
A RECONFIGURABLE PERFECT-HASHING SCHEME FOR PACKET INSPECTION

Ioannis Sourdis†, Dionisios Pnevmatikatos‡∗, Stephan Wong†, Stamatis Vassiliadis†

†Computer Engineering Laboratory, ‡Microprocessor and Hardware Laboratory,
Electrical Engineering Department, Electronic and Computer Engineering Dept.,

Delft University of Technology, Technical University of Crete,
The Netherlands Chania, Greece

{Sourdis,Stephan,Stamatis}@CE.ET.TUDelft.NL Pnevmati@MHL.TUC.GR

ABSTRACT

In this paper, we consider scanning and analyzing packets
in order to detect hazardous contents using pattern match-
ing. We introduce a hardware perfect-hashing technique to
access the memory that contains the matching patterns. A
subsequent simple comparison between incoming data and
memory output determines the match. We implement our
scheme in reconfigurable hardware and show that we can
achieve a throughput between 1.7 and 5.7 Gbps requiring
only a few tens of FPGA memory blocks and 0.30 to 0.57
logic cells per matching character. We also show that our
designs achieve at least 30% better efficiency compared to
previous work, measured in throughput per area required per
matching character.

1. INTRODUCTION
The proliferation of Internet and networking applications,
coupled with the wide-spread availability of system hacks
and viruses have increased the need for network security.
Deep packet inspection is performed by firewalls and in-
trusion detection/prevention systems (IDS/IPS) to provide
sufficient protection from attacks. Such systems check the
packet header, rely on pattern matching techniques to ana-
lyze the packet payload, and make decisions on the signif-
icance of the packet body. Matching every incoming byte,
though, against thousands of pattern characters at wire rates
is a computationally intensive task. Measurements on Snort
IDS show that 80% of total processing is spent on string
matching in the case of Web-intensive traffic [1]. IDS based
on general-purpose processors can only achieve a through-
put up to a few hundred Mbps. On the other hand, hardware-
based solutions can significantly increase performance and
achieve much higher throughput.

In the past, several hardware units have been proposed
for FPGA-based IDS pattern matching [2, 3, 4, 5, 6, 7, 8, 9].
Generally speaking, the performance of FPGA-based sys-
tems is promising and shows that FPGAs can support the

∗Also with the Institute of Computer Science (ICS), Foundation for Re-
search and Technology-Hellas (FORTH).

increasing needs for network security. In this paper we ex-
tend previous pattern matching techniques [5, 8, 9, 10, 11]:

• We propose a perfect-hashing technique to determine
a single possible match based on the incoming data.

• We use a centralized, banked pattern-memory to store
the entire Snort IDS set of patterns, and optimize the
rule placement to increase memory utilization.

• We exploit pipelining, parallelism, and memory repli-
cation to increase performance.

In doing so, we save a significant amount of resources.
Our designs can support a throughput ranging from 1.7 to
5.7 Gbps, while requiring only a few tens of FPGA mem-
ory blocks and 0.30 to 0.57 logic cells per matching charac-
ter. Since recent FPGA devices include hundreds of memory
blocks and tens of thousand logic cells, our approach can be
considered as a low cost pattern matching solution.

The remainder of the paper is organized as follows: In
Section 2 we describe our perfect-hashing system. In Sec-
tion 3, we present the implementation results and compare
with related work. Finally, in Section 4 we present our con-
clusions.

2. PATTERN MATCHING SYSTEM UTILIZING
PERFECT-HASHING

The detection engine of an IDS consists of header matching
and payload matching. In this section we describe a tech-
nique for payload pattern matching. We consider scanning
the payload of every incoming packet and therefore the ob-
tained throughput will remain constant even in worst case
scenarios (targeted attacks etc.). Instead of matching each
pattern separately, it is more efficient to utilize a hash mod-
ule to determine which pattern is a possible match, read this
pattern from a memory and compare it against the incom-
ing data. Hardware hashing for pattern matching is a tech-
nique widely used for decades. Figure 1 depicts our Perfect-
Hashing Memory (PHmem) scheme. The incoming packet
data are shifted into a serial-in parallel-out shift register. The
parallel-out lines of the shift register provide input to the
comparator, which is also fed by the memory that stores the
patterns. A selected subset of the incoming data bits are used



Comparator

Hash


Tree


Length


Incoming

Data


Pattern ID


Indirection

Memory
 Address
 Pattern Memory


Match


Pattern ID


Shift Register


Fig. 1. Block diagram of our pattern matching approach.

as inputs to a hash module, which outputs the ID of the “pos-
sible match” pattern. For memory utilization reasons, we do
not use this pattern ID to directly read the search pattern
from the pattern memory. We utilize instead anindirection
memory, similar to [11], that outputs (i) the actual address
of the possible match pattern and (ii) its length. However, in
our case the indirection memory performs a1-to-1and not
an N-to-1 mapping, since the output address has the same
width as the pattern ID. This address is utilized to read the
pattern, while the pattern length is used to determine how
many bytes of the pattern memory and the incoming data
are needed to be compared.

2.1. Perfect Hashing Tree
Our approach is based on Burkowski’s multiterm string com-
parator [10] and Merkle’s hash tree [12]. Burkowski matches
substrings in order to detect which pattern would possibly
match; a similar approach was presented by Cho et al. [5, 9].
Burkowski selects a unique substring for each pattern and,
subsequently, uses an associative memory and encoder to
match them and produce the pattern address. On the con-
trary, we hash the substrings in order to distinguish the given
set of patterns. For this reason, we introduce a perfect-
hashing method meaning that our hash modules will guar-
antee that no collisions will occur for a specific set of sub-
string entries. We verified that our hash trees do not have
any collisions for the given set of entries by exhaustively
simulating their VHDL representation. First, we select a
unique substring for each pattern (for simplicity: either pre-
fix or suffix) and we reduce the length of the set of substrings
by deleting all the columns (bit-positions) that are not nec-
essary to distinguish the substrings. Subsequently, the re-
maining bit-positions provide input to our Merkle-like hash
tree. In our perfect hashing scheme, the size of the hash tree
depends only on the number of the substrings, and not on
their length, which is an advantage compared to complete
substring match approaches. Merlke’s hash tree, created for
public key cryptosystems and authentication, is constructed
based on the idea of “divide and conquer”. If we defineY
as an element file= {Y1, Y2, . . . , Yn}, such that theith ele-
ment isYi, andH(Y ) as the hash function of Y, then Merkle
created his hash tree according to:

H(Y ) = H1(1st half of Y ),H2(2nd half of Y ) (1)

H1(1st half of Y ) = H1.1(1st quarter of Y ),
H1.2(2nd quarter of Y ) (2)

k-m


k


k-m-t

k-m


k-m


h


m

k-m-y


t


y


w


h-w


k-1


k


k-2
 k-1


k-2
 k-1


2

(a)


(b)


max[2
 w
]


Fig. 2. (a) Binary Hash Tree. (b) Optimized Hash Tree.

and so on for the smaller parts of the element file Y.
Generating a single perfect hash function to distinguish a

given set of patterns is difficult and time consuming. Merkle’s
method is very suitable and simplifies the hash function gen-
eration. Consequently, instead of searching for a single com-
plex hash function, we construct a hash tree that consists of
several simpler sub-hashes.

Following Merkle’s methodology, we created a binary
hash tree. For a given set of patterns that have unique sub-
strings, we consider the set of substrings as a 2-Dm×n ma-
trix. Each row of the matrix (m bits long) represents a sub-
string, which differs at least in one bit from all the other
rows. Each column of the matrix (n bits long) represents a
bit position of the substrings. The binary tree should have
log2(n) output bits. We construct our binary hash tree by
recursively partitioning the given matrix as follows:

• Search for a hash function that separates the matrix
in 2 parts, which can be encoded inlog2(n/2) bits
each. We search for either a single column or a XOR
combination of several columns.

• We recursively repeat the same procedure for each
part of the matrix, in order to separate them again in
smaller parts.

• The process terminates when all parts contain one row.
Figure 2(a) depicts the hardware implementation of the

binary hash tree using 2-to-1 multiplexers for each tree node.
From Equation (1) each hash-functionH(Y) is considered as
the select bit of a multiplexer and the encoded bits of 1st
and 2nd halves of element file Y as the inputs of the mul-
tiplexer. The multiplexer’s output combined with its select
bit are considered as the encoded bits ofY . For example,
a node that divides into two parts ann-element (sub-)file,
which needslog2(n) = k bits to be encoded, is represented
by a (k − 1)-bit 2-to-1 multiplexer. The select bit of the
multiplexer is either a single bit-position or a XOR function
of several bit-positions. The k-bit address ofY element file
consists of the(k − 1) bits of the multiplexer output and
the select bit of the multiplexer. Each leaf node of the hash
tree is a 1-bit 2-to-1 multiplexer that separates 3 or 4 ele-
ments and each input of the multiplexer is a single bit that
separates 2 elements.

The hardware implementation of a binary tree is an effi-
cient solution to separate a set of patterns; however, we can
optimize it and further reduce its area. During the generation
of hashing functions we noticed that in a single search for a
select bit, we could find more than one select bit (actually
2-5 bits) that can be used together to divide the set into more
than two parts (4 to 32). This approach results in smaller,



in terms of area, hash trees using larger multiplexers. The
block diagram of our optimized hash tree is illustrated in
Figure 2(b). Each node of the tree can have more than two
branches and, therefore, the size of the tree is smaller despite
the use of bigger multiplexers.

The construction of our perfect hashing modules is fully
automated (including VHDL generation) and takes a few
minutes in case of the binary trees and a few minutes to a
few hours in case ofN -ary trees (depends on maximalN ).
Given that the place & route of such a design takes a couple
of hours and that the required area is relatively small, our
approach is suitable for frequent (partial) reconfiguration.

2.2. Implementation Details
To generate our PHmem design for a given set of Snort rules
we first extract the pattern-matching portion of the rules, and
we group them, so that each pattern in a group has a unique
substring. Subsequently, we reduce the length of substrings,
keeping only the bit-positions necessary to distinguish the
patterns and, finally, we generate the hash trees for every
reduced substring file.

We use the wider Xilinx dual-port block RAM configu-
ration (512 entries× 36 bits), to store patterns. Therefore,
we group patterns in groups of maximally 512 patterns. Pat-
terns in the same group should have unique substrings in
order to distinguish them using hashing. The grouping al-
gorithm takes into account the length of the patterns, i.e.,
longer patterns are grouped first. Patterns of all groups are
stored in the same memory, which is constructed by sev-
eral memory banks. Each bank is dual-ported, therefore,
our grouping algorithm ensures that in each bank are stored
patterns (or parts of patterns) of maximally two different
groups. This restriction is necessary to guarantee that one
pattern of each group can be read at every clock cycle.

3. EVALUATION & COMPARISON WITH
PREVIOUS WORK

In this section, we evaluate the efficiency of our overall pat-
tern matching modules utilizing two main metrics: perfor-
mance in terms of operating frequency and processing through-
put (post place & route results), and area cost in terms of re-
quired FPGA logic cells. Our implementation targets Xilinx
Virtex2 and Spartan3 devices. For these devices, ISE Xilinx
tool has relatively accurate timing information. Although
Virtex4 devices can achieve about double performance com-
pared to Virtex2, we decided not to implement our designs
in Virtex4 because ISE tool outputs only preliminary timing
results for these devices. The use of block RAMs is a lim-
iting factor for our operating frequency, therefore, we also
implemented designs with double memory size that oper-
ates in half the operating frequency in relation to the rest of
the circuit. However, this technique only had significant per-
formance improvement for Virtex2 devices. Finally, we also
considered the use of parallelism to increase throughput and
we implemented designs that process 2 bytes per cycle.

Table 1. Comparison of PHmem and other FPGA-based
string matching approaches.

Description
Input

Device
Throu-

LUTs Logic
Logic

MEM
#chars PEMbits ghput

/FFs Cells1 Cells
Kbits

/cycle (Gbps) /char

Our Proposed

8

2.108
3,451

6,272 0.30 288

20,911

7.03

Scheme

Virtex2 5,805
-1000

2.8862
4,410

9,052 0.41 5762 6.93

(PHmem)

8,115
Spartan3

1.724
3,451

6,688 0.32 288 5.39
-1000 5,805

16

4.167
6,675

10,224 0.49 306 8.52
Vitex2 9,459
-1500

5.7342
7,659

12,106 0.57 6122 9.91
11,685

Spartan3
3.317

6,675
10,868 0.52 306 6.38

-1000 9,459

8

Virtex2
2.254

8,095
10,016 0.55 0

18,036

4.05
[13] -1500 9,125

DCAM Spartan3
1.703

8,095
10,170 0.56 0 3.04

no grouping -1000 9,125

32
Virtex2

9.708
55,026

64,268 3.56 0 2.73
[6] -6000 57,723

DCAM
8

Virtex2
2.678

13,946
17,538 0.97 0 2.76

-3000 15,677

8
Virtex2

2.000 ? 2,570 0.14 630
18,636

14.5
[11] -1000

CRC Hash
16

Virtex2
3.712 ? 5,230 0.28 1,188 13.8

+ MEM -3000
[4]

32
Virtex2

7.004 ? 54,890 3.1 0 17,5373 2.26
NFAs -8000

[5]

8

Spartan3
2.000

16,930
? 0.814 0

20,800

2.464
RDL w/Reuse -1500 ?

[9]
Spartan3

1.600
4,415∼8,0005∼0.385 162 ∼4.165

ROM-based
-400 ?

Spartan3
1.900

4,415
>8,0005>0.385 162 <5.005

-1000 ?
[3] 8

Virtex2Pro
1.488 ? 8,056 0.41 0

19,584

3.63
Unary 32

-100
4.507 ? 30,020 1.53 0 2.94

[7]
8 1.896 ? 6,340 0.32 0 5.86

tree-based

[8]
8

VirtexE
0.502

23,328
36,720 0.09 629 420k7 5.74

Bloom filters6 -2000 ?

In order to evaluate our proposed scheme and compare
it with the related research, we utilize the Performance Effi-
ciency Metric (PEM), which takes into account both perfor-
mance and area cost:PEM = Throughput/(LC/Chars).

Our designs that process one byte per clock cycle can
achieve 1.7 and 2.1 Gbps of throughput, requiring 0.32 and
0.30 logic cells per matching character in Spartan3 and Vir-
tex2 devices respectively. On both devices, 16 block RAMs
(288 Kbits) were used. A design that utilizes double mem-

1Two Logic Cells form one Slice. We calculate the number
of logic cells required for a design according to the next equation:
Logic Cells = 2 × Slices, where slices is the reported number of
used slices of the Xilinx ISE tool.

2Designs that have double size memory to increase performance.
3Over 1,500 patterns that contain 17,537 characters.
4Cho et al. report LUTs instead of slices. If they had used slices, their

designs would have a higher area cost and a lower PEM.
5The design uses 4,415 LUTs and 99% of available slices, or 8,000

Logic Cells for a Spartan3-400 device (according to Xilinx datasheet). For
a Spartan3-1000 the design would probably use even more logic cells, since
the ISE tool uses more resources (when available) to increase performance.

6Bloom Filters perform approximate matching and allow false positives.
725 bloom filters match 2-26 character patterns and can store 35,475

patterns each, about 420,000 characters in total. However, about 1,400
patterns were actually stored.



ory to increase the operating throughput of the pattern match-
ing module can support about 2.9 Gbps in Virtex2, requiring
slightly larger area. Designs that process 2 bytes per clock
cycle achieve 3.3 and 4.1 Gbps in Spartan3 and Virtex2 de-
vices, while needing 0.52 and 0.48 logic cells per character,
respectively. Finally, the Virtex2 design that uses double
size of memory and processes 2 bytes per cycle can oper-
ate at 5.7 Gbps. It is noteworthy that about 30-40% of the
area required is because of the registered memory inputs and
outputs and the shift registers of incoming data.

In Table 1, we attempt a fair comparison with previously
reported research onpattern matchingdesigns that can store
a full IDS ruleset. Apart from our new results, Table 1 con-
tains some results of our previous work and Sourdis master
thesis [6, 13]. There are also results of related approaches
of exact and approximate matching. Our designs have bet-
ter PEM values (at least 30%) compared to the bestprevious
related schemes using similar or equivalent devices. Com-
pared to the ROM-based solution of Cho et al.[5, 9], whose
approach is closer to our work, our 1-byte per cycle designs
have similar performance and slightly lower area cost, but
we need about 75% more memory mainly due to the indi-
rection memories. Our 2-byte per cycle designs require al-
most twice the memory, but achieve double throughput with
slightly higher area cost. Finally, compared to recent CRC-
hashing approach of Papadopoulos and Pnevmatikatos our
designs require about two times more area and half memory
blocks, while our performance is 5-10% higher for our sin-
gle clock domain configuration, and up to 55% higher for
our pipelined memory designs.

4. CONCLUSIONS

We proposed a perfect-hashing method to determine which
pattern could possibly match and perform a simple compar-
ison afterwards between the pattern and the incoming data.
We utilized fine-grain pipelining to achieve high operating
frequencies, multiple clock domains to overcome memory
latency, and parallelism to increase the processing through-
put. This combination achieves a throughput of 1.7 to 5.7
Gbps for the entire Snort ruleset, requiring 0.30-0.57 logic
cells per matching character and 16 to 34 memory blocks.
Considering that most FPGAs have tens or even hundreds
of memory blocks, our designs can be easily implemented
in most FPGA devices. Based on PEM, our designs at least
30% better efficiency compared to the best previous pub-
lished approaches. Additionally, in our approach in utilizing
parallelism the memory size was not affected. This is very
encouraging since it shows that we can increase manifold
our throughput without any memory overhead.

5. REFERENCES

[1] M. Fisk and G. Varghese, “An Analysis of Fast String
Matching Applied to Content-based Forwarding and

Intrusion Detection,” inTechical Report CS2001-0670,
University of California - San Diego, 2002.

[2] I. Sourdis and D. Pnevmatikatos, “Fast, Large-Scale
String Match for a 10Gbps FPGA-based Network In-
trusion Detection System,” in13th Int. Conf. FPL,
2003.

[3] Z. K. Baker and V. K. Prasanna, “A Methodology for
Synthesis of Efficient Intrusion Detection systems on
FPGAs,” inIEEE Symposium on FCCM, 2004.

[4] C. R. Clark and D. E. Schimmel, “Scalable Parallel
Pattern-Matching on High-Speed Networks,” inIEEE
Symposium on FCCM, 2004.

[5] Y. H. Cho and W. H. Mangione-Smith, “Deep Packet
Filter with Dedicated Logic and Read Only Memo-
ries,” in IEEE Symposium on FCCM, 2004.

[6] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs
for Efficient and High-Speed NIDS Pattern Matching,”
in IEEE Symposium on FCCM, 2004.

[7] Z. K. Baker and V. K. Prasanna, “Automatic Synthesis
of Efficien Intrusion Detection Systems on FPGAs,” in
14th Int. Conf. FPL, 2004.

[8] M. Attig, S. Dharmapurikar, and J. Lockwood, “Imple-
mentation Results of Bloom Filters for String Match-
ing,” in IEEE Symposium on FCCM, 2004.

[9] Y. H. Cho and W. H. Mangione-Smith, “Programmable
Hardware for Deep Packet Filtering on a Large Sig-
nature Set,” inFirst Watson Conference on Inter-
action between Architecture, Circuits, and Compil-
ers(P=ac2), 2004.

[10] F. J. Burkowski, “A Hardware Hashing Scheme in
the Design of a Multiterm String Comparator.”IEEE
Transactions on Computers, vol. 31, no. 9, pp. 825–
834, 1982.

[11] G. Papadopoulos and D. Pnevmatikatos, “Hashing +
Memory = Low Cost, Exact Pattern Matching,” in15th
Int. Conf. FPL, 2005.

[12] R. C. Merkle, “Protocols for public key cryptosys-
tems.” in IEEE Symposium on Security and Privacy,
1980, pp. 122–134.

[13] I. Sourdis, “Efficient and High-Speed FPGA-
based String Matching for Packet Inspection,”
Master’s thesis, ECE Dept. Technical Univer-
sity of Crete (TUC), Chania, Greece, July 2004,
http://www.mhl.tuc.gr/personalpages/Sourdis/MSthesis.pdf.


