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Abstract. In this paper, we introduce the concept of flux caches envisioned to
improve processor performance by dynamically changing the cache organization
and implementation. Contrary to the traditional approaches, processors designed
with flux caches instead of assuming a hardwired cache organization change their
cache ”design” on program demand. Consequently program (data and instruction)
dynamic behavior determines the cache hardware design. Experimental results to
confirm the flux caches potential are also presented.

1 Introduction

To improve processor performance numerous cache organizations have been proposed
(and some of them implemented) in the past. All well known cache organizations can be
divided in two classes: A) static approaches, e.g. victim [1,2] 1, column associative [4],
skewed-associative [5] and assist [6] caches; and B) adaptive designs, e.g split tempo-
ral/spatial [7], dual data [8], reconfigurable [9] and configurable line size [10] caches.
The first group relies on time invariant design improvements, while the second one
aims on trivial cache organization changes according to some running application re-
quirements. We envision a third approach, termedflux caches, based on demand driven
cache designs and implemented using for example reconfigurable technologies.
Reconfigurable hardware extensions of general purpose processors (GPP) have been
mainly focusing on accelerating frequently used code in hardware [11,12,13]. Such
hardware/software repartitioning usually leads to drastic changes in cache behavior
since the application temporal and spacial locality is mainly accounted on highly iter-
ative loops that form the primary subjects for hardware implementation. While dealing
with the aforementioned effects did not get unnoticed [14], using on-demand hardware
designs to improve the GPP memory sub-system seems to lack attention from the re-
search community. In this paper depending on expected execution benefits of a single
program (or a subsection of a program), memory sub-system designs are changed on
demand. If during program execution (or before the execution of a program) it is found
or expected that a different cache organization is beneficial then a new cache design
is (dynamically) installed in hardware. In essence our approach allows on demand L1,
L2 cache designs where all cache parameters (e.g. associativity, total size, line size,

1 This is the earliest work on victim caches presented before the widely recognized victim cache
paper of Jouppi [3].
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replacement policy, victim cache addition etc.) can be adjusted. Using reconfigurable
technologies we show how to incorporate our approach with no need for architectural
changes. We target an existing processor platform [15] and show that dynamic cache
design can be transparently done with no architectural (ISA) changes.

The remainder of this paper is organized as follows. Section2 introduces the flux
caches and how they map to the MOLEN machine organization. Section3 reviews the
most relevant related work. In Section4 the simulation framework for this study and
the performance results are described. Finally, the discussion is concluded in Section5.

2 Flux Caches Organization and Implementation

It is envisioned that different programs have unique cache requirements that can be
satisfied by alternative cache organizations. Support for such flexibility is expected to
exploit significant improvements in application execution times. For example, let us
consider two applications of different kind running on the same embedded (e.g. in a
mobile phone) processor. The first one is a digital video processing algorithm with pre-
dominantly streaming (spacial locality) memory accesses. Let the second application
be a Java Virtual Machine (JVM) with heavy temporal locality memory accesses. Obvi-
ously the system designer is confronted with a dilemma considering the fact that drowsy
behavior for both cases is considered unacceptable. Coming up with a cache design that
works optimally for both applications is rather difficult. Let assume instead that both ap-
plications can at advance (before they start) set up a cache design that will best fit their
particular memory requirements. This is not such a non-realistic scenario since in the
majority of the cases the user will never watch a football match and play a strategy game
at the same time. In such a system, different cache designs coexist in time with their
corresponding applications and can be optimized according to the specific demands.

Fig. 1. Flux cache

Flux caches are fully customizable memories, possibly imple-
mented in reconfigurable hardware, that can be installed on
demand before or during program execution. Hardware imple-
mentations of arbitrary cache design can be instantiated under
software or hardware control at runtime and are pre-determined
”off-line” at hardware/software co-design stage using applica-
tion partitioning, monitoring, profiling etc. Generally speaking
the flux cache mechanism would require additional ISA sup-
port 2 to enforce the intended cache design and will introduce
some reconfiguration overhead. The flux cache organization is
depicted in Figure1.

The Arbiter will partially decode the instructions received
from the instruction fetch unit and issue the flux cache in-
structions to thecontrol unit. The control unit is responsi-

ble for loading the cache configuration code from memory and instruction / data
paths consistency. The envisioned operations support consists only of a singleput

2 But not always as it will be shown later by using the MOLEN polymorphic processor [15].
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phase. During this phase, the flux cache is configured to the intended hardware
organization. More precisely, a bitstream is loaded from the main memory into
the local configuration memory. This concept requires one-time architectural ex-
tension by a single instruction. Theput instruction that initiates the flux cache
configuration has the following format:put <address>. The address is a mem-
ory location the first element of the configuration bitstream is to be loaded from.

Fig. 2. Single program execution

Parameters of the cache are usually implicit
as in the example presented hereafter, explicit
calls can also be envisioned. Theput phase is
initiated by the arbiter after detection of aput
instruction and has to be interrupted right af-
ter the hardware configuration is completed.
This can be achieved only by proper configu-
ration bitstream termination. There exist two
different approaches (using special operation
at the end or by defining the configuration
code length at the beginning) both with their
advantages and shortcomings.

Assuming the case (different from the
aforementioned two applications example) of
a single application with clearly defined re-
gions with predominant spacial or temporally
localities executing on a machine augmented
with a flux cache (Figure2). The original
GPP execution code sequence is augmented
with put instructions at the positions differ-
ent cache organization is needed. The decision on cache type, size and configuration
is left to the system designer since he/she is expected to understand the targeted ap-
plications behavior. The cache selection process can be supported by profiling, cache
simulation and/or dynamic program monitoring. In addition, the latter process can be
fully automated and integrated in the automated design tools. Theput instruction will
be redirected to the control unit and interpreted. More precisely, the configuration mi-
crocode located at the targeted address will be loaded into the configuration memory to
ensure the flux cache hardware structure. After the cache reconfiguration is completed
(and allvalid tags of the ”new” cache are invalidated) the execution of the GPP will
continue from the next instruction following theput. In order to reduce the penalty
of such execution stalls various prefetch and partial configuration techniques [16] and
concurrent loading can be applied. Please note that after complete reconfiguration, the
”new” cache will be ”empty” and the cold-start effects have to be taken into considera-
tion (keeping ”old” filled caches, prefetching designs to fill caches and partial flux cache
designs may help). The flux caches can be realized using existing technology, i.e. Virtex
II Pro platform FPGA from Xilinx. The only constraint on the targeted technology is
partial reconfiguration support.

To show the flux cache feasibility we assume reconfigurable implementation and
the MOLEN paradigm. The MOLEN machine organization consists of two main com-



96 G.N. Gaydadjiev and S. Vassiliadis

ponents: the Core Processor (CP), usually a general purpose processor, and the Recon-
figurable Processor (RP).

Fig. 3. MOLEN organization

The application’s division in a
hardware and a software part
is directly mappable to the
above two units. The execu-
tion flow redirection is per-
formed by the Arbiter using
partial instruction decoding. In
respect to the Core Processor
original ISA, MOLEN requires
only an one-time extension with
four and up to eight instruc-
tions dependent on the spe-
cific implementation [16]. To
perform the actual reconfigu-
ration of the CCU, reconfig-

uration microcode is loaded into theρµ-code unit. This stage is also re-
ferred to as theset phase. Theexecute phase is responsible for the ac-
tual operation execution on the CCU, and is performed by running theex-
ecution microcode. It is important to emphasize that both theset and exe-
cute phases do not specify any pre-defined hardware operation to be performed.

Fig. 4. A flux cache implementation

Instead, thepset, cset and execute instruc-
tions (reconfigurable instructions) directly
point to the memory location where the re-
configuration or execution microcode is lo-
cated. The hardware/software communica-
tion is supported by the Exchange Registers
bank and performed through themovtx and
movfx MOLEN instructions. As depicted on
Figure 4, flux caches can be implemented
under a simplified MOLEN scenario (only
flux caches no CCUs). Cache coherence logic
may be needed if for example the core proces-
sor employs L1 caches. Theput flux cache
phase is functionally equivalent to theset
phase in MOLEN. All MOLEN configura-
tion microcode termination and prefetching
techniques [13] are directly applicable to flux
caches. Said this we can use the MOLENset
instruction forput emulation. The execution
phase with its supporting MOLEN instruc-
tions and functional modules is no longer needed for the flux cache implementation
case. This allows the overal system organization to be reduced significantly. First of
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all the data memory Multiplexer / Demultiplexer can be avoided due to the absence of
CCU that will perform data accesses. The exchange registers bank and the twomovein-
structions for data exchange between the core and the reconfigurable processors are not
required. The sequential consistency model, inherent to MOLEN, will naturally arbi-
trate the execution of the core processor code with the flux cache reconfiguration times.
This leads to a very minimal but still completely functional flux cache implementation
that will decrease the complexity (and the overall overhead) of the MOLEN functional
blocks. In reality, the arbiter and the simplifiedρµ-code unit can be combined into a
single module that handles the flux cache reconfigurations. It is to be noted that code
running on such simplified MOLEN instantiation will be binary compatible with any
other MOLEN implementation. In the opposite direction, however, additional fix up
code and exception handling may be needed to cope with all not implemented MOLEN
(e.g.movandexecute) instructions.

3 Related Work

The flux caches allow their internal structure to be ”redesigned” at any given moment
during the execution time. This is the reason why only the time variant cache proposals
(as introduced in Section1) will be considered hereafter.

The ”reconfigurable caches” introduced by Ranganthan et. al. [9] divide the avail-
able cache memory into several partitions that may be used to support applications usu-
ally unable to exploit conventional caches in an optimal way. As example the multime-
dia applications with their streaming nature are used. Although named reconfigurable,
this proposal is just an extension of the conventional set-associative and direct mapped
cache designs to support a limited number of partitions that are dynamically selectable.
In addition, special ISA support may be required to control repartitioning (in case the
software controlled approach is used). Our proposal differs in two aspects: first we do
not impose any limitation on the number of possible cache configurations; and second
very limited or no additional ISA support (as in the case of the MOLEN processor) is
required to indicate the intended configuration.

The Split Temporal/Spatial (STS) caches [7] employ two cache sub-systems: one
for ”temporal” data and another for ”spacial” data. The main idea is that handling data
with temporal locality in a ”spacial” way, e.g. prefetching its neighboring addresses is
usually counterproductive. This leads to data classification into two sub-groups, each
to be handled separately by the corresponding cache. Such classification can be per-
formed on compile / profile or run-time. Two ways to express this to the hardware are
envisioned: by ISA extension or by tagging. The flux caches differ from STS caches in
the following way. First, we allow instruction and data cache modifications compared to
data cache only target of the STS caches. Second, we do not require and additional ISA
modifications or tag bits to implement similar functionality. STS caches can be imple-
mented in flux caches in a straight forward way by using the MOLENpsetor execute
instructions to distinguish between ”temporal” and ”spacial” data.

The Dual Data Cache (DDC) bears some similarities with STS. Like STS, it has
two separate modules to deal with data of different locality. The data allocation, how-
ever, is more sophisticated and one additionalbypassmode is introduced. The memory
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instructions are tagged as in STS with the difference that five different data types are
distinguished. As in the case of STS caches our proposal differs in its flexibility con-
cerning the instruction cache and its zero overhead ISA support.

The configurable line size caches proposed by the University of California, River-
side [10] focus mainly on the cache memory energy consumption. This work covers
static selection of the cache line size early in the embedded system design process. The
assumption is that an embedded system will execute only a pre-defined (and hence very
limited) set of applications during its operational lifetime. Later ongoing research of
the same group [14] reported dynamic configuration during run-time. However, again
only a very limited number of cache configurations is supported. Our proposal does not
impose such restriction on the system designers, allowing them to introduce changes
later (even in the field) when new applications have been added or existing one should
be upgraded (e.g. using MPEG4 instead of MPEG2). The above list of related work
is not complete but to our knowledge representative. The reason of not including all
previous approaches is the significant number of publications on the topic and space
limitations. Proposals such as software managed data caches (implemented in HP PA-
7200 CPU) [17] or Veidenbaum’s et. al. dynamic cache line size adaptation [18] are
not considered in details due to some similarities with DDC and the work from UC
Riverside respectively.

All of the proposals reported in the publicly available literature do focus on organiz-
ing the available cache memory in a number of pre defined ways, mainly in respect to
associativity and cache line size. In our proposal the only restriction known is the avail-
able reconfigurable hardware resources (e.g. on-chip SRAM size) that may limit the
overal cache size. All remaining cache parameters, e.g. replacement strategy, prefetch-
ing and write back policy, can be adjusted to the targeted application in order to gain
optimal performance. In addition, our proposal does not limit the system designer to
the conventional cache architectures and provides him with means to utilize (and/or
evaluate) unique approaches, e.g. stream caches, or even design and apply completely
customized memory sub-system (e.g. 2-D rectangular memory [19]).

4 Simulation Framework, Methodology and Results

We studied the potential benefits of reconfigurable caches using dinero IV [20], a trace
driven cache simulator that models the first two levels of the memory hierarchy. We
share the opinion that statements about cache performance can be based only on trace-
driven simulation or direct measurements [21]. The former method is slow and has sig-
nificant demands on storage capacity, while the latter is fast but prohibitively expensive.
Since our study is about relative cache performance, a non-functional simulator such as
dinero is considered sufficient. The application traces for this study where obtained
using the SimpleScalar 4.0 simulator [22] modified to generate dinero style memory
traces. The traces where generated in an in-order execution fashion. Only the three
basic memory access types where implemented: data read, data write and instruction
fetch. This fact, however, does not have any influence on the generality of the reported
results. The targeted applications of interest where multimedia.
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Table 1.Benchmarks used in this study

benchmarkDescription Input

gsmenc GSM speech encoding (toast) clinton.pcm
gsmdec GSM speech decoding (untoast) clinton.pcm.gsm
adpcmenc ADPCM speech encoding (rawcaudio) clinton.pcm
adpcmdec ADPCM speech decoding (rawdaudio) clinton.adpcm
mpegenc MPEG-2 video encoding (four 352x240 frames IBBP)mei16v2.yuv
mpegdec MPEG-2 video decoding (video stream to YUV) mei16v2.m2v
cjpeg JPEG encoding (1024x630 3-band image) rose16.ppm
djpeg JPEG decoding (1024x630 3-band image) rose16.jpg
epicenc EPIC encoding (unepic) (512x512 grayscale image)test.image.pgm.E
epicdec EPIC decoding (epic) (512x512 grayscale image) test image.pgm
g721enc G721 speech compression clinton.pcm
g721dec G721 speech decompression clinton.g721

This is the reason for selecting a representative set of benchmarks and correspond-
ing data sets from the UCLA MediaBench [23] suite as summarized in Table1. We
targeted set of benchmarks that cover audio, video, images and speech data processing
that is assumed to represent the application domain for our study. We have simulated
many different L1 caches to explore the impact of various cache parameters on the miss
ratio. All the simulation and data collection work was automated using a script that did
attempt local and global minimum determination in the reported miss ratios. Sophisti-
cated algorithms for optimal cache selection are outside the scope of the current study.

Fig. 5. I-cache miss ratios vs line size

We do realize that some of the
synthetic benchmarks used may
not truly represent a real-life
multimedia application. For ex-
ample, the gsm pair (also known
as toast/untoast) consists mainly
of highly iterative functions that
rely on the register keyword
for speed up optimizations. In
our case (SimpleScalar architec-
ture and gcc compiler) unrealis-
tically low data miss ratios are
expected for those benchmarks.
On the other hand, such situa-
tion forms a worst case scenario
for evaluation of the proposed
cache organization.

In an attempt to evaluate the optimal configuration for the targeted benchmark set
under a flux cache scenario, a variety of cache configurations where simulated. They
all differ in overall cache sizes, line sizes, associativity, prefetch behavior and write-
allocate and write-back policies just to name a few. For simplicity, we always assumed
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(a) (b)

Fig. 6. D-cache miss ratios vs line size

only L1 split instruction/data caches of equal sizes. The primary cache size of interest
is 8k (2x4k instruction and data caches) - a realistic scenario for the embedded domain.
We did not evaluate the influence of the replacement policy since it has been found
that LRU and FIFO outperform the random approach, however do not show signifi-
cant differences among each other. In all of the experiments reported hereafter the LRU
replacement is used. We would like to emphasize that this is only due to the specific
behavior of the targeted benchmarks and does not form any restriction for the proposed
approach. It is very likely that different applications may greatly benefit from replace-
ment policy changes. The first well expected clear difference in performance was found
when the cache line size was changed.

Figures5 and6 depict how the cache line size influences the miss ratio. The instruc-
tion cache miss ratio is shown in Figure5, while Figure6 (a) and (b) demonstrate the
miss ratio variation for the data cache. In this experiment, direct mapped cache with
instruction and data cache sizes equal to 4k where considered. While for the instruc-
tion cache the miss ratio keeps decreasing with increasingly larger cache line sizes, the
data cache miss ratio shows a clear optimum at certain sizes. For example thedjpeg
andcjpegcurves have a minimum at 16 and 32 byte line sizes. Theadpcmencoder
and decoder perform optimally with 8 and respectively 16 bytes long cache lines. Two
benchmarks show slightly deviating behavior - theepicand thempeg. Bothmpegvari-
ants, the encode and the decode, show increasing miss ratios when the line size grows
from 8, through, 16, 32, 64 and up to 128 bytes.Epichowever shows even more surpris-
ing properties - while the encode direction shows clear miss ratio minimum in the miss
ratio for cache line size of 32 bytes, the decoding part of the benchmark shows a mini-
mum only at 128 byte cache line. This fact, however not shown in the figure was found
by performing experiments with 256 byte cache lines. The remaining two benchmarks-
gsmandg721do not show significant changes in our experiment, mainly due to the
usage of the Cregisterkeyword that will assign most of the variables to internal regis-
ters. It is interesting to note, however that the instruction cache behavior for theg721
encoder and decoder shows heavy dependence on the cache line size. To summarize,
the optimal flux cache configuration needed fordjpegandcjpegshould be 4k/32 (4k
cache organized into 32 byte lines) for instructions and 4k/32 for data for optimal cache
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performance. Please note that we did ignore some minor differences in cache miss ra-
tios for 32 byte (0.0257) and 128 byte (0.0157) cases otherwise we would be selecting
4k/128 configuration for thecjpeg instruction cache. The same configuration (4k/32)
works best for theepicencoder, while before starting theepicdecoder the flux cache is
to be ”redesigned” into a 4k/128 considering optimal data cache performance.

5 Conclusions and Future Work

In this paper, we introduced the concept of flux caches and have indicated their per-
formance potential for applications with streaming data access patterns such as multi-
media. More precisely, we studied different cache sizes and showed the improvement
potential inherent to the studied applications in respect to the line size in the case of
8k cache. Since cache miss ratios do only give an indication about the flux cache per-
formance, currently we are implementing the flux caches on the MOLEN Virtex-II Pro
prototype and will report the measured numbers in the near future. In addition, the
energy performance analysis of the proposed organization needs careful investigation,
together with issues like: data consistency and multiprogramming environment.
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