Work

Background: Beamforming is used to perform spatial filtering over a specific record-
ing area, in order to estimate an incoming signal’s direction of arrival. Although there
are many approaches to efficiently perform acoustic Beamforming [1], many systems
utilize a filter-and-sum approach, which is illustrated in Figure 1. A microphone array
of C elements samples the propagating wavefronts and each microphone is connected
to an Hi(z), FIR filter. All filtered signals are accumulated, in order to strengthen the
extracted audio source and attenuate any ambient noise. The FIR filters are utilized
as delay lines that compensate for the introduced delay of the wavefront arrival at all
microphones [4]. As a result, the combination of all filtered signals will amplify the
original audio source, while any interfering noise will be suppressed.

In order to extract a moving acoustic source, it is mandatory to reconfigure all filter
coefficients according to the source current location. An example is illustrated in Fig-
ure 1, where a moving source is recorded for a certain time within the aperture defined
by the µ2 − µ1 angle. A source tracking device is used to follow the trajectory of the
source. Based on its coordinates, all filters are configured with the proper coefficients
set. As soon as the moving source crosses to the aperture defined by the µ3 − µ2 angle,
the source tracking device will provide the new coordinates, thus all filter coefficients
must be updated with a new set. Finally, we should note that in practise, many systems
perform signal decimation and interpolation before and after Beamforming respectively,
in order to reduce the data size that requires processing.

Related work: The authors of [5] present a Beamforming hardware accelerator,
where up to seven instances of the proposed design can fit in a Virtex4 SX55 FPGA,
resulting in a 41.7x speedup compared to the software implementation. Another FPGA

4 Authors Suppressed Due to Excessive Length

Fig. 2. Logical organization of the registers and the memory.

approach is presented in [6]. The authors have implemented an adaptive Beamforming
engine, which is based on the QR matrix decomposition (QRD), and mapped it onto a
Virtex4 FPGA.

A DSP implementation of an adaptive subband Beamforming algorithm, is pre-
sented in [7]. The authors utilize an Analog Devices DSP processor to perform Beam-
forming over a two microphone array setup. An experimental video teleconferencing
system is presented in [8] that is based on a Texas Instruments DSP. The authors com-
bine a video camera and a 16-microphone array into a device, which can be placed in
the center of a meeting table.

Finally, in [9], the authors describe a PC-based system consisting of 12 micro-
phones. The sound source is tracked through audio and video tracking algorithms. The
extracted audio signal is received from a second remote PC that renders it through a
loudspeakers array. A similar multiple PC-based system is presented in [10]. The au-
thors have implemented a real-time audio software system that uses the Beamforming
technique to record audio signals.

As it can be concluded, DSP and software implementations provide a high-level de-
veloping and testing environment, but they lack of adequate performance. Hardware ap-
proaches miss a versatile programming environment that would help developing Beam-
forming systems easier and faster. For this reason, we believe that our solution for re-
configurable Beamformers could combine high-level programmability with improved
performance and low power consumption.

3 The Beamforming Architecture

As it was mentioned in Section 1, in our previous work [2], we presented a minimal-
istic high-level architecture tailored to embedded Beamforming applications, which is

A Reconfigurable Audio Beamforming Multi-Core Processor 5

Table 1. Programming Model for Beamforming applications

Instruction type Full name Mnemonic Parameters SPRs modified
I/O Input Stream Enable InStreamEn b mask SPR0

System setup

Clear SPRs ClrSPRs NONE SPR0 - SPR[9+2⋅C]
Declare FIR Filter DFirF FSize, FType SPR1, SPR2, SPR3

Set Samples Addresses SSA **buf sam addr SPR7, SPR[10+C] - SPR[9+2⋅C]
Buffer Coefficients BufCoef **xmem coef addr, **buf coef addr NONE
Load Coefficients LdCoef **buf coef addr SPR4, SPR8, SPR10 - SPR[9+C]

Configure # of input channels ConfC C SPR9

Data processing Beamform Source BFSrc aper, *xmem read addr, *xmem write addr SPR5, SPR6

Debug Read SPR RdSPR SPR num NONE

Table 2. Special Purpose Registers

SPR Description
SPR0 InStreamEn binary mask
SPR1 Decimators FIR filter size
SPR2 Interpolators FIR filter size
SPR3 H(z) FIR filter size
SPR4 LdCoef start/done flag
SPR5 aperture address offset
SPR6 BFSrc start/done flag
SPR7 source buffer address
SPR8 interpolator coefficients address
SPR9 number of input channels (C)

SPR10 - SPR[9+C] channel i coefficients buffer address, i=0...C-1
SPR[10+C] - SPR[9+2⋅C] channel i 1024 samples buffer address, i=0...C-1

briefly described in this section. Figure 2 illustrates the logical organization of the reg-
isters and available memory space, assuming that processing is distributed among C
BeamFormer modules receiving data from C input channels. Memory space is divided
into user-addressable and non user-addressable, indicated by the stripe pattern. Off-chip
memory is used for storing any required type of data, like various coefficients sets for
the decimators, H(z) filters and interpolators, and any other general purpose variables.
The host GPP and the Multi-Core BeamForming Processor (MC-BFP) exchange syn-
chronization parameters and memory addresses via a set of Special Purpose Registers
(SPRs). Each BeamFormer module has a BF buffer and memory space for the decima-
tor and H(z) filters coefficients. Finally, the on-chip source buffer is used to store the
audio samples of an extracted source.

Table 1 shows the nine instructions, originally presented in [2], divided into four
categories. The SPRs modified column shows the SPR that is modified by the corre-
sponding instruction, which are also provided in Table 2. The functionality of each
instruction parameter is explained in Section 4 and in [2].

InStreamEn: Enables or disables streaming of audio samples from input channels to
the Beamforming processing units.

ClrSPRs: Clears the contents of all SPRs.
DFirF: Declares the size of a filter and writes it to the corresponding SPR.
SSA: Specifies the addresses from where the MC-BFP will read the input samples.
BufCoef : Fetches all decimator and interpolator coefficients from external memory

to BF buffers.
LdCoef : Distributes all decimator and interpolator coefficients to the corresponding

filters in the system.
ConfC: Defines the number of input channels that are available to the system.

6 Authors Suppressed Due to Excessive Length

m
a
in

 c
o
n

tr
o
ll

er

so
u

rc
e

a
m

p
li

fi
er

G
P

P

B
u

s

GPP

instruction

and data

memory

BF-PE

BeamFormer0

DMA

controller

B
U

S
-I

F

B
U

S
-I

F

...

source

 buffer

B
U

S
-I

F
B

U
S

-I
F

S
P

R
s

SDRAM

B
U

S
-I

F

BF

buffer

BF-PE

BeamFormerC-1

B
U

S
-I

F

BF

buffer

C = # of input channels

Multi-Core Beamforming Processor

reconfigu-

ration

controller B
U

S
-I

F
B

U
S

-I
F

B
U

S
-I

F

Fig. 3. Detailed implementation of the Beamforming system.

BFSrc: Processes a 1024-sample chunk of streaming data from each input channel
that is enabled with the InStreamEn instruction, in order to extract an audio source.

RdSPR: Used for debugging purposes and allows the programmer to read any of the
SPRs.

Note that the ConfC configures the number of input channels using a partial recon-
figuration module (e.g. Xilinx Internal Communication Access Port). The reason we de-
cided to provide this instruction is for the user to avoid performing the time-consuming
implementation process when the number of microphones changes. By having already
a set of reconfiguration files for different input setups (e.g. bitstreams), the user can
quickly switch among them when conducting application tests.

4 The Reconfigurable Beamforming Microarchitecture

Beamforming system description: Figure 3 illustrates in more detail the Beamform-
ing system implementation of the architecture from Figure 2. We should note that it
is based on our previous Beamforming processor, originally presented in [11], how-
ever significant design improvements have been made, in order to support a high-level
programming ability. In the following text, D and L represent the decimation and inter-
polation rates respectively.

A GPP bus is used to connect the on-chip GPP memory and external SDRAM
with the GPP via a standard bus interface (BUS-IF). Furthermore, in order to accelerate
data transfer from the SDRAM to BF buffers, we employ a Direct Memory Access

A Reconfigurable Audio Beamforming Multi-Core Processor 7

Fig. 4. The Beamforming processing element (BF-PE) structure.

LdCoefInt

controller

BeamFormer0

on-chip

buffer

main controllerSPRs

interpolator

coefficients

�
L

H0(z) filter
H1(z) filter...

HC-1(z) filter

+
samples

controller

source

buffer

interpolator

C = # of input channels

L = interpoLation rate

Fig. 5. The source amplifier structure.

(DMA) controller, which is also connected to the same bus. A partial reconfiguration
controller is employed to provide the option of reloading the correct bitstreams based
on the currently available number of input channels. All user-addressable spaces inside
the MC-BFP, like SPRs, BF buffers and the source buffer, are connected to the GPP bus.
This fact enhances our architecture’s flexibility, since they are directly accessible by the
GPP. The main controller is responsible for initiating the coefficients reloading process
to all decimators and the interpolator. Furthermore, it enables input data processing
from all channels, and acknowledges the GPP as soon as all calculations are done.

Each BeamFormer module consists of a BF buffer and a Beamforming Processing
Element (BF-PE), which is illustrated in Figure 4. As it can be seen, there is a LdCoef
controller and a BFSrc controller. Based on the current source aperture, the former
is responsible for reloading the required coefficients sets from the BF buffer to the
decimator and H(z) filter. The BFSrc controller reads 1024 input samples from the BF
buffer and forwards them to the decimator and the H(z) filter.

All BeamFormer modules forward the filtered signals to the source amplifier, which
is shown in Figure 5. The LdCoefInt controller is responsible for reloading the coeffi-
cients set to the interpolator. As we can see, all Hi(z) signals, where i=0,...,C-1, are
accumulated to strengthen the original acoustic source signal, which is then interpo-
lated. Finally, the samples controller is responsible for writing back to the source buffer
the interpolated source signal.

Instructions implementation: All SPRs are accessible from the GPP, because they
belong to its memory addressable range. Thus, the programmer can directly pass all
customizing parameters to the MC-BFP. Each SPR is used for storing a system config-
uration parameter, a start/done flag or a pointer to an external/internal memory entry.
For this reason, we have divided the instructions into four different categories, based on
the way the GPP accesses the SPRs. The categories are: GPP reads SPR, GPP writes

8 Authors Suppressed Due to Excessive Length

main

controller

idle

SPR4

start

flag?

NO NO

YES

LdCoef controller

reloads decimator

coefficients

LdCoefInt controller

reloads interpolator

coefficients

main controller writes

to SPR4 done flag

LdCoef controller

reloads H(z)

coefficients based on

source aperture

BFSrc controller

processes data

main controller writes

to SPR6 done flag

LdCoef

instruction

BfSrc

instruction

SPR6

start

flag?

YES

Fig. 6. Implementation of the LdCoef and BFSrc instructions.

to SPR, GPP reads and writes to SPR, GPP does not access any SPR, and they are
analyzed below:

GPP reads SPR: RdSPR is the only instruction that belongs to this category. The
GPP initiates a GPP bus read-transaction and, based on the SPR number SPR num, it
calculates the proper SPR memory address.

GPP writes to SPR: InStreamEn, ClrSPRs, DFirF, ConfC and SSA are the instruc-
tions that belong to this category. When the InStream instruction has to be executed, the
GPP initiates a GPP bus write-transaction and writes the b mask value (a binary mask,
where each bit indicates if a channel is enabled or not) to SPR0. Similarly, in ClrSPRs
the GPP has to iterate through all SPRs and write the zero value to them. In DFirF
instruction, the GPP uses the filter type Ftype parameter to distinguish among the three
different filter types (decimator, H(z) filter and interpolator), and calculate the proper
SPR address to write the filter size FSize to SPR1, SPR3 or SPR2. In ConfC, the GPP
writes the C parameter to SPR9, which is read from the partial reconfiguration con-
troller, in order to load from the external memory the bitstream that includes C BF-PEs.
Finally, in SSA instruction, the GPP iterates SPR[10+C] - SPR[9+2⋅C] and writes to
them the BF buffer addresses, where 1024 input samples will be written, which are read
from an array of pointers to the starting addresses of all BF buffers, called buf sam addr.

GPP reads and writes to SPR: LdCoef and BFSrc instructions belong to this cat-
egory. In LdCoef, the GPP writes all decimators coefficients addresses to SPR10 -
SPR[9+C], and the interpolator coefficients address to SPR8, which are read from
an array of pointers within the BF buffers, where all coefficients are stored, called
buf coef addr. As soon as all addresses are written to the proper SPRs, the GPP writes
a LdCoef start flag to SPR4 and remains blocked until the MC-BFP writes a LdCoef
done flag to the same SPR. Figure 6 illustrates the next processing steps within the MC-
BFP, in order to reload all decimators and interpolator with the proper coefficients sets.
As soon as LdCoef start flag is written to SPR4, the main controller enables the Ld-
Coef controller to start reloading the decimators coefficients. Once this step is finished,

A Reconfigurable Audio Beamforming Multi-Core Processor 9

Table 3. Resource utilization of each module

Module Slices DSP Slices Memory(bytes)
Single BeamFormer 598 2 8192

Source Amplifier 2870 0 2048
MC-BFP 14165 32 133120

System infrastructure 6650 0 317440
Complete system with C=16 20815 32 450560

the LdCoefInt controller initiates the interpolator coefficients reloading procedure. As
soon as all coefficients are reloaded, the latter acknowledges the main controller, which
writes a LdCoef done flag to SPR4. This unblocks the GPP, which can continue further
processing.

In BFSrc, based on the source aperture aper, the GPP calculates a BF buffer ad-
dress offset, called Aperture Address Offset (AAO), in order to access the proper H(z)
coefficients sets. The GPP writes the AAO to SPR5. Furthermore, it performs a DMA
transaction, in order to read C 1024-sample chunks from the xmem read addr memory
location and distribute them to BF buffers of the C BeamFormer modules. As soon as all
data are stored, the GPP writes a BFSrc start flag to SPR6 and remains blocked until the
MC-BFP writes a BFSrc done flag to the same SPR. Figure 6 shows the next process-
ing steps inside the MC-BFP. Within each BeamFormer module, the LdCoef controller
reads the AAO from SPR5 and reloads to the H(z) filter the proper coefficients set. Once
all H(z) coefficients are reloaded, the LdCoef controller acknowledges the BFSrc con-
troller, which enables processing of input data that are stored to the BF buffers. As soon
as 1024 samples are processed, the main controller writes a BFSrc done flag to SPR6,
which unblocks the GPP. The latter performs again a DMA transaction, in order to
transfer 1024 samples from the source buffer to the xmem write addr memory location.

GPP does not access any SPR: BufCoef is the only instruction that belongs to this
category. The GPP reads all source addresses from an array of pointers to the off-chip
memory starting addresses of the coefficients sets, called xmem coef addr. Also, the
GPP reads all destination addresses from buf coef addr. First, it performs a DMA trans-
action to transfer all decimator coefficients to the BF buffers. Next, based on the total
number of source apertures to the system, it performs a second DMA transaction to load
all H(z) coefficients and distribute them accordingly to the BF buffers. Finally, with a
third DMA transaction, the GPP fetches the active interpolator coefficients set to the BF
buffer of BeamFormer0 module.

5 Hardware Prototype

FPGA prototype: Based on the above study, we used the Xilinx ISE 9.2 and EDK 9.2
CAD tools to develop a VHDL hardware prototype. The latter was implemented on
a Xilinx ML410 board with a Virtex4 FX60 FPGA and 256 MB of DDR2 SDRAM.
As host GPP processor, we used one of the two integrated PowerPC processors, which
executes the program-executable that requires only 40 kbytes of BRAM. Furthermore,
we used the Processor Local Bus (PLB) to connect all peripherals, which are all BF
buffers, the source buffer, all SPRs, and the DMA and SDRAM controllers. For the
partial reconfiguration we have used the Xilinx ICAP, which is also connected to the

10 Authors Suppressed Due to Excessive Length

PLB. The PowerPC runs at 200 MHz, while the rest of the system is clocked at 100
MHz. Our prototype is configured with C=16 BeamFormer modules, thus it can pro-
cess 16 input channels concurrently. Also, within each BF-PE and the source amplifier,
all decimators, H(z) filters and the interpolator were generated with the Xilinx Core
Generator.

Table 3 displays the resource utilization of each module. The first two lines provide
the required resources for a single BeamFormer and the source amplifier modules. The
third line shows all hardware resources occupied by MC-BFP. In the fourth line, we
show the resources required to implement the PLB, DMA, ICAP and all memory con-
trollers with their corresponding BRAMs. Finally, the fifth line provides all required
resources from the entire Beamforming system. As it can be observed, a single Beam-
Former requires less than 600 slices, 2 DSP slices and 8 Kbytes of BRAM, which makes
it feasible to integrate many such modules within a single chip. Based on the data of
Table 3, we estimated that a V4FX60 could accommodate up to 19 channels, while
larger chips, such as the V4FX100 and V4FX140, could be used for up to 54 and 89
microphone arrays setups respectively.

Performance evaluation: We conducted a performance comparison of our hard-
ware prototype against an OpenMP optimized software implementation on a Core2
Duo processor at 3.0 GHz. In both cases, C=16 input channels were tested, with sam-
pling frequency of 48000 Hz. The decimation and interpolation rates were D=L=4.
Figure 7 shows the results of our experiments. We conducted tests with up to 14 acous-
tic sources placed inside the same recording area. Recorded audio data of 11264 msec
duration, divided into 528 iterations each consisting of 1024 samples, were stored to
external memories and used as input to both implementations. Thus, in order to support
real-time data processing, all iterations should be done within the aforementioned time
window. Furthermore, for all the tests conducted to our hardware prototype, we have
included the time spent on SDRAM transactions (HW SDRAM), on the Beamforming
calculations (HW BF) and on the PPC (SW-PPC). Thus, the achieved speedup is for the
complete application execution.

As we can see from Figure 7, both PC-based (SW-OMP) and FPGA-based systems
can support real-time processing when there are present up to four sources. However,
when there are five or more acoustic sources, the PC-based system fails to meet the
timing constraints, since it takes more than 11264 msec to perform all required calcu-
lations. Regarding the hardware prototype, approximately 55% of the execution time is
spent on SDRAM accesses, since in each processing iteration, input data from all chan-
nels have to be stored to BF buffers. This performance degradation could be improved
if a faster SDRAM module is available. Even though, our FPGA-based approach can
still support up to 14 sources extracted in real-time.

Energy and power consumption: Based on the Xilinx XPower utility, our FPGA
prototype consumes approximately 6.0 Watts of power. This is an order of magnitude
lower compared to a contemporary Core2 Duo processor, since the latter consumes up
to 65 Watts of power when fully utilized [12]. Based on the power consumption and
the execution time of both systems, we calculated the energy consumption using the
well-known formula E = P ⋅ t, where E is the energy consumed during the time t,
while applying P power. During the software execution, the Core2 Duo was approxi-

A Reconfigurable Audio Beamforming Multi-Core Processor 11

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

of sources

SW-OMP HW SDRAM HW BF SW-PPC

e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

e
c

)

Fig. 7. Software and hardware systems execution time.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

of sources

e
n

e
rg

y
 c

o
s

u
m

p
ti

o
n

 (
J

)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

s
p

e
e

d
u

p

Energy SW Energy HW Speedup

Fig. 8. Energy consumption and speedup comparison.

mately 95% utilized. Thus, we safely assumed that its power consumption during the
program execution is approximately 0.95⋅65 Watts = 61.75 Watts. Figure 8 suggests
the energy consumption for the PC-based system (Energy SW), the hardware system
(Energy HW) and the achieved speedup against the Core2 Duo software implementa-
tion for all conducted tests. As we can observe, because the hardware solution is faster
and also requires much less power, it consumes more than an order of magnitude less
energy compared to the PC-based system.

Related work: Direct comparison against related work is difficult, since each sys-
tem has its own design specifications. Moreover, to our best knowledge, we provide the
first architectural proposal for a reconfigurable Beamforming computer. Previous pro-
posals are mainly micro-architectural ones. In [7], the authors utilize an ADSP21262
DSP, which consumes up to 250 mA. Furthermore, its voltage supply is 3.3 V [13],
thus we can assume that the design requires approximately 3.3 V⋅0.25 A = 0.825 W.
In addition, according to the paper, the ADSP21262 is 50% utilized when processing
data from a two-microphone array at 48 KHz sampling rate, or alternatively 48000
samples/sec/input⋅2 inputs = 96000 samples/sec. Based on this, we can assume that
192000 samples/sec can be processed in real-time with 100% processor utilization,

12 Authors Suppressed Due to Excessive Length

which means ⌊192000/48000⌋ = 4 sources can be extracted in real-time. Finally, in
[5] the authors use four microphones to record sound and perform Beamforming using
an FPGA. They have mapped their design onto a V4SX55 FPGA and, according to the
paper, every instance of the proposed beamformer can process 43463 samples/sec, with
up to seven instances fitting into the largest V4SX FPGA family. Since the sampling
frequency is 16 KHz, ⌊(43463⋅7)/16000⌋ = 19 sources could be extracted in real-time.

6 Conclusions

In this paper, we implemented our previously proposed minimal architecture as a multi-
core processor for Beamforming applications. Our FPGA prototype at 100 MHz can ex-
tract in real-time up to 14 acoustic sources 2.6x faster than a Core2 Duo solution. Power
consumption is an order of magnitude lower than the software approach on a modern
GPP. Ultimately, our solution combines high-level programmability with improved per-
formance, better energy efficiency and limited on-chip memory requirements.

References
1. B. V. Veen et. al., “Beamforming: a versatile approach to spatial filtering,” in IEEE ASSP

Magazine, vol. 5, April 1988, pp. 4–24.
2. Dimitris Theodoropoulos et. al., “Minimalistic Architecture for Reconfigurable Audio

Beamforming,” in International Conference on Field-Programmable Technology, December
2010, pp. 503–506.

3. Gerrit Blaauw and Frederick Brooks, “Computer Architecture: Concepts and Evolution,”
February 1997.

4. Bill Kapralos et. al., “Audio-visual localization of multiple speakers in a video teleconfer-
encing setting,” in International Journal of Imaging Systems and Technology, vol. 13(1),
October 2003, pp. 95–105.

5. Ka-Fai Cedric Yiu et. al., “Reconfigurable acceleration of microphone array algorithms for
speech enhancement,” in Application-specific Systems, Architectures and Processors, 2008,
pp. 203–208.

6. “Implementing a Real-Time Beamformer on an FPGA Platform,” in XCell journal, Second
Quarter 2007, pp. 36–40.

7. Zohra Yermeche et. al., “Real-time implementation of a subband beamforming algorithm for
dual microphone speech enhancement,” in IEEE International Symposium on Circuits and
Systems, May 2007, pp. 353–356.

8. Mark Fiala et. al., “A panoramic video and acoustic beamforming sensor for videoconfer-
encing,” in IEEE International Conference on Haptic, Audio and Visual Environments and
their Applications, October 2004, pp. 47–52.

9. J. Beracoechea, et. al., “On building Immersive Audio Applications Using Robust Adaptive
Beamforming and Joint Audio-Video Source Localization,” in EURASIP Journal on Applied
Signal Processing, June 2006, pp. 1–12.

10. H. Teutsch, et. al., “An Integrated Real-Time System For Immersive Audio Applications,” in
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, October 2003,
pp. 67–70.

11. D. Theodoropoulos, et. al., “A Reconfigurable Beamformer for Audio Applications,” in IEEE
Symposium on Application Specific Processors, pp. 80–87.

12. Intel Corporation, “http://ark.intel.com/Product.aspx?id=33910.”
13. Analog Devices Inc, “SHARC Processor ADSP-21262,” May 2004.

