
Performance Comparison of SIMD Implementations
of the Discrete Wavelet Transform

Asadollah Shahbahrami Ben Juurlink Stamatis Vassiliadis

Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology, The Netherlands
E-mail: {shahbahrami,benj,stamatis}@ce.et.tudelft.nl

Abstract

This paper focuses on SIMD implementations of the 2D
discrete wavelet transform (DWT). The transforms con-
sidered are Daubechies’ real-to-real method of four co-
efficients (Daub-4) and the integer-to-integer (5, 3) lifting
scheme. Daub-4 is implemented using SSE and the lifting
scheme using MMX, and their performance is compared to
C implementations on a Pentium 4 processor. The MMX im-
plementation of the lifting scheme is up to 4.0x faster than
the corresponding C program for a 1-level 2D DWT, while
the SSE implementation of Daub-4 is up to 2.6x faster than
the C version. It is shown that for some image sizes, the
performance is significantly hampered by the so-called 64K
aliasing problem, which occurs in the Pentium 4 when two
data blocks are accessed that are a multiple of 64K apart.
It is also shown that for the (5, 3) lifting scheme, a 12-bit
word size is sufficient for a 5-level decomposition of the 2D
DWT for images of up to 10 bits per pixel.

Keywords: Discrete Wavelet Transform, lifting scheme,
SIMD extensions.

1 Introduction

The wavelet transform is mainly used for image and
video compression. Standards such as MPEG-4 and
JPEG2000 [13] are based on the 2D discrete wavelet trans-
form (DWT). The DWT has traditionally been implemented
by convolution methods such as finite impulse response
(FIR) filters. These implementations require both a large
number of operations and a large amount of memory, mak-
ing them unsuitable for either high-speed or low-power im-
plementations. One way to reduce the execution time of the
DWT is by using special-purpose hardware. Programmable
processors, however, are preferable because they are more
flexible and allow different transforms, various filter bank

lengths, and various transform levels. Furthermore, multi-
media SIMD extensions such as MMX [12] and SSE [14]
can be used to reduce the execution time of the DWT.

In this paper the performance of two wavelet transforms,
conventional real-to-real filtering and the integer-to-integer
lifting scheme, is evaluated. Both methods are imple-
mented using programmable SIMD architectures. Hence,
we present an MMX implementation of the lifting scheme
and compare its performance to an SSE implementation of
the convolution method. The lifting scheme is considered
with the goal to provide a fast and efficient implementation
of the DWT to reduce the execution time of JPEG2000.

The (5, 3) lifting scheme is considered for various rea-
sons. First, the (5, 3) transform has low computational com-
plexity and performs reasonably well for lossy as well as
lossless compression compared to other filters [1]. Second,
the (5, 3) transform is included in Part 1 of the JPEG2000
standard [13]. Third, it is possible to implement the (5, 3)
filter without using multiplication operations (i.e., using
only addition, subtraction, and shift operations). Finally,
the (5, 3) filter has only one lifting step. Transforms with
fewer lifting steps tend to perform better than transforms
with more lifting steps in terms of speed as well as accu-
racy [1]. The convolution method considered in this paper
is Daubechies’ transform with four coefficients (Daub-4).
This transform has been considered in many papers [2, 9].

This paper is organized as follows. Section 2 briefly de-
scribes the wavelet transform and explains the SSE imple-
mentation of the 2D DWT using Daub-4. In Section 3, the
MMX implementation of the (5, 3) lifting scheme is dis-
cussed. In Section 4 the performance of both SIMD imple-
mentations and their C counterparts is evaluated and ana-
lyzed. In Section 5 we discuss the limitations of MMX and
SSE that restrict the performance improvements that can be
obtained for the 2D DWT. Related work is described in Sec-
tion 6 and conclusions are drawn in Section 7.

2 Wavelet Transform

The wavelet representation of a discrete signal X con-
sisting of N samples can be computed by convolving X
with the low-pass and high-pass filters and down-sampling
the output signal by 2, so that the two frequency bands each
contain N/2 samples. This process decomposes the original
image into two sub-bands: the lower and the higher band.
This transform can be extended to multiple dimensions by
using separable filters. A 2D DWT can be performed by
first performing a 1D DWT on each row of the image fol-
lowed by a 1D DWT on each column.

One transform is convolution filtering such as
Daubechies’ filter of four coefficients (Daub-4). The
value of each wavelet coefficient using Daub-4 depends
on four pixels and 4 floating-point multiplications and 3
floating-point additions/subtractions (ALU operations) are
needed to obtain each transform coefficient. For an image
of size N × M , 4NM multiplications and 3NM ALU
operations are therefore needed for each dimension. Be-
cause SSE instructions perform 4 operations in parallel, an
SSE implementation requires at least NM multiplication
instructions and 3NM/4 ALU instructions, not counting
overhead instructions.

Vectorization of the column DWT is easier than vector-
izing the row DWT (in the row-major storage format). This
is because corresponding elements of adjacent columns (for
example, [0][0] . . . [0][3]) are stored consecutively in mem-
ory while corresponding elements of adjacent rows are not.
To vectorize the row DWT, the elements need to be rear-
ranged. For this, overhead instructions such as unpcklps
and unpckhps are needed. We have implemented Daub-
4 using SSE instructions and determined that, for an im-
age of size N × M , the row DWT requires approximately
(5M + 4)N instructions to be executed and the column
DWT about (7M +4)N/2. Furthermore, the dynamic num-
ber of overhead instructions is 12MN/8. So, in order to
perform a 3-level 2D DWT of an image of size 512 × 512,
the overhead instructions constitute 17.6% of the total dy-
namic number of instructions.

3 MMX Implementation of the Lifting
Scheme

Recently, a new implementation of the DWT has been
proposed, known as the lifting scheme. The basic idea of
this scheme is to use the correlation in the data to remove the
redundancy. The lifting operation consists of several stages,
as depicted for the (5, 3) filter bank in Figure 1. First, a triv-
ial wavelet transform is computed, by splitting the original
1D signal into odd and even subsequences and then modi-
fying these values using alternating prediction and updating
steps. The sequences {s0

i } and {d0
i } denote the even and

odd input sequence, respectively.

s d s d s d s d
0 0 0 0 0 0 0 0
0 0 1 1 2 2 3 3

d d d d 1 1 1 1
0 1 2 3

s s s s 1 1 1 1
 0 1 2 3

. . .

1 -1/2 1 -1/2 1 -1/2 1 -1/2 1 -1/2 1 -1/2 1 -1/2 1 -1/2

1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
. . .

Input Sequence

(High-pass output)

(Low-pass output)

1. Split

2. Prediction

3. Update

Figure 1. Lifting scheme using the (5, 3) filter
bank.

Due to the simple structure of the (5, 3) filter bank, the
outputs {s1

i } and {d1
i } are actually the low- and high-pass

output coefficients of the DWT filter, respectively. The for-
ward transform of the (5, 3) filter bank used in this paper is
given by:

d1
i = d0

i − �s0
i + s0

i+1

2
�, s1

i = s0
i + �d1

i−1 + d1
i + 2

4
� (1)

Figure 2 shows the data flow and dependencies in the (5, 3)
lifting scheme based on Equation (1). For an image of size
N × M , the MMX implementation based on Figure 2 re-
quires 3NM 16-bit additions (corresponding to 3NM in-
structions), NM shift operations (NM/4 instructions), and
3NM/8 load instructions for each dimension. Other au-
thors have omitted the constant 2 in Equation (1) resulting
in fewer addition operations [7].

s d s d s d s d . . .
0 0 0 0 0 0 0 0

 0 0 1 1 2 2 3 3

+ + + +

Shr 1 Shr 1 Shr 1 Shr 1

- - - -

+ + + +

Shr 2 Shr 2 Shr 2 Shr 2

+ + + +

 2 2 2 2

d d d d
1 1 1 1
0 1 2 3

s s s s 1 1 1 1
0 1 2 3

1. Split input
 sequence

2. Prediction
 stage

High-pass
 output

3. Update
 stage

 Low-pass
 output

Figure 2. Data flow and dependencies in the
forward integer-to-integer lifting using the
(5, 3) filter bank (Shr = Shift right).

In order to vectorize the row DWT of the 2D DWT us-
ing the (5, 3) filter it is used overhead instructions such as
punpcklbw, punpckhbw, punpcklwd, and punpckhwd. For
an N × M image, the dynamic number of instructions re-
quired by the row DWT is approximately (5 + 36M/8)N
and the dynamic number of instructions needed by the col-
umn DWT is about (5+27M/4)N/2. Of these instructions,
9MN/8 instructions constitute overhead instructions. For a
3-level 2D DWT of an image of size 512×512, the overhead
instructions constitute 21.1% of the total dynamic number
of instructions.

4 Performance Evaluation

Four programs have been implemented, each consisting
of three parts. One part is for reading the image, the sec-
ond part is for processing, and the last part is for storing the
transformed image. Two programs are completely written
in C. One performs the 2D DWT using the integer-to-integer
(5, 3) lifting scheme, the other performs the 2D DWT using
Daub-4. These programs will be referred to as C-Lifting
and C-Daub, respectively. They were compiled using the
gcc compiler with optimization level -O2. The reading and
storing parts of the other two programs were also written
in C, but the processing part was implemented using MMX
(for the (5, 3) filter) and SSE (for Daub-4). They are re-
ferred to as MMX-Lifting and SSE-Daub, respectively. The
processing part of each program has also been divided in
two parts, row and column processing.

Our goal is to measure the time required to execute the
processing part of each program under the same conditions
(same algorithm, data types, and system). In the MMX im-
plementation, image pixels are represented as 16-bit values,
using the short data type. For the C-Lifting program, we
have experimented with shorts as well as ints. Contrary
to our expectations, in most cases the implementation that
uses ints is faster than the program that employs shorts.
Accordingly, we compare our results to the program that
represents image pixels as ints. Our system is a 3.0GHz
Pentium 4 with an L1 data cache of 8KB that is 4-way set-
associative and has a line size of 64 bytes. The 512KB L2
cache is 8-way set-associative with a 64-byte line size.

The lifting scheme computes the DWT in-place. This
means that the transform is performed without using an ex-
tra array. But this memory saving is at the cost of a post-
processing step, where the wavelet coefficients are rear-
ranged. In order to avoid this rearrangement step, an out-
put matrix for storing the results of the horizontal filtering
is used, as was done in [5]. The vertical filtering processes
this output array and writes the processed coefficients back
to the input matrix. After performing the transformation,
the wavelet coefficients are stored in the input matrix in the
order expected by the quantization step.

Performance was measured using the cycle coun-
ters [11]. Cycle counters provide a very precise tool
for measuring the time that elapses between two different
points in the execution of a program [3]. The IA-32 counter
is accessed with the rdtsc (read time stamp counter) assem-
bly instruction. In order to eliminate the effects of context
switching and compulsory cache misses, the K-best mea-
surement scheme and a warmed up cache have been used,
as explained in [3].

First, we compare two ways for performing the column
DWT. The first way, referred to as vertical column process-
ing, processes four consecutive columns completely before
advancing to the next four columns. The second way, re-

ferred to as horizontal column processing, first processes
all columns of four rows in SSE-Daub and three rows in
MMX-Lifting and then advances to the next set of rows.
This was called loop-tiling in [4]. Figure 3 illustrates verti-
cal and horizontal column processing.

Figure 3. Vertical versus horizontal column
processing.

Figure 4 depicts the speedup of horizontal column pro-
cessing over vertical column processing for the C-Lifting
program. It can be seen that horizontal column process-
ing is much more efficient than vertical column process-
ing. The reason is that vertical column processing is un-
able to exploit spatial locality, because the cache blocks
have been replaced when the algorithm advances to the next
four columns. Horizontal column processing, on the other
hand, is able to exploit the spatial locality. Similar behavior
has been observed in the C-Daub program. Therefore, from
now on all programs use horizontal column processing.

Figure 4. Speedup of horizontal column pro-
cessing over vertical column processing for
the C-Lifting program.

Figures 5 and 6 depict the speedup of the MMX-Lifting
and the SSE-Daub implementations of the 1D row DWT
over the C-Lifting and C-Daub programs, respectively.
MMX-Lifting is up to 3.8x faster than C-Lifting and SSE-
Daub is up to 1.9x faster than C-Daub. On average, the
speedup of MMX-Lifting over C-Lifting is higher than the
speedup of SSE-Daub over C-Daub.

We now consider the 1D column DWT. As explained be-
fore, we use horizontal column processing. Figures 7 and 8
show the speedup of the MMX-Lifting and the SSE-Daub
implementations of the 1D column DWT over the C-Lifting
and C-Daub programs, respectively. For the column DWT,

Figure 5. Speedup of MMX-Lifting over C-
Lifting for the 1D row DWT.

Figure 6. Speedup of SSE-Daub over C-Daub
for the 1D row DWT.

MMX-Lifting is up to 4.4x faster than C-Lifting and SSE-
Daub is up to 3.7x faster.

Because MMX as well as SSE perform four operations
in one instruction, the expected maximum speedup is 4. It
can be seen that for some image sizes MMX-Lifting indeed
achieves a speedup of 4 (sometimes even higher), while for
other image sizes the speedup is between 2 and 3. Similar
behavior can be observed for SSE-Daub. For some images
sizes (in particular those that are a power of two larger than
or equal to 256×256 and 1280×1280) the speedup is higher
than 3 while for others it is significantly smaller.

This behavior is due to a design flaw in the Northwood-
core Pentium 4 called 64K aliasing [10]. This problem oc-
curs when two data blocks are accessed whose addresses
differ by a multiple of 64K. If this occurs, the cache’s as-
sociativity is of no use and the effectiveness of the cache is
greatly reduced. Let the image size be N×M . Since in col-
umn processing img[i][j] and img[i+N/2][j] are
accessed simultaneously, 64K aliasing occurs when NM
(resp. NM/2) is a multiple of 64K if each pixel is stored as
two bytes (resp. four bytes). Because MMX and SSE pack
4 loads in one instruction (in other words, they reduce the

Figure 7. Speedup of MMX-Lifting over C-
Lifting for the 1D column DWT.

Figure 8. Speedup of SSE-Daub over C-Daub
for the 1D column DWT.

number of memory accesses by a factor of 4), the speedup
will be approximately 4 when 64K aliasing occurs. If 64K
aliasing does not occur, the speedup will be less than 4 due
to loop overhead instructions required for managing address
and induction variables and branching.

In Figure 7 it can also be seen that for images smaller
than 256×256 (when 64K aliasing does not occur), MMX-
Lifting achieves a speedup slightly larger than 4. This can
be attributed to the fact that the working set of MMX-
Lifting is smaller than the working set of C-Lifting, because
MMX-Lifting uses two bytes to represent a pixel whereas
C-Lifting employs four bytes. MMX-Lifting, therefore, in-
curs fewer cache misses. But, as remarked before, the C-
Lifting variant that uses the int data type was found to be
faster than the variant that employs shorts.

Several related studies (e.g., [5, 6, 2, 8, 4]) mention that
vertical filtering requires more time than horizontal filter-
ing because vertical filtering lacks spatial locality. In or-
der to investigate this issue, Figure 9 depicts the speedup of
the 1D row DWT (horizontal filtering) over the 1D column
DWT (vertical filtering) for MMX-Lifting. For images of
size 128 × 128 and smaller, vertical filtering is faster than
horizontal filtering. Furthermore, if 64K aliasing does not
occur horizontal filtering is only slightly faster than vertical
filtering. This is because vertical filtering can be vectorized
more efficiently than horizontal filtering. Because horizon-
tal filtering does not suffer from 64K aliasing, for other im-
age sizes it is much more efficient than vertical filtering.

Figure 9. Speedup of the 1D-row DWT over
the 1D-column DWT for MMX-Lifting.

Figure 10 compares the performance of all programs. It
depicts the speedup attained by MMX-Lifting over the other
three programs, for the first level of the 2D DWT (i.e., one
row and one column 1D DWT). As can be expected, MMX-

Figure 10. Speedup of MMX-Lifting over the
other three programs for the first level of the
2D DWT.

Lifting is faster than all other programs. It is up to 4, 4.8,
and 3.2 times faster than C-Lifting, C-Daub, and SSE-Daub,
respectively. Furthermore, in most cases SSE-Daub is faster
than C-Lifting and C-Lifting is faster than C-Daub.

Figure 11 depicts the speedup of MMX-Lifting over C-
Lifting for the first three levels of the 2D DWT. It can be
seen that the performance improvement is independent of
the decomposition level. In addition, the MMX implemen-
tation of the 2D DWT attains a speedup of up to 4 compared
to the C implementations, in particular when 64K aliasing
occurs. If 64K aliasing does not occur, the speedup is gen-
erally smaller.

Figure 11. Speedup of MMX-Lifting over C-
Lifting for the first three levels of the 2D DWT.

5 Discussion

Although MMX-Lifting is faster than C-Lifting and
SSE-Daub is faster than C-Daub, MMX-Lifting achieves
the maximum speedup of 4 only if 64K aliasing occurs in
which case SSE-Daub attains a speedup higher than 3. If
64K aliasing does not occur, the speedup is significantly
smaller (between 2 and 3 for MMX-Lifting and between 1
and 2 for SSE-Daub). In this section we discuss the limi-
tations of MMX and SSE that restrict the performance and
discuss possible solutions.

First, as discussed before, overhead instructions that per-
mute subwords in a register are needed in order to vector-
ize the row DWT. Second, there is a mismatch between the
storage and computational format. While image pixels are
usually 8 bits, in the MMX implementation they have to

be converted to 16-bit values because intermediate results
can be larger than 8 bits, and in the SSE implementation
they have to be converted to 32-bit floating-point values be-
cause the filter coefficients are real numbers. For example,
for the first level of MMX-Lifting about 12.7% of the dy-
namic number of instructions are needed to convert the pix-
els to 16-bit values. Third, there is misalignment in the 1D
row DWT, because the data to be loaded in a 128-bit SSE
register is not necessarily stored at a byte address that is
a multiple of 16. Although there are SSE instructions that
permit unaligned memory accesses, they are much slower
than aligned accesses.

In [15] we have evaluated two techniques that can re-
solve the first two limitations mentioned above. The first
technique, called matrix register file, allows row-wise as
well as column-wise access to the register file. This is useful
for rearranging the subwords as is required for vectorizing
the row DWT. The second technique, called extended sub-
words, uses four bits of extra precision for every byte in a
media register. This allows many SIMD operations to be
performed without overflow and avoids packing/unpacking
conversion overhead because of mismatch between the stor-
age and computational format. In MMX, if the storage for-
mat is 8-bit but intermediate results can be larger, data has
to be converted to 16-bit, which implies that the 8-way in-
structions that process 8-bit values cannot be used.

In order to evaluate if extended subwords can also be
used to improve the performance of the DWT, we deter-
mined the minimum and maximum wavelet coefficient and
intermediate result for a 5-level decomposition using the
(5, 3) lifting scheme. As input, we employed the well-
known “Lena” image as well as randomly generated images
with 7 to 10 bits per pixel (bpp). The results are depicted
in Table 1. The first column shows the range of the input
image pixels, the second and third column the minimum
resp. maximum coefficient/intermediate result, and the last
column the number of bits required to represent each coeffi-
cient and intermediate result. The table shows that a 12-bit
data format is sufficient for a 5-level decomposition of im-
ages of up to 10 bpp. As future work we, therefore, intend
to employ the matrix register file and extended subwords in
order to improve the performance of the 2D DWT.

6 Related Work
Chaver et al. [5, 6] implemented Daubechies’ (9, 7) real-

to-real filter using SSE instructions and measured perfor-
mance on the Pentium III as well as the Pentium 4. They
used the single-precision floating-point format for both im-
age pixels and wavelet coefficients. They focused on the
memory hierarchy and considered several techniques such
as tiling to improve spatial and temporal locality. Although
they considered images whose dimensions are a power of 2,
they did not mention the 64K aliasing problem.

Image Data Between Min. value Max. value # bits

0, 127 -238 239 9 bits
-128, 127 -472 477 10 bits

0, 255 -475 478 10 bits
-256, 255 -950 955 11 bits

0, 511 -953 957 11 bits
-512, 511 -1904 1915 12 bits
0, 1023 -1906 1916 12 bits

Table 1. Minimum and maximum wavelet coef-
ficients and intermediate results for a 5-level
decomposition using the (5, 3) lifting scheme
for 7- to 10-bpp images.

Bernabé et al. [2] used SSE to reduce the execution time
of the 3D wavelet transform on the Pentium III. They also
employed a real-to-real filter (Daub-4) and focused on the
memory hierarchy. In these works as well as others [8, 4] it
is shown that vertical filtering requires more time than hori-
zontal filtering because vertical filtering lacks spatial local-
ity. However, as shown in this paper, in order to vectorize
horizontal filtering the subwords in a media register have to
be rearranged, which incurs significant overhead.

Our work differs from others in the following aspects.
First, we have not only implemented the Daub-4 real-to-
real filter using SSE but also the (5, 3) lifting scheme using
MMX. Since the fixed-point MMX instructions are gener-
ally faster than the floating-point SSE instructions, integer-
to-integer transforms are often faster than real-to-real trans-
forms. Second, we have shown that the 64K aliasing prob-
lem hampers performance significantly. Third, we have
implemented the (5, 3) lifting scheme using only addition,
subtraction, and shifting operations (i.e., without expensive
multiplications). Finally, we have shown that 12 bits are
sufficient for performing a 5-level decomposition of images
of 7 to 10-bpp.

7 Conclusions

In this paper, we have applied the SSE and MMX in-
struction set extensions to implement the 2D DWT using
the real-to-real Daub-4 transform and the integer-to-integer
(5, 3) lifting scheme, respectively. Their execution times
on a Pentium 4 have been compared to corresponding C-
implementations. The MMX and the SSE codes are up to
4x and 2.6x faster than the corresponding C-programs for a
1-level 2D DWT, respectively. It has been shown that when
64K aliasing occurs the speedups are significantly higher
than when it does not occur. This is because with 64K alias-
ing the programs are entirely memory-bound and MMX and
SSE reduce the number of memory accesses by a factor of
4. If 64K aliasing does not occur the processing time is
not insignificant but the maximum speedup of 4 cannot be
achieved due to overhead required for rearranging data, loop

overhead, and due to lack of spatial locality. We have also
shown that for the (5, 3) filter, a 12-bit word size is sufficient
for a 5-level decomposition of the 2D DWT for images of
up to 10 bits per pixel. Our future work will focus on con-
sidering the 3D wavelet transform and investigating how we
can exploit a 12-bit word size.

References
[1] D. M. Adams and F. Kossentini. Reversible Integer-to-

Integer Wavelet Transforms for Image Compression: Per-
formance Evaluation and Analysis. IEEE Trans. on Image
Processing, 9(6):1010–1024, June 2000.

[2] G. Bernabe, J. M. Garcia, and J. Gonzales. Reducing 3D
Wavelet Transform Execution Time Through the Streaming
SIMD Extensions. In Proc. 11th Euromicro Conf. on Paral-
lel Distributed and Network-Based Processing, 2003.

[3] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A
Programmer’s Perspective. Prentice Hall, 2003.

[4] D. Chaver, M. Prieto, L. Piuel, and F. Tirado. Parallel
Wavelet Transform for Large Scale Image Processing. In
Proc. IEEE Int. Symp. on Parallel and Distributed Process-
ing, pages 4–9, 2002.

[5] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and F. Tirado.
Vectorization of the 2D Wavelet Lifting Transform Using
SIMD Extensions. In Proc. IEEE Int. Symp. on Parallel and
Distributed Image Processing and Multimedia, 2003.

[6] D. Chaver, C. Tenllado, L. Piuel, M. Prieto, and F. Tirado.
2-D Wavelet Transform Enhancement on General-Purpose
Microprocessors: Memory Hierarchy and SIMD Parallelism
Exploitation. In Proc. Int. Conf. on High Performance Com-
puting, December 2002.

[7] M. Farid, F. Kurugollu, and F. Murtagh. Adaptive Wavelet
Eye-Gaze Based Video Compression. In Proc. Int. Society
for Optical Engineering (SPIE), pages 255–263, 2003.

[8] M. Feil, R. Kutil, P. Meerwald, and A. Uhl. Wavelet Image
and Video Coding on Parallel Architectures (Invited Paper).
In Proc. 2nd IEEE - EURASIP Symp. on Image and Signal
Processing and Analysis, 2001.

[9] D. He and W. Zhang. The Parallel Algorithm of 2-D Discrete
Wavelet Transform. In Proc. 4th IEEE Int. Conf. on Parallel
and Distributed Computing Applications and Technologies,
pages 738–741, August 2003.

[10] Intel Corporation. IA-32 Intel Architecture Optimization,
2004. Order Number: 248966-011.

[11] Intel Corporation. The IA-32 Intel Architecture Software
Developer’s Manual Volume 3 System Programming Guide,
2004. Order Number: 253668.

[12] A. Peleg, S. Wiljie, and U. Weiser. Intel MMX for Multime-
dia PCs. Communications of the ACM, January 1997.

[13] M. Rabbani and R. Joshi. An Overview of the JPEG2000
Still Image Compression Standard. Signal Processing: Im-
age Communication, 17(1):3–48, January 2002.

[14] S. K. Raman, V. Pentkovski, and J. Keshava. Implementing
Streaming SIMD Extensions on the Pentium 3 Processor.
IEEE Micro, 20(4):47–57, July - August 2000.

[15] A. Shahbahrami, B. Juurlink, and S. Vassiliadis. Matrix
Register File and Extended Subwords: Two Techniques for
Embedded Media Processors. In Proc. 2nd ACM Int. Conf.
on Computing Frontiers, May 2005. To appear.

