
 
 

ABSTRACT 
This paper evaluates the performance of a temporal video 
up-conversion algorithm on a next generation media-
processor, the TM3270. Temporal up-conversion adapts 
the temporal frequency of a video signal to the temporal 
frequency of a display device. In order to improve 
performance, the TM3270 provides architectural 
enhancements over previous TriMedia processors. We 
quantify the speedup of new operations to temporal up-
conversion performance. We show that the new 
operations improve performance by 41%. Furthermore, 
we quantify the speedup of data prefetching and an 
allocate-on-write-miss policy. We show that data 
prefetching can improve performance by more than 20%. 
An allocate-on-write-miss policy significantly improves 
performance in the presence of a high latency memory 
subsystem. By applying all TM3270 architectural 
enhancements, we show that the temporal up-conversion 
algorithm can be performed in 17.8% of the available 
processor performance.  
 
KEYWORDS 
Media processor, temporal video up-conversion, software 
implementation.  

I. INTRODUCTION 

edia-processors can be used in many video 
processing applications. Their programmability 

provides flexibility, which can be exploited in various 
ways. It enables algorithmic changes after design, a 
higher level of adaptation to changes in the video, 
multiple algorithms can be mapped to the same 
architecture, faster time-to-market, etc. When enough 
performance is available, media-processors provide an 
interesting alternative to fixed dedicated hardware 
solutions. Furthermore, when a single programmable 
platform can address multiple markets, its design costs 
can be shared, providing a cost-efficiency advantage over 
fixed dedicated hardware solutions. 

Video codecs, such as MPEG2, MPEG4, and 
H.264/AVC [1], rely on standardization to ensure inter-
operability, and therefore, these algorithms will generally 

not change over time. Proprietary video processing 
applications do generally change more often, i.e. due to 
algorithmic improvements, and as such have a stronger 
need for an implementation platform that provides a 
sufficient level of programmability. 

Many proprietary video processing applications can 
be found in today’s television sets, line noise reduction, 
de-interlacing, sharpness enhancement, film judder 
removal, scaling, etc. Since video quality is still the main 
driver in the high-end television market, the ability to 
improve quality before the competition, may determine 
the success of a solution in the television market. Many of 
these video processing applications have until recently 
only been available in a dedicated hardware design, i.e. 
ASICs. However, as the cost of new designs and 
integration is increasing dramatically, and programmable 
media-processors offer increased performance, we reach a 
point at which it becomes attractive to pursue a re-usable, 
programmable platform. 

In this paper, we evaluate the performance of a high 
quality temporal up-converter on the next generation 
TriMedia processor, the TM3270. The TM3270 media-
processor provides architectural enhancements over 
previous TriMedia processors. These enhancements 
improve performance in the video-processing domain. 
We show that a real-time software implementation of the 
temporal up-converter is achievable, with enough 
performance headroom to perform other video processing 
applications. We quantify the contribution of collapsed 
load operations, and two-slot operations to processor 
performance. Furthermore, we quantify the speedup of 
data prefetching and an allocate-on-write-miss data cache 
policy. 

The remainder of this paper is organized as follows. In 
Section II, we describe the temporal up-conversion 
algorithm, which is used to evaluate processor 
performance. In Section III, we define our performance 
evaluation environment. In Section IV, the TM3270 
architecture is presented. In Section V, we present six 
software implementations of the algorithm as described in 
Section II. In Section VI, we present and discuss the 
performance measurement results. Finally, in Section VII, 
we present our conclusions. 
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II. TEMPORAL UP-CONVERSION 

A. Introduction 

Temporal up-conversion adapts the temporal frequency of 
a video signal to the temporal frequency of a display 
device. An example is the conversion of a 60 Hz standard 
definition (SD) NTSC video signal to a display frequency 
at 85 Hz. Figure 1 illustrates the basic principle. A simple 
approach is to repeat the last available image. Although 
this is okay for stationary images, it introduces film 
judder for moving image parts (2:2 and 3:2 pull down). A 
better approach is to apply motion-compensated (MC) 
temporal up-conversion. It attempts to eliminate the film 
judder by accurate portrayal of the motion in the video 

signal. 
New images are derived using the two temporally 

neighboring images in the source material.  MC temporal 
up-conversion relies on the availability of a motion vector 

field [2], [3]. A motion vector mv( b
r

, n) is assumed to be 
available for every 4x4 block of image pixels b, 
representing the motion of the block from source image 

n-1, to source image n. Let 
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upper left and lower right pixels of block b in the image. 

B. Enhanced Cascaded Median Algorithm 

This paper does not intend to introduce a new and better 
temporal up-converter, but rather to evaluate the 
performance of our processor on an existing algorithm. 
We use the cascaded median up-converter [4] as the basis 
for our MC up-converter algorithm. 

The cascaded median up-converter uses non-motion 
compensated (static) and motion compensated (dynamic) 
pixels (Figure 2) to calculate the pixels in the up-
converted image. Static pixels are taken from colocated 
positions in the temporally neighboring source images n-1 
and n. These pixels are represented by st_left and st_right. 
Dynamic pixels are taken from motion compensated 

positions in the temporally neighboring source images n-1 
and n. These pixels are represented by dyn_left and 
dyn_right. We support motion vectors at ¼ pixel 
resolution in both horizontal and vertical direction. 
Motion compensated pixels at fractional positions are 
calculated by means of linear interpolation of up to four 
spatially surrounding integer pixels. The parameter p is a 
fraction between 0 and 1, and represents the temporal 
position of the up-converted image in between the two 
neighboring source images n-1 and n. 

The cascaded median algorithm combines a static 
median, a dynamic median, and a mix filter. This 
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Fig. 3.  Enhanced cascaded median. 
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Fig. 1.  Temporal up-conversion, the basic principle. A 
sequence of image at the display frequency (grey color) is 
derived from a sequence of images at the source frequency 
(white color). 
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Fig. 2.  Temporal up-conversion, spatial and motion 
compensated predictors. 



 
 

combination takes advantages of the individual filters’ 
strengths, and reduces the impact of the individual filters’ 
weaknesses. A detailed description of the algorithm, and 
an evaluation of its quality can be found [4]. The quality 
of the cascaded median algorithm was further enhanced 
by the addition of a fader as illustrated in Figure 3. 

The “static average” and “dynamic average” functions 
in Figure 3 perform a weighted average operation based 
on the temporal position p. The smaller the temporal 
position p, the higher the weight of the pixels of the 
source image on the left (image n-1). 

 
Average  (input1, input2, p) = (1-p) * input1 + p * input2 
           

The “mixer” function performs a weighted average 
operation based on a smoothness factor s. The up-
conversion algorithm calculates a smoothness factor 
based on the current block’s motion vector, and the 
motion vectors of the surrounding blocks. The smaller the 
sum of the differences between the current motion vector 
and the surrounding motion vectors, the higher the 
relative weight of the dynamic average input to the mixer. 
The smoothness factor represents the local 
continuity/smoothness of the motion vector field. 
         

Mixer  (input1, input2, s) = (1-s) * input1 + s * input2 
   

The “fader” function performs a weighted average 
operation based on a fading factor f. The up-conversion 
algorithm calculates a fading factor based on the current 
block’s motion vector, and the motion vectors of the 
surrounding blocks. A large difference between the 
current motion vector and one of the surrounding motion 
vectors (a large block to block motion vector 
discontinuity), results in a small relative weight for the 
dynamic average input to the fader.  
      

Fader (input1, input2, f) = (1-f) * input1 + f * input2 
   

The “median” functions perform a three input median 
operation:  

 
Median (input1, input2, input3) = 

Min (Max (Min (input1, input2), input3), 
Max (input1, input2))           

III. PERFORMANCE EVALUATION 
ENVIRONMENT 

This section describes the performance evaluation 
environment. An accurate portrayal of the System-on-
Chip (SoC) is important since the processor’s video 
performance heavily depends on its interaction with the 
rest of the SoC environment (Figure 4). The evaluation 
environment includes the TM3270 media-processor, a 
DDR memory controller, and off-chip DDR memory. 

The TM3270 has an operating frequency of 450 MHz. 
We simulate with a DDR400 SDRAM memory; i.e. an 

operating frequency of 200 MHz. The TM3270 provides 
an asynchronous clock domain transfer between the 200 
MHz memory, and the 450 MHz processor clocks. We 
use the actual TM3270 Verilog HDL description as 
simulation model. The same description was used as input 
to synthesis and place&route tools. This ensures a cycle 
accurate portrayal of processor performance, including 
cache behavior. We use Cadence’s NC-Verilog for 
Verilog HDL simulation. The path between the processor 
and the memory controller includes a delay block, which 
can be used to artificially delay the data traffic from/to the 
off-chip SDRAM memory. The artificial delay is used to 
mimic the processor observed memory latency in a SoC 
in which multiple on-chip IP devices share a unified off-

chip memory. 

TABLE I 
TM3270 OVERVIEW 

Architectural feature Quantity 

Architecture 5 issue slot VLIW 
guarded RISC-like operations 

Pipeline depth 7-13 stages 
Address width 32-bit 
Data width 32-bit 

Register-file Unified 
128 32-bit registers 

Functional units 31 
IEEE-754 floating point yes 
SIMD capabilities 1 x 32-bit 

2 x 16-bit 
4 x 8-bit 

Instruction cache 64 Kbyte 
8 way set-associative, LRU replacement 
128 byte lines 

Data cache 128 Kbyte 
4 way set-associative, LRU replacement 
128 byte lines 
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Fig. 4.  Performance evaluation environment. The dotted line 
indicates a clock domain transfer. 



 
 

IV. TM3270 ARCHITECTURE 

This section gives an overview of the TM3270 media-
processor. The TM3270 is backward source code 
compatible with the TriMedia architecture. An overview 
of the TriMedia architecture can be found in [7], [8], and 
[9]. The processor has a fully synthesizable design using 
a standard-cell logic library and single-ported SRAMs, 
allowing for fast process technology mapping. Silicon 
area was one of the main design constraints, to allow for 
an economically viable solution in the cost-driven 
consumer electronics market. The processor achieves a 
frequency of 450 MHz in a .09 µm process technology, 
and measures around 8.1 mm2. Table I gives an overview 
of the main architectural features. 

The TM3270 has a 32-bit VLIW architecture. A VLIW 
instruction may contain up to five operations. Each of 
these operations may be guarded; i.e. their execution can 
be made conditional on the value of a guard register. This 
allows the compiler to eliminate conditional jump 
operations, using if-conversion. SIMD arithmetic and 
shuffle operations allow for efficient manipulation and re-
organization of 8-, and 16-bit data types. Floating-point 
operations comply with the IEEE-754 standard. 
Operations are grouped into functional units, and most 
functional units have multiple instantiations. Most 
functional units are fully pipelined, allowing for back-to-
back issue of operations. The simple arithmetic functional 
unit has five instantiations, so up to five simple arithmetic 
operations can be issued every cycle. The floating point 
multiply and adder units have two instantiations. The 
TM3270 provides some architectural enhancements over 
previous TriMedia processors; we mention those that 
impact temporal up-conversion performance: 

Two-slot operations. New operations have been added 
that can significantly contribute to processor performance 
on e.g. temporal up-conversion. Some of these operations 

are two-slot operations. These two-slot operations allow 
for up to 4 source, and up to 2 destination operands. 
Table II gives the definitions of two of these operations. 

Unaligned load/store operations. The load/store unit 
provides access to non-aligned data elements, without 
incurring processor stall cycles. 

Collapsed load and reduction operations. The 
collapsing of multiple elementary arithmetic operations 
was introduced in [10]. The TM3270 instead combines 
the functionality of memory and reduction operations into 
a single operation. More specifically, support is provided 
for operations that combine the functionality of an 
ordinary load with the functionality of a reduction 
operation. These operations can improve processor 
performance, and have the additional benefit that they 
reduce register-pressure. The operations have two source 
operands: a memory address, and a 4-bit value that acts as 
a weight for a weighted average calculation. Table II 
gives the definitions of one of these operations: 
LD_FRAC8. The LD_FRAC8 operation loads 5 byte 
elements from sequential memory addresses, and 
calculates a weighted average for the 1st and 2nd, the 2nd 
and 3rd, the 3rd and 4th, and the 4th and 5th byte elements. 

Data cache capacity. The 128 Kbyte data cache is 
able to capture the working set of our proprietary video 
processing algorithms at either SD or HD resolution. 

Allocate-on-write-miss policy. The processor 
allocates, rather than fetches a cache line when a write 
miss occurs, reducing the cache miss penalty and 
bandwidth to off-chip memory. Byte valid bits are 
maintained to track the validity of individual bytes in a 
cache line. 

 

TABLE II 
SOME  OF TM3270 NEW OPERATIONS 

Operation Description 

SUPER_QUADUSCALEMIXUI 
                                        rsrc1 rsrc2 rsrc3 rscr4 ->rdest1; 
 
 
 
Semantics: Weighted average of 8-bit unsigned integers (with 
rounding). 

   temp               = (rsrc1[31:24]*rsrc2[31:24] + rsrc3[31:24]*rsrc4[31:24] + 32) / 64; 
   rdest1[31:24] = Min (Max (0, temp), 255); 
   temp               = (rsrc1[23:16]*rsrc2[23:16] + rsrc3[23:16]*rsrc4[23:16] + 32) / 64; 
   rdest1[23:16] = Min (Max (0, temp), 255); 
   temp               = (rsrc1[15:8]*rsrc2[15:8]     + rsrc3[15:8]*rsrc4[15:8]     + 32) / 64 ; 
   rdest1[15:8]   = Min (Max (0, temp), 255); 
   temp               = (rsrc1[7:0]*rsrc2[7:0]         + rsrc3[7:0]*rsrc4[7:0]         + 32) / 64; 
   rdest1[7:0]     = Min (Max (0, temp), 255);  

SUPER_QUADUMEDIAN    rsrc1 rsrc2 rsrc3 -> rdest1; 
 
 
 
 
 
Semantics: Median of 8-bit unsigned integers. 

   rdest1[31:24] = Min (Max (Min (rsrc1[31:24], rsrc2[31:24]), rsrc3[31:24]),  
                                     Max (rsrc1[31:24], rsrc2[31:24])); 
   rdest1[23:16] = Min (Max (Min (rsrc1[23:16],  rsrc2[23:16]),  rsrc3[23:16]),  
                                     Max (rsrc1[23:16],  rsrc2[23:16])); 
   rdest1[15:8]   = Min (Max (Min (rsrc1[15:8], rsrc2[15:8]), rsrc3[15:8]),  
                                     Max (rsrc1[15:8], rsrc2[15:8])); 
   rdest1[7:0]     = Min (Max (Min (rsrc1[7:0],  rsrc2[7:0]),  rsrc3[7:0]),  
                                     Max (rsrc1[7:0],  rsrc2[7:0])) ; 

LD_FRAC8                                     rsrc1 rsrc2 -> rdest1; 
 
 
Semantics: Collapsed load; load combined with linear 
interpolation. 

   data0 = Mem[rsrc1];         data1 = Mem[rsrc1 + 1];   data2 = Mem[rsrc1 + 2]; 
   data3 = Mem[rsrc1 + 3];   data4 = Mem[rsrc1 + 4]; 
   rdest1[31:24]  = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) / 16; 
   rdest1[23:16]  = (data1*(16-rsrc2[3:0]) + data2*rsrc2[3:0] + 8) / 16; 
   rdest1[15:8]    = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) / 16; 
   rdest1[7:0]      = (data3*(16-rsrc2[3:0]) + data4*rsrc2[3:0] + 8) / 16;  
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Fig. 5. Memory region based prefetching. 

 
Prefetching. Prefetching reduces processor observed 

latency of the off-chip memory. By prefetching data from 
the off-chip memory into the processor’s data cache 
before actual use of the data, performance is improved by 
eliminating stall cycles associated to cache misses. 
Besides the support of software prefetch operations, the 
processor supports hardware based prefetching. Hardware 
based prefetching uses so-called prefetch memory 
regions, which allow for a prefetching pattern that reflects 
the access pattern of a data structure mapped onto a 
certain address space. The TM3270 supports four 
separate memory regions. 

The identification of these memory regions, and the 
required prefetch pattern is under software control, and 
defined by the following parameters (n = 0, 1, 2, 3): 

• PFn_START_ADDR 
• PFn_END_ADDR 
• PFn_STRIDE 

The first two parameters, PFn_START_ADDR and 
PFn_END_ADDR, are used to identify a memory region. 
The third parameter, PFn_STRIDE, is used to specify the 
prefetch pattern for the associated region.  

As an example, consider an application that is 
processing a two-dimensional image in memory (Figure 
5). Assume the application processes all image pixels in a 
line-by-line fashion, in a top to bottom line direction. The 

memory region is set to include the image. The stride 
value, PFn_STRIDE, is set to reflect the image access 
pattern. By setting the stride value equal to the image 
width, the image line sequential to the one being 
processed is prefetched. When the off-chip memory 
latency exceeds the time needed to process an image line, 
prefetching may not complete in time. Therefore, it might 
be necessary to prefetch more than one image line ahead, 
by setting the stride value to a multiple of the image 
width. 

Note that by setting the stride value to the cache line 
size, traditional next-sequential cache line prefetching is 
implemented. 

V. UP-CONVERSION IMPLEMENTATIONS 

We evaluated six different software implementations of 
the temporal up-conversion algorithm, as described in 
Section II. The implementations all provide the same 
functionality, but they differ in the extent to which they 
exploit the TM3270’s architectural enhancements. This 
allows us to quantify the contribution of the individual 
enhancements. 

All implementations operate on SD NTSC images of 
720*480 pixels at 60 Hz, resulting in a total of 21600 4x4 
blocks per image. A temporal up-conversion to 85 Hz 
was used in the experiments. We restrict ourselves to the 
up-conversion of luminance vales. All implementations 
use memory region based prefetching. For the two source 
images, the memory region stride is set such that while 
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maximum value of the vertical component of the motion 
vector). 

Since video objects typically cover multiple 4x4 
blocks, the motion vector field tends to show a certain 
continuity (motion vectors of neighboring blocks are 
often similar in size and direction). We decided not to 
rely on this characteristic; we use a random motion vector 
field, rather than an extracted motion vector field from a 
video sequence. As a result, our performance 
measurement results reflect worse case, rather than 
typical case, execution behavior. We support motion 
vectors at ¼ pixel resolution in both horizontal and 
vertical direction. The horizontal component of the 

TABLE III 
IMPLEMENTATIONS A TO F, THEIR USE OF  NEW OPERATIONS. 

Impl. 
Unaligned 
load/store 
support 

Horizontal 
fractional 
position 

Vertical 
fractional 
position 

Average, mixer and fader 
implementation 

Median 
implementation 

A no - - - - 
B yes - - - - 
C yes LD_FRAC8 - - - 
D yes LD_FRAC8 SUPER_QUADUSCALEMIXUI - - 
E yes LD_FRAC8 SUPER_QUADUSCALEMIXUI SUPER_QUADUSCALEMIXUI - 
F yes LD_FRAC8 SUPER_QUADUSCALEMIXUI SUPER_QUADUSCALEMIXUI SUPER_QUADUMEDIAN 

 



 
 

motion vectors is taken from the range [-128, 127 ¾], and 
the vertical component of the motion vectors is taken 
from the range [-24, 23 ¾] (video motion is typically 
more dominant in the horizontal direction).  

Table III gives a summary of the six implementations. 
Our base line, implementation A, uses neither unaligned 
load/store operations, nor any other new operations. 
Implementation B uses unaligned load/store operations. 
Unaligned memory access reduces the need to reorganize 
8-bit video pixel elements. Note that for the calculation of 
horizontal fractional pixels, five horizontal neighboring 
pixels are used, requiring two load operations. 
Implementation C uses the collapsed LD_FRAC8 
operation. This operation loads five horizontal 
neighboring pixels and performs an interpolation between 
two neighboring pixels. The operation allows for an 
efficient implementation of the horizontal fractional pixel 
calculation of motion compensated pixels. Furthermore, 
the operation halves the amount of load operations. 
Implementation D uses the two-slot 
SUPER_QUADUSCALEMIXUI operation. Its use is 
restricted to the implementation of vertical fractional 
pixel calculation of motion compensated pixels. 
Compared to an implementation using original TriMedia 
architecture operations, a reduction of 50% in the issue 
slot bandwidth utilization is achieved. Implementation E 
uses the two-slot SUPER_QUADUSCALEMIXUI 
operation. It extends the use of this operation beyond that 
of implementation D, the operation is used to efficiently 
implement the average, mixer, and fader functionality. 
Implementation F uses the SUPER_QUADUMEDIAN 
operation. It is used to efficiently implement the median 
functionality. A 3-taps median filter is defined as follows: 
 
Median (a, b, c) =  Min (Max (Min (a, b), c), Max (a, b))) 
 

The original TriMedia architecture supports the “4 x 8-
bit” QUADUMAX and QUADUMIN operations. Both 
operations are executed on DSPALU functional units (3 
instantiations are available), and have a latency of 2 
cycles. A 3-taps median filter on “4 x 8-bit” operands 
occupies 4 issue slots, and produces a compiler schedule 
with a compound latency of 6 cycles. The TM3270 
supports the two-slot SUPER_QUADUMEDIAN 

operation. The operation is executed on a SUPER-
DSPALU functional unit. The operation occupies two 

neighboring issue slots (a reduction of a factor 2), and has 
a latency of 2 cycles (a reduction of the compound 
latency by a factor 3).  

VI. MEASUREMENTS AND RESULTS 

All six implementations were simulated in our cycle 
accurate SoC environment, as described in Section III. 
For all implementations, the instruction working set fits 
within the instruction cache, so apart from initial 
compulsory cache misses, no instruction cache misses and 
associated stalls were encountered. 

A. Comparing the implementations 

To compare the performance of the implementations, we 
simulated them under the same SoC conditions: 
prefetching is turned on, an allocate-on-write-miss policy 
is used, and the delay block adds 0 cycles delay in the 
memory clock domain. Table IV gives the simulation 
results. 

The implementations have a cycles-per-VLIW ratio 
(CPI) in the range of  [1.05, 1.08] (a CPI of 1 is the 
theoretical optimum). The low percentage of stall cycles 
is mainly due to the efficiency of prefetching.  The issue 
slot utilization is close to the theoretical maximum of 5 
(TM3270 has a 5 issue VLIW architecture), reflecting 
high operation scheduling efficiency for the up-
conversion algorithm. 

Implementation B shows that the support of unaligned 
load operations significantly improves processor 
performance. Implementation C uses the LD_FRAC8 
operation. This operation not only accelerates the 
horizontal fractional pixel calculation, but also halves the 
amount of load operations required to calculate a motion 
compensated 4x4 block of pixels. Additional support of 
two-slot operations further improves performance. 
Enabling all of the new TM3270 operations improves 
performance by roughly 41% (implementation A vs. 
implementation F). 

B. Influence of prefetching 

To quantify the contribution of prefetching to processor 
performance, we simulated implementations A and F with 
prefetching turned on (scenario 1) and prefetching turned 
off (scenario 2). Table V gives the simulation results. 
When prefetching is turned off, the amount of data cache 
misses increases, degrading processor performance. For 0 

 
TABLE IV 

PERFORMANCE RESULTS FOR IMPLEMENTATIONS A TO F (PREFETCHING ON, ALLOCATE-ON-WRITE-MISS POLICY, 0 DELAY CYCLE S). 

Image average 
Implementation 

Cycles 
Stall 

cycles 
VLIW 

instructions 
Cycles/ 

VLIW instr. 
Operations/ 
VLIW instr. 

MHz. req. for SD 
@ 85 images/sec. 

% of 450 MHz. 
processor 

performance 

A 1592693 73203 1519490 1.05 4.64 135 30.1 
B 1344255 73766 1270489 1.06 4.64 114 25.4 
C 1150785 73855 1076930 1.07 4.63 98 21.7 
D 1091897 74366 1017531 1.07 4.71 93 20.6 
E 1040331 77281 963050 1.08 4.75 88 19.7 
F 943700 72938 870762 1.08 4.79 80 17.8 

 



 
 

additional memory delay cycles, the performance of 
scenario 2 is 20% worse than the performance of scenario 
1 (implementation F). As the amount of additional 
memory delay cycles increases, the cache miss penalty 
increases, degrading processor performance even further. 

The effectiveness of prefetching depends on the 
processor’s ability to overlap prefetching with 
computation. Beyond the point at which both can be 
overlapped, both scenario 1 and scenario 2 show a similar 
dependency on additional memory delay cycles. This is 
reflected by the similar steepness of the right hand side of 
the performance curves for scenario 1 and 2. 

C. Influence of cache write-miss policy 

To quantify the contribution of the data cache write-miss 
policy to processor performance, we simulated 
implementations A and F with both an allocate-on-write-
miss policy (scenario 1 and 2), and a fetch-on-write-miss 
policy (scenario 3 and 4). The allocate-on-write-miss 
policy allocates, rather than fetches, a cache line, when a 
write miss to the line occurs. As a result, data cache stall 
cycles related to write misses are reduced. Furthermore, 
memory bandwidth requirements are reduced. 

For scenario 3 prefetching is on. We use memory 
region based prefetching to retrieve data from the address 
region of the up-converted image (the associated data 
elements are overwritten by the algorithm), to reduce 
write miss stall cycles. The prefetch memory region stride 
is set such that while computing a pixel at image position 
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‘4’ being the height of our 4x4 block of pixels). For 
scenario 4 prefetching is off. 

The fetch-on-write-miss policy increases the memory 
bandwidth requirements of the algorithm. This is because 
an additional image has to be retrieved from memory. For 
scenario 3, the increased bandwidth is responsible for a 
higher cycle count as soon as prefetching and 
computation cannot be overlapped. For implementation A 
this point is reached at approximately 50 additional 
memory delay cycles, for implementation F this point is 
reached at 20 additional cycles. 

When the amount of additional memory delay cycles 
is small, scenario 3 outperforms scenario 1. This is 
explained as follows. For scenario 1, the allocate-on-
write-miss policy is used to resolve a write miss. The 

TABLE V 
PERFORMANCE RESULTS FOR IMPLEMENTATIONS A AND F (DIFFERENT DELAY CYCLES, PREFETCH AND WRITE-MISS POLICIES). 

Memory delay cycles 

Implementation 0 10 20 30 40 50 60 70 80 90 100 

Scenario 1: Prefetching, allocate-on-write-miss policy 
A 1592693 1600697 1609906 1621620 1636600 1649298 1665309 1690936 1724163 1786625 1893428 
F 943700 955382 971631 998285 1051851 1166124 1296844 1428693 1563878 1700985 1836183 

Scenario 2: No prefetching, allocate-on-write-miss policy 
A 1819102 1959327 2097728 2238262 2377077 2517321 2656075 2796328 2935369 3075623 3214557 
F 1177986 1321405 1457453 1601024 1738244 1880860 2017763 2161344 2295430 2442317 2576074 

Scenario 3: Prefetching, fetch-on-write-miss policy 
A 1570562 1577825 1586476 1597652 1615853 1668595 1816605 2003844 2192863 2387618 2580891 
F 917729 935667 1011365 1187154 1372551 1561989 1755179 1948117 2143462 2340515 2536786 

Scenario 4: No prefetching, fetch-on-write-miss policy 
A 1927048 2128510 2327918 2528756 2728536 2929260 3128990 3330039 3529292 3730352 3929539 
F 1285505 1489392 1686914 1892374 2088612 2292813 2490184 2694473 2891830 3096706 3290896 
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allocation of a cache line takes a few cycles to complete 
and may introduce stall cycles. Scenario 3, however, will 
not incur any write misses when prefetching is performed 
in time. The ability to perform prefetching in time is 
dependent on the ability to overlap prefetching with 
computation. This ability decreases when the memory 
latency increases. As a result, scenario 3 only outperforms 
scenario 1 when the amount of additional memory delay 
cycles is small. 

The additional bandwidth requirement for scenario 4 
(over scenario 2) is reflected by the steepness of the 
performance curves: for scenario 4 the curve is steeper 
than for scenario 2. A similar behavior is observed when 
comparing the right hand side of the curves for scenario 3 
and scenario 1. 

D. Influence of memory latency 

To quantify the influence of SoC SDRAM memory 
latency on processor performance, we simulated 
implementations A and F with different memory delay 
cycles. The simulation with 0 delay cycles reflects a SoC 
in which only the processor requires off-chip memory 
bandwidth. Increasing the amount of delay cycles mimics 
a SoC in which off-chip memory bandwidth is consumed 
by other on-chip IP devices. Table V gives the simulation 
results. 

As expected, increased memory latency decreases 
performance. The amount of performance degradation is 
not only dependent on the additional memory delay, but 
also on the ability of the processor to overlap prefetching 
and computation. 

For implementation F (scenario 1), we can observe a 
discontinuity in the performance curve, as a function of 
additional memory delay. Up to roughly 30 additional 
delay cycles the performance degradation is limited, 
above 30 delay cycles performance degradation is more 
severe. The discontinuity represents the point beyond 
which the processor is no longer able to efficiently 
overlap prefetching with computation. Note that for 
implementation A (scenario 1), a similar discontinuity can 
be observed at around 80 additional memory delay cycles. 
Since implementation A uses more VLIW instructions, 
the ability to overlap prefetching with computation is 
present for a larger amount of additional memory cycles 
than for implementation F.  

For scenarios 2 and 4 prefetching is turned off. As the 
amount of additional memory delay cycles increases, the 
cache miss penalty increases, resulting in an almost linear 
dependency between memory delay cycles and processor 
performance. 

VII. CONCLUSION 

The simulation results show that real-time temporal video 
up-conversion of a SD NTSC video signal to a display 
frequency of 85 Hz can be performed in 17.8% of the 
available processor performance (implementation F, 
scenario 1, 0 delay cycles). Recently, improvements to 
our up-conversion algorithm were described to address 

artifacts in so called occlusion areas [6]. These 
algorithmic improvements can relatively easily be 
mapped to the proposed architecture, due to the flexibility 
of the architecture and the available processor 
performance. 

The use of new operations significantly reduces the 
cycle count. We found a speed up of 41%, when 
comparing implementations A and F, for scenario 1, at 0 
additional memory delay cycles. As the memory delay 
increases, the algorithm becomes memory bound, and the 
benefit of the new operations decreases. 

Data prefetching improves performance of 
implementation F by 20%, at 0 additional delay cycles 
(scenario 1 vs. scenario 2). As the memory delay 
increases, the benefit of prefetching increases. 

The allocate-on-write-miss policy reduces memory 
bandwidth requirements. Its effect is most noticeable for 
large memory delays. Implementation F shows an 
improvement of 28%, at 100 addition delay cycles 
(scenario 1 vs. scenario 3). 
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