

ABSTRACT
This paper evaluates the performance of a temporal video
up-conversion algorithm on a next generation media-
processor, the TM3270. Temporal up-conversion adapts
the temporal frequency of a video signal to the temporal
frequency of a display device. In order to improve
performance, the TM3270 provides architectural
enhancements over previous TriMedia processors. We
quantify the speedup of new operations to temporal up-
conversion performance. We show that the new
operations improve performance by 41%. Furthermore,
we quantify the speedup of data prefetching and an
allocate-on-write-miss policy. We show that data
prefetching can improve performance by more than 20%.
An allocate-on-write-miss policy significantly improves
performance in the presence of a high latency memory
subsystem. By applying all TM3270 architectural
enhancements, we show that the temporal up-conversion
algorithm can be performed in 17.8% of the available
processor performance.

KEYWORDS
Media processor, temporal video up-conversion, software
implementation.

I. INTRODUCTION

edia-processors can be used in many video
processing applications. Their programmability

provides flexibility, which can be exploited in various
ways. It enables algorithmic changes after design, a
higher level of adaptation to changes in the video,
multiple algorithms can be mapped to the same
architecture, faster time-to-market, etc. When enough
performance is available, media-processors provide an
interesting alternative to fixed dedicated hardware
solutions. Furthermore, when a single programmable
platform can address multiple markets, its design costs
can be shared, providing a cost-efficiency advantage over
fixed dedicated hardware solutions.

Video codecs, such as MPEG2, MPEG4, and
H.264/AVC [1], rely on standardization to ensure inter-
operability, and therefore, these algorithms will generally

not change over time. Proprietary video processing
applications do generally change more often, i.e. due to
algorithmic improvements, and as such have a stronger
need for an implementation platform that provides a
sufficient level of programmability.

Many proprietary video processing applications can
be found in today’s television sets, line noise reduction,
de-interlacing, sharpness enhancement, film judder
removal, scaling, etc. Since video quality is still the main
driver in the high-end television market, the ability to
improve quality before the competition, may determine
the success of a solution in the television market. Many of
these video processing applications have until recently
only been available in a dedicated hardware design, i.e.
ASICs. However, as the cost of new designs and
integration is increasing dramatically, and programmable
media-processors offer increased performance, we reach a
point at which it becomes attractive to pursue a re-usable,
programmable platform.

In this paper, we evaluate the performance of a high
quality temporal up-converter on the next generation
TriMedia processor, the TM3270. The TM3270 media-
processor provides architectural enhancements over
previous TriMedia processors. These enhancements
improve performance in the video-processing domain.
We show that a real-time software implementation of the
temporal up-converter is achievable, with enough
performance headroom to perform other video processing
applications. We quantify the contribution of collapsed
load operations, and two-slot operations to processor
performance. Furthermore, we quantify the speedup of
data prefetching and an allocate-on-write-miss data cache
policy.

The remainder of this paper is organized as follows. In
Section II, we describe the temporal up-conversion
algorithm, which is used to evaluate processor
performance. In Section III, we define our performance
evaluation environment. In Section IV, the TM3270
architecture is presented. In Section V, we present six
software implementations of the algorithm as described in
Section II. In Section VI, we present and discuss the
performance measurement results. Finally, in Section VII,
we present our conclusions.

TEMPORAL VIDEO UP-CONVERSION

ON A NEXT GENERATION MEDIA-PROCESSOR
Jan-Willem van de Waerdt*+, Stamatis Vassiliadis+, Erwin B. Bellers*, and Johan G. Janssen*

*Philips Semiconductors
San Jose, CA, USA

+Delft University of Technology – Computer Engineering Department

Delft, the Netherlands, (Stamatis@dutepp0.et.tudelft.nl)

M

II. TEMPORAL UP-CONVERSION

A. Introduction

Temporal up-conversion adapts the temporal frequency of
a video signal to the temporal frequency of a display
device. An example is the conversion of a 60 Hz standard
definition (SD) NTSC video signal to a display frequency
at 85 Hz. Figure 1 illustrates the basic principle. A simple
approach is to repeat the last available image. Although
this is okay for stationary images, it introduces film
judder for moving image parts (2:2 and 3:2 pull down). A
better approach is to apply motion-compensated (MC)
temporal up-conversion. It attempts to eliminate the film
judder by accurate portrayal of the motion in the video

signal.
New images are derived using the two temporally

neighboring images in the source material. MC temporal
up-conversion relies on the availability of a motion vector

field [2], [3]. A motion vector mv(b
r

, n) is assumed to be
available for every 4x4 block of image pixels b,
representing the motion of the block from source image

n-1, to source image n. Let
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

y

x

b

b
b
r denote the block

address, such that
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

y

x

b

b

4

4
 and

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

34

34

y

x

b

b identify the

upper left and lower right pixels of block b in the image.

B. Enhanced Cascaded Median Algorithm

This paper does not intend to introduce a new and better
temporal up-converter, but rather to evaluate the
performance of our processor on an existing algorithm.
We use the cascaded median up-converter [4] as the basis
for our MC up-converter algorithm.

The cascaded median up-converter uses non-motion
compensated (static) and motion compensated (dynamic)
pixels (Figure 2) to calculate the pixels in the up-
converted image. Static pixels are taken from colocated
positions in the temporally neighboring source images n-1
and n. These pixels are represented by st_left and st_right.
Dynamic pixels are taken from motion compensated

positions in the temporally neighboring source images n-1
and n. These pixels are represented by dyn_left and
dyn_right. We support motion vectors at ¼ pixel
resolution in both horizontal and vertical direction.
Motion compensated pixels at fractional positions are
calculated by means of linear interpolation of up to four
spatially surrounding integer pixels. The parameter p is a
fraction between 0 and 1, and represents the temporal
position of the up-converted image in between the two
neighboring source images n-1 and n.

The cascaded median algorithm combines a static
median, a dynamic median, and a mix filter. This

dyn_left dyn_rightst_left st_right

DYNAMIC
AVERAGE

STATIC
AVERAGE

MIXER MEDIANMEDIAN

MEDIAN

S

FADER
F

STATIC
MEDIAN

FILTER DYNAMIC
MEDIAN

CASCADED
MEDIAN

UPCONVERTED
PIXEL

P: TEMPORAL POSITION
S: SMOOTHNESS FACTOR
F: FADING FACTOR

P

SOURCE PIXELS:

Fig. 3. Enhanced cascaded median.

UPCONVERSION

SOURCE

DISPLAY

n-1 n+2n+1image n time

Fig. 1. Temporal up-conversion, the basic principle. A
sequence of image at the display frequency (grey color) is
derived from a sequence of images at the source frequency
(white color).

image n-1 image n

MOTION
VECTOR

MOTION COMP.
(dyn_right)

MOTION COMP.
(dyn_left)

SPATIAL
(st_left)

SPATIAL
(st_right)

upconverted
image

P 1-P

Fig. 2. Temporal up-conversion, spatial and motion
compensated predictors.

combination takes advantages of the individual filters’
strengths, and reduces the impact of the individual filters’
weaknesses. A detailed description of the algorithm, and
an evaluation of its quality can be found [4]. The quality
of the cascaded median algorithm was further enhanced
by the addition of a fader as illustrated in Figure 3.

The “static average” and “dynamic average” functions
in Figure 3 perform a weighted average operation based
on the temporal position p. The smaller the temporal
position p, the higher the weight of the pixels of the
source image on the left (image n-1).

Average (input1, input2, p) = (1-p) * input1 + p * input2

The “mixer” function performs a weighted average
operation based on a smoothness factor s. The up-
conversion algorithm calculates a smoothness factor
based on the current block’s motion vector, and the
motion vectors of the surrounding blocks. The smaller the
sum of the differences between the current motion vector
and the surrounding motion vectors, the higher the
relative weight of the dynamic average input to the mixer.
The smoothness factor represents the local
continuity/smoothness of the motion vector field.

Mixer (input1, input2, s) = (1-s) * input1 + s * input2

The “fader” function performs a weighted average
operation based on a fading factor f. The up-conversion
algorithm calculates a fading factor based on the current
block’s motion vector, and the motion vectors of the
surrounding blocks. A large difference between the
current motion vector and one of the surrounding motion
vectors (a large block to block motion vector
discontinuity), results in a small relative weight for the
dynamic average input to the fader.

Fader (input1, input2, f) = (1-f) * input1 + f * input2

The “median” functions perform a three input median
operation:

Median (input1, input2, input3) =

Min (Max (Min (input1, input2), input3),
Max (input1, input2))

III. PERFORMANCE EVALUATION
ENVIRONMENT

This section describes the performance evaluation
environment. An accurate portrayal of the System-on-
Chip (SoC) is important since the processor’s video
performance heavily depends on its interaction with the
rest of the SoC environment (Figure 4). The evaluation
environment includes the TM3270 media-processor, a
DDR memory controller, and off-chip DDR memory.

The TM3270 has an operating frequency of 450 MHz.
We simulate with a DDR400 SDRAM memory; i.e. an

operating frequency of 200 MHz. The TM3270 provides
an asynchronous clock domain transfer between the 200
MHz memory, and the 450 MHz processor clocks. We
use the actual TM3270 Verilog HDL description as
simulation model. The same description was used as input
to synthesis and place&route tools. This ensures a cycle
accurate portrayal of processor performance, including
cache behavior. We use Cadence’s NC-Verilog for
Verilog HDL simulation. The path between the processor
and the memory controller includes a delay block, which
can be used to artificially delay the data traffic from/to the
off-chip SDRAM memory. The artificial delay is used to
mimic the processor observed memory latency in a SoC
in which multiple on-chip IP devices share a unified off-

chip memory.

TABLE I
TM3270 OVERVIEW

Architectural feature Quantity

Architecture 5 issue slot VLIW
guarded RISC-like operations

Pipeline depth 7-13 stages
Address width 32-bit
Data width 32-bit

Register-file Unified
128 32-bit registers

Functional units 31
IEEE-754 floating point yes
SIMD capabilities 1 x 32-bit

2 x 16-bit
4 x 8-bit

Instruction cache 64 Kbyte
8 way set-associative, LRU replacement
128 byte lines

Data cache 128 Kbyte
4 way set-associative, LRU replacement
128 byte lines

SYSTEM-ON-CHIP (SoC)

DDR400 SDRAM MEMORY

MEMORY
CONTROLLER

TM3270

ON-CHIP
DEVICE

ON-CHIP
DEVICE

ON-CHIP
DEVICE

CRITICAL RESOURCE

DELAY
BLOCK

64-bit

32-bit

200 MHz 450 MHz

M
E

D
IA

 S
T

R
E

A
M

S

Fig. 4. Performance evaluation environment. The dotted line
indicates a clock domain transfer.

IV. TM3270 ARCHITECTURE

This section gives an overview of the TM3270 media-
processor. The TM3270 is backward source code
compatible with the TriMedia architecture. An overview
of the TriMedia architecture can be found in [7], [8], and
[9]. The processor has a fully synthesizable design using
a standard-cell logic library and single-ported SRAMs,
allowing for fast process technology mapping. Silicon
area was one of the main design constraints, to allow for
an economically viable solution in the cost-driven
consumer electronics market. The processor achieves a
frequency of 450 MHz in a .09 µm process technology,
and measures around 8.1 mm2. Table I gives an overview
of the main architectural features.

The TM3270 has a 32-bit VLIW architecture. A VLIW
instruction may contain up to five operations. Each of
these operations may be guarded; i.e. their execution can
be made conditional on the value of a guard register. This
allows the compiler to eliminate conditional jump
operations, using if-conversion. SIMD arithmetic and
shuffle operations allow for efficient manipulation and re-
organization of 8-, and 16-bit data types. Floating-point
operations comply with the IEEE-754 standard.
Operations are grouped into functional units, and most
functional units have multiple instantiations. Most
functional units are fully pipelined, allowing for back-to-
back issue of operations. The simple arithmetic functional
unit has five instantiations, so up to five simple arithmetic
operations can be issued every cycle. The floating point
multiply and adder units have two instantiations. The
TM3270 provides some architectural enhancements over
previous TriMedia processors; we mention those that
impact temporal up-conversion performance:

Two-slot operations. New operations have been added
that can significantly contribute to processor performance
on e.g. temporal up-conversion. Some of these operations

are two-slot operations. These two-slot operations allow
for up to 4 source, and up to 2 destination operands.
Table II gives the definitions of two of these operations.

Unaligned load/store operations. The load/store unit
provides access to non-aligned data elements, without
incurring processor stall cycles.

Collapsed load and reduction operations. The
collapsing of multiple elementary arithmetic operations
was introduced in [10]. The TM3270 instead combines
the functionality of memory and reduction operations into
a single operation. More specifically, support is provided
for operations that combine the functionality of an
ordinary load with the functionality of a reduction
operation. These operations can improve processor
performance, and have the additional benefit that they
reduce register-pressure. The operations have two source
operands: a memory address, and a 4-bit value that acts as
a weight for a weighted average calculation. Table II
gives the definitions of one of these operations:
LD_FRAC8. The LD_FRAC8 operation loads 5 byte
elements from sequential memory addresses, and
calculates a weighted average for the 1st and 2nd, the 2nd
and 3rd, the 3rd and 4th, and the 4th and 5th byte elements.

Data cache capacity. The 128 Kbyte data cache is
able to capture the working set of our proprietary video
processing algorithms at either SD or HD resolution.

Allocate-on-write-miss policy. The processor
allocates, rather than fetches a cache line when a write
miss occurs, reducing the cache miss penalty and
bandwidth to off-chip memory. Byte valid bits are
maintained to track the validity of individual bytes in a
cache line.

TABLE II
SOME OF TM3270 NEW OPERATIONS

Operation Description

SUPER_QUADUSCALEMIXUI
 rsrc1 rsrc2 rsrc3 rscr4 ->rdest1;

Semantics: Weighted average of 8-bit unsigned integers (with
rounding).

 temp = (rsrc1[31:24]*rsrc2[31:24] + rsrc3[31:24]*rsrc4[31:24] + 32) / 64;
 rdest1[31:24] = Min (Max (0, temp), 255);
 temp = (rsrc1[23:16]*rsrc2[23:16] + rsrc3[23:16]*rsrc4[23:16] + 32) / 64;
 rdest1[23:16] = Min (Max (0, temp), 255);
 temp = (rsrc1[15:8]*rsrc2[15:8] + rsrc3[15:8]*rsrc4[15:8] + 32) / 64 ;
 rdest1[15:8] = Min (Max (0, temp), 255);
 temp = (rsrc1[7:0]*rsrc2[7:0] + rsrc3[7:0]*rsrc4[7:0] + 32) / 64;
 rdest1[7:0] = Min (Max (0, temp), 255);

SUPER_QUADUMEDIAN rsrc1 rsrc2 rsrc3 -> rdest1;

Semantics: Median of 8-bit unsigned integers.

 rdest1[31:24] = Min (Max (Min (rsrc1[31:24], rsrc2[31:24]), rsrc3[31:24]),
 Max (rsrc1[31:24], rsrc2[31:24]));
 rdest1[23:16] = Min (Max (Min (rsrc1[23:16], rsrc2[23:16]), rsrc3[23:16]),
 Max (rsrc1[23:16], rsrc2[23:16]));
 rdest1[15:8] = Min (Max (Min (rsrc1[15:8], rsrc2[15:8]), rsrc3[15:8]),
 Max (rsrc1[15:8], rsrc2[15:8]));
 rdest1[7:0] = Min (Max (Min (rsrc1[7:0], rsrc2[7:0]), rsrc3[7:0]),
 Max (rsrc1[7:0], rsrc2[7:0])) ;

LD_FRAC8 rsrc1 rsrc2 -> rdest1;

Semantics: Collapsed load; load combined with linear
interpolation.

 data0 = Mem[rsrc1]; data1 = Mem[rsrc1 + 1]; data2 = Mem[rsrc1 + 2];
 data3 = Mem[rsrc1 + 3]; data4 = Mem[rsrc1 + 4];
 rdest1[31:24] = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) / 16;
 rdest1[23:16] = (data1*(16-rsrc2[3:0]) + data2*rsrc2[3:0] + 8) / 16;
 rdest1[15:8] = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) / 16;
 rdest1[7:0] = (data3*(16-rsrc2[3:0]) + data4*rsrc2[3:0] + 8) / 16;

image height

MEMORY

PRE-FETCH REGION X:
PFx_START_ADDR
PFx_END_ADDR
PFx_STRIDE

image width

IMAGE

ADDRESS A

ADDRESS A+PFx_STRIDE

PFx_START_ADDR

PFx_END_ADDR

Fig. 5. Memory region based prefetching.

Prefetching. Prefetching reduces processor observed

latency of the off-chip memory. By prefetching data from
the off-chip memory into the processor’s data cache
before actual use of the data, performance is improved by
eliminating stall cycles associated to cache misses.
Besides the support of software prefetch operations, the
processor supports hardware based prefetching. Hardware
based prefetching uses so-called prefetch memory
regions, which allow for a prefetching pattern that reflects
the access pattern of a data structure mapped onto a
certain address space. The TM3270 supports four
separate memory regions.

The identification of these memory regions, and the
required prefetch pattern is under software control, and
defined by the following parameters (n = 0, 1, 2, 3):

• PFn_START_ADDR
• PFn_END_ADDR
• PFn_STRIDE

The first two parameters, PFn_START_ADDR and
PFn_END_ADDR, are used to identify a memory region.
The third parameter, PFn_STRIDE, is used to specify the
prefetch pattern for the associated region.

As an example, consider an application that is
processing a two-dimensional image in memory (Figure
5). Assume the application processes all image pixels in a
line-by-line fashion, in a top to bottom line direction. The

memory region is set to include the image. The stride
value, PFn_STRIDE, is set to reflect the image access
pattern. By setting the stride value equal to the image
width, the image line sequential to the one being
processed is prefetched. When the off-chip memory
latency exceeds the time needed to process an image line,
prefetching may not complete in time. Therefore, it might
be necessary to prefetch more than one image line ahead,
by setting the stride value to a multiple of the image
width.

Note that by setting the stride value to the cache line
size, traditional next-sequential cache line prefetching is
implemented.

V. UP-CONVERSION IMPLEMENTATIONS

We evaluated six different software implementations of
the temporal up-conversion algorithm, as described in
Section II. The implementations all provide the same
functionality, but they differ in the extent to which they
exploit the TM3270’s architectural enhancements. This
allows us to quantify the contribution of the individual
enhancements.

All implementations operate on SD NTSC images of
720*480 pixels at 60 Hz, resulting in a total of 21600 4x4
blocks per image. A temporal up-conversion to 85 Hz
was used in the experiments. We restrict ourselves to the
up-conversion of luminance vales. All implementations
use memory region based prefetching. For the two source
images, the memory region stride is set such that while

processing a pixel at image position ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

y

x

r

r
, the pixel at

position ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ mr

r

y

x , is prefetched (with m = 24, being the

maximum value of the vertical component of the motion
vector).

Since video objects typically cover multiple 4x4
blocks, the motion vector field tends to show a certain
continuity (motion vectors of neighboring blocks are
often similar in size and direction). We decided not to
rely on this characteristic; we use a random motion vector
field, rather than an extracted motion vector field from a
video sequence. As a result, our performance
measurement results reflect worse case, rather than
typical case, execution behavior. We support motion
vectors at ¼ pixel resolution in both horizontal and
vertical direction. The horizontal component of the

TABLE III
IMPLEMENTATIONS A TO F, THEIR USE OF NEW OPERATIONS.

Impl.
Unaligned
load/store
support

Horizontal
fractional
position

Vertical
fractional
position

Average, mixer and fader
implementation

Median
implementation

A no - - - -
B yes - - - -
C yes LD_FRAC8 - - -
D yes LD_FRAC8 SUPER_QUADUSCALEMIXUI - -
E yes LD_FRAC8 SUPER_QUADUSCALEMIXUI SUPER_QUADUSCALEMIXUI -
F yes LD_FRAC8 SUPER_QUADUSCALEMIXUI SUPER_QUADUSCALEMIXUI SUPER_QUADUMEDIAN

motion vectors is taken from the range [-128, 127 ¾], and
the vertical component of the motion vectors is taken
from the range [-24, 23 ¾] (video motion is typically
more dominant in the horizontal direction).

Table III gives a summary of the six implementations.
Our base line, implementation A, uses neither unaligned
load/store operations, nor any other new operations.
Implementation B uses unaligned load/store operations.
Unaligned memory access reduces the need to reorganize
8-bit video pixel elements. Note that for the calculation of
horizontal fractional pixels, five horizontal neighboring
pixels are used, requiring two load operations.
Implementation C uses the collapsed LD_FRAC8
operation. This operation loads five horizontal
neighboring pixels and performs an interpolation between
two neighboring pixels. The operation allows for an
efficient implementation of the horizontal fractional pixel
calculation of motion compensated pixels. Furthermore,
the operation halves the amount of load operations.
Implementation D uses the two-slot
SUPER_QUADUSCALEMIXUI operation. Its use is
restricted to the implementation of vertical fractional
pixel calculation of motion compensated pixels.
Compared to an implementation using original TriMedia
architecture operations, a reduction of 50% in the issue
slot bandwidth utilization is achieved. Implementation E
uses the two-slot SUPER_QUADUSCALEMIXUI
operation. It extends the use of this operation beyond that
of implementation D, the operation is used to efficiently
implement the average, mixer, and fader functionality.
Implementation F uses the SUPER_QUADUMEDIAN
operation. It is used to efficiently implement the median
functionality. A 3-taps median filter is defined as follows:

Median (a, b, c) = Min (Max (Min (a, b), c), Max (a, b)))

The original TriMedia architecture supports the “4 x 8-
bit” QUADUMAX and QUADUMIN operations. Both
operations are executed on DSPALU functional units (3
instantiations are available), and have a latency of 2
cycles. A 3-taps median filter on “4 x 8-bit” operands
occupies 4 issue slots, and produces a compiler schedule
with a compound latency of 6 cycles. The TM3270
supports the two-slot SUPER_QUADUMEDIAN

operation. The operation is executed on a SUPER-
DSPALU functional unit. The operation occupies two

neighboring issue slots (a reduction of a factor 2), and has
a latency of 2 cycles (a reduction of the compound
latency by a factor 3).

VI. MEASUREMENTS AND RESULTS

All six implementations were simulated in our cycle
accurate SoC environment, as described in Section III.
For all implementations, the instruction working set fits
within the instruction cache, so apart from initial
compulsory cache misses, no instruction cache misses and
associated stalls were encountered.

A. Comparing the implementations

To compare the performance of the implementations, we
simulated them under the same SoC conditions:
prefetching is turned on, an allocate-on-write-miss policy
is used, and the delay block adds 0 cycles delay in the
memory clock domain. Table IV gives the simulation
results.

The implementations have a cycles-per-VLIW ratio
(CPI) in the range of [1.05, 1.08] (a CPI of 1 is the
theoretical optimum). The low percentage of stall cycles
is mainly due to the efficiency of prefetching. The issue
slot utilization is close to the theoretical maximum of 5
(TM3270 has a 5 issue VLIW architecture), reflecting
high operation scheduling efficiency for the up-
conversion algorithm.

Implementation B shows that the support of unaligned
load operations significantly improves processor
performance. Implementation C uses the LD_FRAC8
operation. This operation not only accelerates the
horizontal fractional pixel calculation, but also halves the
amount of load operations required to calculate a motion
compensated 4x4 block of pixels. Additional support of
two-slot operations further improves performance.
Enabling all of the new TM3270 operations improves
performance by roughly 41% (implementation A vs.
implementation F).

B. Influence of prefetching

To quantify the contribution of prefetching to processor
performance, we simulated implementations A and F with
prefetching turned on (scenario 1) and prefetching turned
off (scenario 2). Table V gives the simulation results.
When prefetching is turned off, the amount of data cache
misses increases, degrading processor performance. For 0

TABLE IV

PERFORMANCE RESULTS FOR IMPLEMENTATIONS A TO F (PREFETCHING ON, ALLOCATE-ON-WRITE-MISS POLICY, 0 DELAY CYCLE S).

Image average
Implementation

Cycles
Stall

cycles
VLIW

instructions
Cycles/

VLIW instr.
Operations/
VLIW instr.

MHz. req. for SD
@ 85 images/sec.

% of 450 MHz.
processor

performance

A 1592693 73203 1519490 1.05 4.64 135 30.1
B 1344255 73766 1270489 1.06 4.64 114 25.4
C 1150785 73855 1076930 1.07 4.63 98 21.7
D 1091897 74366 1017531 1.07 4.71 93 20.6
E 1040331 77281 963050 1.08 4.75 88 19.7
F 943700 72938 870762 1.08 4.79 80 17.8

additional memory delay cycles, the performance of
scenario 2 is 20% worse than the performance of scenario
1 (implementation F). As the amount of additional
memory delay cycles increases, the cache miss penalty
increases, degrading processor performance even further.

The effectiveness of prefetching depends on the
processor’s ability to overlap prefetching with
computation. Beyond the point at which both can be
overlapped, both scenario 1 and scenario 2 show a similar
dependency on additional memory delay cycles. This is
reflected by the similar steepness of the right hand side of
the performance curves for scenario 1 and 2.

C. Influence of cache write-miss policy

To quantify the contribution of the data cache write-miss
policy to processor performance, we simulated
implementations A and F with both an allocate-on-write-
miss policy (scenario 1 and 2), and a fetch-on-write-miss
policy (scenario 3 and 4). The allocate-on-write-miss
policy allocates, rather than fetches, a cache line, when a
write miss to the line occurs. As a result, data cache stall
cycles related to write misses are reduced. Furthermore,
memory bandwidth requirements are reduced.

For scenario 3 prefetching is on. We use memory
region based prefetching to retrieve data from the address
region of the up-converted image (the associated data
elements are overwritten by the algorithm), to reduce
write miss stall cycles. The prefetch memory region stride
is set such that while computing a pixel at image position

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

y

x

c

c
, the pixel at position ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ 4y

x

c

c
, is prefetched (with

‘4’ being the height of our 4x4 block of pixels). For
scenario 4 prefetching is off.

The fetch-on-write-miss policy increases the memory
bandwidth requirements of the algorithm. This is because
an additional image has to be retrieved from memory. For
scenario 3, the increased bandwidth is responsible for a
higher cycle count as soon as prefetching and
computation cannot be overlapped. For implementation A
this point is reached at approximately 50 additional
memory delay cycles, for implementation F this point is
reached at 20 additional cycles.

When the amount of additional memory delay cycles
is small, scenario 3 outperforms scenario 1. This is
explained as follows. For scenario 1, the allocate-on-
write-miss policy is used to resolve a write miss. The

TABLE V
PERFORMANCE RESULTS FOR IMPLEMENTATIONS A AND F (DIFFERENT DELAY CYCLES, PREFETCH AND WRITE-MISS POLICIES).

Memory delay cycles

Implementation 0 10 20 30 40 50 60 70 80 90 100

Scenario 1: Prefetching, allocate-on-write-miss policy
A 1592693 1600697 1609906 1621620 1636600 1649298 1665309 1690936 1724163 1786625 1893428
F 943700 955382 971631 998285 1051851 1166124 1296844 1428693 1563878 1700985 1836183

Scenario 2: No prefetching, allocate-on-write-miss policy
A 1819102 1959327 2097728 2238262 2377077 2517321 2656075 2796328 2935369 3075623 3214557
F 1177986 1321405 1457453 1601024 1738244 1880860 2017763 2161344 2295430 2442317 2576074

Scenario 3: Prefetching, fetch-on-write-miss policy
A 1570562 1577825 1586476 1597652 1615853 1668595 1816605 2003844 2192863 2387618 2580891
F 917729 935667 1011365 1187154 1372551 1561989 1755179 1948117 2143462 2340515 2536786

Scenario 4: No prefetching, fetch-on-write-miss policy
A 1927048 2128510 2327918 2528756 2728536 2929260 3128990 3330039 3529292 3730352 3929539
F 1285505 1489392 1686914 1892374 2088612 2292813 2490184 2694473 2891830 3096706 3290896

Implementation A

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 20 40 60 80 10
0

Memory delay cycles

C
yc

le
s

Scenario 1
Scenario 2
Scenario 3
Scenario 4

Implementation F

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 10 20 30 40 50 60 70 80 90 100

Memory delay cycles

C
yc

le
s

Scenario 1
Scenario 2
Scenario 3
Scenario 4

allocation of a cache line takes a few cycles to complete
and may introduce stall cycles. Scenario 3, however, will
not incur any write misses when prefetching is performed
in time. The ability to perform prefetching in time is
dependent on the ability to overlap prefetching with
computation. This ability decreases when the memory
latency increases. As a result, scenario 3 only outperforms
scenario 1 when the amount of additional memory delay
cycles is small.

The additional bandwidth requirement for scenario 4
(over scenario 2) is reflected by the steepness of the
performance curves: for scenario 4 the curve is steeper
than for scenario 2. A similar behavior is observed when
comparing the right hand side of the curves for scenario 3
and scenario 1.

D. Influence of memory latency

To quantify the influence of SoC SDRAM memory
latency on processor performance, we simulated
implementations A and F with different memory delay
cycles. The simulation with 0 delay cycles reflects a SoC
in which only the processor requires off-chip memory
bandwidth. Increasing the amount of delay cycles mimics
a SoC in which off-chip memory bandwidth is consumed
by other on-chip IP devices. Table V gives the simulation
results.

As expected, increased memory latency decreases
performance. The amount of performance degradation is
not only dependent on the additional memory delay, but
also on the ability of the processor to overlap prefetching
and computation.

For implementation F (scenario 1), we can observe a
discontinuity in the performance curve, as a function of
additional memory delay. Up to roughly 30 additional
delay cycles the performance degradation is limited,
above 30 delay cycles performance degradation is more
severe. The discontinuity represents the point beyond
which the processor is no longer able to efficiently
overlap prefetching with computation. Note that for
implementation A (scenario 1), a similar discontinuity can
be observed at around 80 additional memory delay cycles.
Since implementation A uses more VLIW instructions,
the ability to overlap prefetching with computation is
present for a larger amount of additional memory cycles
than for implementation F.

For scenarios 2 and 4 prefetching is turned off. As the
amount of additional memory delay cycles increases, the
cache miss penalty increases, resulting in an almost linear
dependency between memory delay cycles and processor
performance.

VII. CONCLUSION

The simulation results show that real-time temporal video
up-conversion of a SD NTSC video signal to a display
frequency of 85 Hz can be performed in 17.8% of the
available processor performance (implementation F,
scenario 1, 0 delay cycles). Recently, improvements to
our up-conversion algorithm were described to address

artifacts in so called occlusion areas [6]. These
algorithmic improvements can relatively easily be
mapped to the proposed architecture, due to the flexibility
of the architecture and the available processor
performance.

The use of new operations significantly reduces the
cycle count. We found a speed up of 41%, when
comparing implementations A and F, for scenario 1, at 0
additional memory delay cycles. As the memory delay
increases, the algorithm becomes memory bound, and the
benefit of the new operations decreases.

Data prefetching improves performance of
implementation F by 20%, at 0 additional delay cycles
(scenario 1 vs. scenario 2). As the memory delay
increases, the benefit of prefetching increases.

The allocate-on-write-miss policy reduces memory
bandwidth requirements. Its effect is most noticeable for
large memory delays. Implementation F shows an
improvement of 28%, at 100 addition delay cycles
(scenario 1 vs. scenario 3).

REFERENCES

[1] I.E.G. Richardson, “H.264 and MPEG-4 video
compresson, video coding for next-generation
multimedia”, Wiley, 2003.

[2] G. de Haan et al., “True-motion estimation with 3-D
recursive search block matching”, ICCE
Transactions on Circuits and Systems for Video
Technology, vol.3, pp. 368-379, October 1993.

[3] J.W. van de Waerdt, J.P. van Itegem, G. Slavenburg
and S. Vassiliadis, “Motion estimation performance
of the TM3270 processor”, ACM Symposium on
Applied Computing, March 2005.

[4] O. Ojo and G. de Haan, “Robust motion-
compensated video up-conversion”, IEEE
Transactions on Consumer Electronics, vol. 43, No.
4, pp. 1045-1056, November 1997.

[5] G. de Haan, “IC for motion compensated
deinterlacing, noise reduction and picture rate
conversion”, IEEE Transactions on Consumer
Electronics, pp. 617-624, August 1999.

[6] R.B. Wittebrood, G. de Haan and R. Lodder,
”Tackling occlusion in scan rate conversion
systems”, Digest of the ICCE'03, pp. 344-345, June
2003.

[7] S. Rathnam, and G. Slavenburg, “An architectural
overview of the programmable multimedia processor,
tm-1”, Proceedings of the COMPCON ’96, pp. 319-
326, 1996.

[8] T. Halfhill, “Philips powers up for video”,
Microprocessor Report, http://www.mpronline.com/,
November 2003.

[9] J.L. Hennessy and D.A. Patterson. “Computers
Architecture: A Quantitative Approach, 3rd edition”,
Morgan Kaufmann, 2003.

[10] S. Vassiliadis, J. Phillips, and B. Blaner, “Interlock
collapsing ALU’s”, IEEE Transactions on
Computers, vol. 42, issue 7, pp. 825-839, July 1993.

