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Abstract 
 

This paper presents some of the enhancements to 
the TriMedia instruction set architecture (ISA), as 
supported by the TM3270 media-processor. We show 
how the new operations are used to optimize the 
individual MPEG2 encoder kernels. Furthermore, we 
quantify the contribution of these kernels to overall 
MPEG2 encoder performance. We introduce two-slot 
operations, collapsed load operations wit 
interpolations, and new multiplication operations. The 
encoder’s texture pipeline for a bi-directionally 
predicted 8x8 block is performed in 358 VLIW 
instructions. MPEG2 encoding at CIF resolution at 25 
frames per second is achieved within 33.5 MHz. of 
processor performance. 
 

1. Introduction 
 

Media-processors can be used in many video-
processing applications. Their programmability 
provides flexibility, which can be exploited in different 
ways. It enables algorithmic changes after design, 
multiple algorithms can be mapped to the same 
architecture, faster time-to-market, etc.. When enough 
performance is available, they provide an interesting 
alternative to fixed dedicated hardware solutions. 
Furthermore, when a single programmable platform 
can address multiple markets, its development costs 
can be shared. 

Progress in video codec research has led to an 
increasing number of standards, such as MPEG2, 
MPEG4, and H.264/AVC [1]. More recent standards 
introduce new encoding tools to offer improved 
performance in terms of picture quality at a certain 
bitrate. This, however, does not mean that older 
standards become obsolete. The introduction of new 
standards to the market is a gradual process, which 
means that the latest product needs to support multiple 
standards, to ensure backward compatibility. The 
multi-standard requirement makes a programmable 

platform an interesting implementation platform. The 
ISAs of modern processor families are continuously 
updated, to address the compute requirements of new 
video standards. 

This paper presents new operations to the TriMedia 
architecture, as supported by the TM3270 media-
processor. We quantify their performance improvement 
on MPEG2 encoding. We also show how the new 
operations can be used to optimize kernels of other 
video standards, such as MPEG4 and H.264/AVC. The 
most notable new operations are: two-slot operations 
[2], collapsed load operations, and multiplication 
operations with scaling, rounding, and clipping 
support.  

The remainder of this paper is organized as follows. 
Section 2 gives an overview of the TM3270. Section 3 
presents the selection criteria for new operations. 
Section 4 presents a MPEG2 encoder implementation, 
and the use of new operations to optimize performance. 
Section 5 presents the contribution of the optimized 
kernels to overall MPEG2 encoder performance. 
Finally, in Section 6, we present our conclusions. 
 

2. TM3270 overview 
 

The TM3270 is backward source code compatible 
with the TriMedia architecture [4],[5]. The processor 
has a synthesizable design, allowing for fast process 
technology mapping. The processor achieves a 
frequency of 450 MHz. in a 90 nm process technology, 
and measures around 8.1 mm2. The TM3270 has a 
VLIW architecture. A VLIW instruction may contain 
up to five operations. Each operation may be guarded; 
i.e. its execution is conditional on a guard register. 
SIMD arithmetic and shuffle operations allow for 
efficient manipulation and re-organization of 8-, and 
16-bit data types. Operations are grouped into 
functional units, and most functional units have 
multiple instantiations. The simple arithmetic 
functional unit has five instantiations, so up to five 
simple arithmetic operations can be issued every cycle. 



The TM3270 supports two-slot functional units, which 
are located in two neighboring issue slots (providing 
twice the normal register-file bandwidth). As a result, 
two-slot operations may have up to four 32-bit sources, 
and may produce two 32-bit results. The TM3270 has a 
64 Kbyte instruction, and a 128 Kbyte data cache. 

 

3. Selection of new operations 
 
Video and audio processing are the processor’s 

main application domains. Given the higher 
computational requirements of video processing, most 
new operations find application in this domain. This 
explains the MPEG2 encoder as an example 
application. While identifying potentially interesting 
operations, we applied certain selection rules: 

a). Fits the processor architecture.  
• No operations with architectural state. 
• Operations are limited to up to two issue 

slots.   
• The sub-operand fields of SIMD 

operations should have the same semantics.  
b). Reuse of available processor resources. New 

operations typically add functionality to the existing 
datapath. The additional silicon area should be kept to 
a minimum, to allow for a low-cost implementation. 

c). Applicability in multiple domains.  
d). Significant performance enhancement. 

Performance improvement should be measured at the 
application level, rather than the kernel level. 

An expert in the areas of processor architecture and 
video processing should preferably judge the ISA 
enhancement as obvious. Table 3 (found at the end of 
this paper) presents the new operations that are 
discussed in this paper. 

4. MPEG2 encoder 
 

Figure 1 gives an overview of a MPEG2 encoder. 
We started with a plain-vanilla C-implementation of a 
MPEG2 encoder, and invested 6 man weeks to 
optimize the implementation for the TM3270. We have 
not undertaken any optimizations that would 
compromise MPEG2 compliancy. Most of the 
optimizations involve the selection of custom 
operations to reduce computational complexity.  

The MPEG2 encoder flow is summarized as 
follows. Macroblocks of 16x16 image pixels are 
processed in a left-to-right, top-to-bottom image order. 
First, motion estimation is performed at macroblock 
granularity. This kernel decides the encoding mode 
(intra-code, or predicted), and produces up to two 
motion vectors (two vectors for bi-directionally 
predicted macroblocks). Next, the texture pipeline is 
executed for every 8x8 block within the macroblock. 
The texture pipeline performs the image reconstruction, 
and produces a sequence of (run, length) pairs for 
every block. Finally, the (run, length) sequences are 
variable length encoded, and a bitstream is generated. 
This last step is only performed after the texture 
pipeline has produced the (run, length) sequences of all 
the blocks within a macroblock. 

In the following sections we use the TM3270 ISA 
enhancements to optimize the grey-shaded parts in 
Figure 1. All kernel implementations are self-contained 
functions: function-call and –return overhead are 
included, function inputs are read from memory, and 
function outputs are written to memory. Separate 
intermezzo sections discuss related kernel functionality 
in other video codec standards such as H.264/AVC. 
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Figure 1.  MPEG2 encoder overview, with a breakdown in kernels. 



4.1. Motion estimation 
 

A significant part of the computational complexity 
of a video encoder is found in motion estimation. 
Motion estimation searches for temporal correlation 
between video images, which can be exploited to 
achieve a high compression factor. We implemented a 
version of the 3DRS motion estimation algorithm [6]. 
Most of the computational complexity of this algorithm 
is found in the “macroblock matching”  kernel.  

 
4.1.1. Macroblock matching. This kernel determines 
the similarity of a macroblock in the current image with 
a motion-displaced macroblock in a reference image. 
Typically, the match criterion is the Sum-of-Absolute-
Differences (SAD) cost function. An optimized 
implementation uses the LD_FRAC8 collapsed load 
operation with interpolation to retrieve reference pixels 
from memory, and perform horizontal interpolation on-
the-fly (Figure 2, scenario A). Vertical interpolation 
can use the QUADAVG operation (present in the 
original TriMedia ISA). The SUPER_LD32R two-slot 
operation is used to retrieve eight horizontally 
neighboring pixels from the current image. For an 
integer horizontal motion vector component, the 
SUPER_LD32R operation can also be used to retrieve 
reference pixels.  

Further optimizations to the kernel are possible at a 
degradation in quality. For example, the 
LD_PACKFRAC8 operation can be used to perform 
on-the-fly down-sampling of image pixels. The 
operation retrieves eight pixels from memory, performs 
a pair wise weighted average, and returns a quad 8-bit 
SIMD result that is input to the SAD calculation (the 
amount SAD inputs is reduced by a factor two). A 
further performance improvement is achieved by 
performing sub-sampling, which reduces the amount of 
pixels involved in the SAD calculation by another 
factor two (Figure 2, scenario B). Table 1 gives a 
performance comparison of scenarios A and B. Both 
scenarios assume a fractional horizontal motion vector 
component and an integer vertical component. 
 
4.1.2 The estimator. The 3DRS algorithm performs 
multiple matches to find the best reference macroblock, 
based on the SAD cost function. The complexity 
analysis of motion estimation is very dependent on the 
specific algorithm and its implementation. Motion 
estimation is a much-discussed topic, and it is possible 
that more efficient algorithms exist, in terms of 
performance complexity and image quality. 

Our implementation of the 3DRS algorithm 
evaluates a total of 17 motion candidates for every 
macroblock in a P-frame. The estimator function 
includes all control overhead related to the 3DRS 
algorithm. In an initial step 12 motion candidates are 
evaluated, using the matching of scenario B. Next, a 
refinement step evaluates 5 candidates, using the 
matching of scenario A. The matching functions are 
inlined in the estimator function (Table 2). The 
estimator function comprises 568 VLIW instructions. 

The motion estimation algorithm uses the new 
SUPER_DUALIMEDIAN two-slot operation to clip 
two-dimensional positional information to a certain 
range. 

Intermezzo. Whereas the MPEG2 standard allows 
for fractional motion vectors at half image pixel 
granularity, the MPEG4 and H.264/AVC standards 
support quarter pixel granularity. Furthermore, the 
calculation of data at fractional positions is more 
involved than that of MPEG2; multi-taps filters are 

SCENARIO A:
64 LD_FRAC8 operations per macroblock

64 quad 8-bit operands per mb. for SAD calculation

SCENARIO B  (down-sampling and sub-sampling):
16 LD_PACKFRAC8 operations per macroblock

16 quad 8-bit operands per mb. for SAD calculation

 
Figure 2.  Two implementations of the block-matching kernel (first four lines). 

Table 1. Block-matching and estimation, 
optimized performance. 

New 
Operations* 

Kernel/ 
function 

SU
PE

R
_L

D
32

R
 

L
D

_F
R

A
C

8 

L
D

_P
A

C
K

FR
A

C
8 

T
ot

al
 o

pe
ra

ti
on

s 

V
L

IW
 in

st
ru

ct
io

ns
 

O
pe

ra
ti

on
s/

V
L

IW
 in

st
r.

 

Block matching 
Scenario A 

2*32 64  333 108 3.08 

Block matching 
Scenario B 

  32 198 73 2.71 

Estimator 
(P-frame) 

32 768 96 2327 568 4.10 

*  two-slot operations are counted twice: they occupy two issue slots. 



used, rather than the MPEG2 (bi-)linear interpolation. 
However, the initial block matching steps of the motion 
estimator can use a MPEG2-like (bi-)linear 
interpolation as an approximation of the multi-taps 
filter. When the loss in precision is unacceptable, new 
two-slot operations, like SUPER_USCALEFIR8UI and 
SUPER_USCALEMIX8UI, can be used to calculate 
fractional data at full precision. 
 
4.2. Texture pipeline 
 

The texture pipeline is executed for every 8x8 block 
that is to be encoded. For the discussion in this section 
we assume that the block belongs to a bi-directional 
predicted macroblock (we are in the process of 
encoding a B-frame). Note that uni-directional 
predicted or intra-coded macroblocks have a lower 
computational complexity. We restrict the discussion to 
motion vectors with a fractional horizontal component, 
and an integer vertical component. Figure 2 reflects the 
pipelined fashion of the texture coding. Most kernels 
forward their result to the next kernel in the texture 
pipeline. We first evaluate the performance of the 
individual kernels of the texture pipeline, and conclude 
with an evaluation of the complete texture pipeline. 
Table 2 summarizes the performance results. 

 
4.2.1. Difference calculation. This kernel produces a 
block of prediction values. Furthermore, the difference 
between these prediction values and the block data in 
the current image is computed. The prediction values 
are 8-bit unsigned values; the difference values are 9-
bit signed values. The optimized implementation uses 
the LD_FRAC8 operation. This operation performs 
horizontal interpolation for horizontal fractional 
positions as dictated by the motion vector. To retrieve a 
reference block at a horizontal fractional position 
requires 16 LD_FRAC8 operations. For two reference 
blocks, a total of 2*16=32 LD_FRAC8 operations are 
required. The block in the current image is located at 
an integer position, and can be retrieved with 8 
SUPER_LD32R operations. Note that the non-
optimized implementation needs to retrieve a 9x8 
reference block, before it can start with the calculation 
of a reference block at a horizontal fractional location. 
For two reference blocks, a total of 2*24=48 load 
operations are required, and more operations are 
required to perform the interpolation. The block in the 
current image is retrieved with 16 load operations. 

Intermezzo. The MPEG4 and H.264/AVC standards 
prescribe a non-linear multi-taps filter for the 
calculation of reference data at fractional positions. 
This prohibits the use of LD_FRAC8 operation. 

However, the required interpolation is efficiently 
implemented with the SUPER_USCALEFIR8UI and 
SUPER_FIR8UI operations. Given eight horizontal 
neighboring image pixels r0, r1, …, r7, with r i located at 
horizontal position i, the H.264/AVC standard 
calculates p at horizontal position 3½ using a 6-taps 
filter: 

 
p = 2r1–10r2+40r3+40r4–10r5+2r6+32 
p = Max (Min (p>>6, 0), 255) 
 
The MPEG4 standard calculates p at horizontal 

position 3½ using a 8-taps filter: 
 
p = -2r0+6r1 –12r2+40r3+40r4–12r5+6r6–2r7+rounding 
                                         (with rounding either 31, or 32)  
p = Max (Min (p>>6, 0), 255) 
 

For H.264/AVC the SUPER_USCALEFIR8UI 
operation performs the required calculation: filtering, 
rounding, scaling, and clipping to the range of an 
unsigned 8-bit integer. For MPEG4/AVC with a 
rounding value of 32, the same operation can be used. 
For a rounding factor of 31, the SUPER_FIR8UI can 
be used to calculate the 8-taps filter, additional 
operations are required to perform rounding, scaling, 
and clipping. 
 
4.2.2. DCT. This kernel produces a block of frequency 
coefficients. The 8x8 two-dimensional (2D) DCT is 
row-column separated into 8-points 1D transforms. We 
use the Chen algorithm [7]. The algorithm makes 
frequent use of butterfly and rotate operators. Both 
operators have two inputs and produce two outputs. 
The butterfly and rotate operators are defined by: 
 

Butterfly (input0, input1): 
      output0 = input0 + input1 
      output1 = input0 – input1 
Rotate (input0, input1): 
      output0 = input0*cos(a) – input1*sin(a) 
      output1 = input0*sin(a) + input1*cos(a) 
 
The TM3270 ISA includes new operations that 

allow for calculation of the 2D DCT with signed 16-bit 
arithmetic. These operations use dual 16-bit SIMD 
arithmetic. As a result, two independent 1D DCTs can 
be calculated in parallel. The butterfly operation uses 
the dual 16-bit addition and subtraction operations: 
DSPIDUALADD and DSPIDUALSUB (both 
operations are present in the original TriMedia ISA). 
Two independent butterfly structures are calculated in 
parallel using one DSPIDUALADD and one 
DSPIDUALSUB operation. The rotate operation uses 



the new dual 16-bit SUPER_DUALISCALEMIX 
operation. Two of these two-slot operations calculate 
two independent rotate structures in parallel. Since, the 
operation scales its in-between result by a factor 214, 
the partial results of the DCT calculation can be kept 
within a signed 16-bit representation. Furthermore, the 
operation’s rounding improves the accuracy of the 
calculation. A similar operation, in terms of rounding 
and scaling, is used for the multiplication of partial 
DCT results:  DUALISCALEUI_RZ. The compiler 
kept the working set of this kernel in registers; i.e. no 
spill code was generated. 

Intermezzo. To avoid accuracy problems, the 
H.264/AVC standard prescribes an integer transform 
for the spatial-to-frequency domain translation and vice 
verse. It is efficiently implemented with signed 16-bit 
arithmetic operations DSPIDUALADD and 
DSPIDUALSUB, and the new SUPER_DUALIMIX 
operation. 
 
4.2.3. Quantization. This kernel produces a block of 
quantized frequency coefficients, based on a single 
quantizer value (we assume that the quantization matrix 
values are all the same1). The quantizer value input is 
the product of the quantization matrix value and the 
macroblock quantizer value. The MPEG2 standard 

                                                           
1 Our MPEG2 encoder implementation uses a single value for all 

64 quantization matrix values for predicted blocks. For intra-coded 
blocks the quantization matrix values can be different. 

defines the de-quantization for a predicted block by: 
 
dequant_coeff = ((2 *  quant_coeff + k) *  quantizer) / 32  
quantizer = macroblock_quantizer *  matrix_quantizer 
k = Sign (quant_coeff); 
 /: division with truncation to ‘0’ .                  (Equation 1) 
 
For the de-quantization, an exact implementation of 

the above definition is required to ensure accuracy. 
However, for the quantization we decided upon a low 
complexity approximation. The approximation 
performs a single multiplication of the frequency 
coefficient with a pre-computed value based on the 
quantizer value. It uses the new dual 16-bit 
DUALISCALEUI_RZ operation (multiplication with 
scaling, and rounding to zero). This operation performs 
the quantization of two frequency coefficients. For a 
total of 64 coefficients, 32 DUALISCALEUI_RZ 
operations are required. The non-optimized 
implementation provides the same functionality, but 
uses 32-bit arithmetic. 

The quantization kernel also produces a “coded”  
value. This value identifies whether all the quantized 
coefficients have a ‘0’  value. In this case, a possibility 
exists to shorten the execution path through the texture 
pipeline. 

Table 2. Kernels and functions, optimized and non-optimized performance. 
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no 68 48      190 306 78 3.92 Difference 
calculation yes 4 48 2*8 32    163 263 62 4.24 

no 32 32      738 802 179 4.48 
Dct 

yes  32 2*16   2*48 32 188 380 103 3.69 
no 32 32      391 455 98 4.64 

Quantization 
yes  32 2*16    32 35 131 32 4.09 

Run length no 32 65      292 357 76 4.70 
no 32 32      269 333 74 4.50 

Dequantization 
yes  32 2*16  32   140 236 55 4.39 
no 32 32      655 719 162 4.44 

Idct 
yes  32 2*16   2*48 48 189 397 109 3.64 
no 48 16      126 190 57 3.33 

Reconstruction 
yes  16 2*24     140 204 43 4.74 
no 276 257      2629 3162 724 4.37 

Sum of kernels 
yes 4 257 2*96 32 32 2*96 112 1147 1968 480 4.10 

Text. pipeline full 12 104 2*16 32 32 2*96 112 1063 1579 358 4.41 
full 12 92 2*16 32 32 2*96 112 1111 1615 383 4.22 Text. pipeline 

(non-coded) short 9 36 2*16 32  2*48 64 409 678 196 3.46 
full 12 76 2*16 32 25 2*91 104 1006 1469 339 4.33 Text. pipeline 

(non-coded, 48) short 9 36 2*16 32  2*48 48 397 650 180 3.61 
*  two-slot operations are counted twice, since they occupy two issue slots. 



4.2.4. Run-length encoding. This kernel processes the 
quantized coefficients in a zigzag order and produces a 
sequence of (run, length) pairs. It checks the presence 
of ‘0’  values, and produces (“run” , “ length” ) pairs of 
quantized coefficients “run” , with a “ length”  value 
indicating the amount of preceding ‘0’  values in zigzag 
order. The use of new TM3270 operations, like 
SUPER_LD32R, does not improve performance. 

 
4.2.5. Dequantization. This kernel produces a block of 
dequantized frequency coefficients, based on an 
inverse quantizer value (Equation 1). The optimized 
implementation is performed with dual 16-bit 
arithmetic, and uses the new dual 16-bit 
DUALADDSUB operation. This operation is used to 
add the sign bit to the doubled quant_coeff: 

 
(2 *  dual_quant_coeff + k) = 
DUALADDSUB (DSPIDUALADD ( 
                                dual_quant_coeff, dual_quant_coeff), 
                            0x00010001) 

 
4.2.6. IDCT. This kernel produces an block of image 
pixel difference values. The 8x8 2D IDCT is row-
column separated into 8-points 1D transforms. We use 
a version of the Loeffler algorithm [9]. Like the 
forward DCT, the algorithm makes frequent use of 
butterfly and rotate operators. The optimized 
implementation is performed with dual 16-bit 
arithmetic. The rounding and scaling capabilities of 
SUPER_DUALISCALEMIX and 
DUALISCALEUI_RZ allow for a standard compliant 
accuracy. The compiler kept the working set of this 
kernel in registers; i.e. no spill code was generated. 

 
4.2.7. Image reconstruction. This kernel produces a 
block of reconstructed image pixels. The prediction 
values are represented by 8-bit unsigned integers; the 
difference values are represented by signed 16-bit 
integers. The initial steps of the reconstruction are done 
with 16-bit arithmetic, and the final step clips the 
results to an unsigned 8-bit integer range. The 
optimized implementation uses the SUPER_LD32R 
operation. 
 
4.2.8. Putting it all together. The previous sections 
discussed the implementation of the individual kernels 
as self-contained functions. The “sum of kernels”  rows 
illustrate the performance improvement: 720 VLIW 
instructions for the non-optimized, and 480 VLIW 
instructions for the optimized version. Given the 
pipelined organization, it is possible to combine the 
kernels into a single “TexturePipeline”  function 
through function-inlining. This gives the compiler the 

opportunity to remove function-call, and –return 
overhead, and to pass in-between kernel results through 
registers, rather than through memory. Furthermore, the 
compiler is offered more operation level parallelism, 
which might allow for a higher operations/VLIW 
instruction ratio. As a result, the schedule length is 
significantly reduced: Table 2 gives 480 VLIW 
instructions for the optimized “sum of kernels” , and 
358 VLIW instructions for “TexturePipeline”  function. 

Two further optimizations were investigated: 1). 
The “coded”  value as produced by the quantization 
kernel was used to identify blocks for which no data 
needs to be encoded (Table 2: “non-coded”). In this 
case, the run-length encoding, inverse quantization, and 
IDCT kernels do not need to be performed. The image 
reconstruction kernel uses the prediction values as the 
reconstructed pixels. For non-coded blocks a shorter 
execution path through the texture pipeline is achieved. 
Note that this optimization does not compromise image 
quality. 2). We reduced the amount of encoded 
quantized frequency coefficients to the first 48 
coefficients in zigzag order. The non-coded 
coefficients are assumed ‘0’ , which allows for 
optimizations in some of the kernels (Table 2: “non-
coded, 48” ). In [8] it was shown that for low bitrate 
applications, the encoding of only a few frequency 
coefficients in the low frequency domain resulted in 
only limited image quality degradation. Applying both 
optimizations reduces the schedule length to 180 
VLIW instructions for the short execution path. 
 
4.3. Bitstream generation  

 
The bitstream generator writes bit patterns to a 

sequential stream located in memory. It makes frequent 
use of the “PutBits”  function, which takes a bit pattern 
of a certain size, and writes the bits to the stream. The 
“PutBits”  function does not use any new operations. 
MPEG2 bit patterns are typically 24 bits or less in size. 
The TM3270’s ability to perform non-aligned memory 
access allows for an efficient implementation, since a 
single store operation can update up to 25 sequential 
bits in memory.  
 

5. MPEG2 performance evaluation 
 

We use a cycle accurate C-model of the processor, 
which was automatically generated from the Verilog 
HDL model, for performance evaluation. The 
processor operates at 450 MHz., and is attached to a 
32-bit 200 MHz. DDR SDRAM off-chip memory. 



We encoded the “Foreman”  sequence at CIF 
resolution at 25 frames per second, with a target bitrate 
of 500,000 bits per second. The rate control kernel 
controls the bitrate through the macroblock 
quantization factor. Frames are represented in a 4:2:0 
format, resulting in six block per macroblock. A 
MPEG2 “group of pictures”  (GOP) includes 12 frames, 
and the frame types in display order are given by the 
pattern: I-B-B-P-B-B-P-B-B-P-B-B. The motion 
estimation for P-frames is performed as described in 
Section 4.1.2 (17 motion vectors are evaluated). For B-
frames, motion estimation is performed with two 
reference images. To balance the complexity of B-
frames with that of P-frames, the amount of block 
matches per reference image is reduced to 10. 

Figure 3 gives an overview of the computational 
complexity. The numbers provide average compute 
requirements per frame. P- and B-frames have higher 
complexity, since they require motion estimation. The 
“average”  numbers are calculated based on the frame 
type frequencies as defined by the GOP pattern. On 
average, 1,339,223 cycles are required to encode a 
frame, at 25 frames per second, resulting in a 33.5 
MHz. processor load. The cycle budget is divided into 
a VLIW budget and a stall cycle budget. The 
instruction budget is divided into: motion estimation, 
texture pipeline, output processing (which includes the 
variable length encoding and bitstream generation 
kernels), and “other” . The “other”  partition includes 
MPEG2 control code, including e.g. rate control. 
 

6. Conclusion 
 

We have described new operations, and have shown 
that they can significantly improve the performance of 
MPEG2 encoder kernels. Collapsed load operations 
with interpolation allow for a motion estimation 
function that evaluates 17 macroblock candidates, but 

only comprises 568 VLIW instructions. This low 
complexity 3DRS motion estimation algorithm 
accounts for roughly 25% of the overall budget of the 
MPEG2 encoder (for B-frames). New multiplication 
operations allow for a standard compliant 
implementation of (I)DCT kernels with dual 16-bit 
arithmetic. The encoder’s texture pipeline for a bi-
directionally predicted 8x8 block is performed in 358 
or less VLIW instructions, through function-inlining of 
the individual kernels. The optimized kernels account 
for more than 90% of the overall budget of the MPEG 
encoder. Using the kernel optimizations, the MPEG2 
encoder can be performed in 33.5 MHz. for the 
evaluated “Foreman”  sequence at CIF resolution. 
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Table 3. Some of the TM3270 new operations. 
Operation DESCRIPTION 

SUPER_LD32R  
        rsrc3 rsrc4 -> rdest1 rdest2 
 
Semantics: Load two 32-bit words. 
Note: description is in big endian mode. 

data0 = Mem[rsrc1];         data1 = Mem[rsrc1 + 1];   data2 = Mem[rsrc1 + 2] 
data3 = Mem[rsrc1 + 3];   data4 = Mem[rsrc1 + 4];   data5 = Mem[rsrc1 + 5] 
data6 = Mem[rsrc1 + 6];   data7 = Mem[rsrc1 + 7] 
rdest1 = (data0 << 24) | (data1 << 16) | (data2 << 8) | data3 
rdest2 = (data4 << 24) | (data5 << 16) | (data6 << 8) | data7 

LD_FRAC8 
        rsrc1 rsrc2 -> rdest1 
 
Semantics: Collapsed load; load combined 
with linear interpolation. 
Note: description is in big endian mode. 

data0 = Mem[rsrc1];         data1 = Mem[rsrc1 + 1];   data2 = Mem[rsrc1 + 2] 
data3 = Mem[rsrc1 + 3];   data4 = Mem[rsrc1 + 4] 
rdest1[31:24]  = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) >> 4 
rdest1[23:16]  = (data1*(16-rsrc2[3:0]) + data2*rsrc2[3:0] + 8) >> 4 
rdest1[15:8]    = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) >> 4 
rdest1[7:0]      = (data3*(16-rsrc2[3:0]) + data4*rsrc2[3:0] + 8) >> 4 

 LD_PACKFRAC8 
        rsrc1 rsrc2 -> rdest1 
 
 
Semantics: Collapsed load; load combined 
with linear interpolation. 
Note: description is in big endian mode. 

data0 = Mem[rsrc1];         data1 = Mem[rsrc1 + 1];   data2 = Mem[rsrc1 + 2] 
data3 = Mem[rsrc1 + 3];   data4 = Mem[rsrc1 + 4];   data5 = Mem[rsrc1 + 5] 
data6 = Mem[rsrc1 + 6];   data7 = Mem[rsrc1 + 7] 
rdest1[31:24]  = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) >> 4 
rdest1[23:16]  = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) >> 4 
rdest1[15:8]    = (data4*(16-rsrc2[3:0]) + data5*rsrc2[3:0] + 8) >> 4 
rdest1[7:0]      = (data6*(16-rsrc2[3:0]) + data7*rsrc2[3:0] + 8) >> 4 

SUPER_QUADUSCALEMIXUI 
       rsrc1 rsrc2 rsrc3 rsrc4 -> rdest1 
 

temp               = rsrc1[31:24] *  rsrc2[31:24] + rsrc3[31:24] *  rsrc4[31:24] 
rdest1[31:24] = Max (Min ((temp + 0x20) >> 6, oxff), 0) 
temp               = rsrc1[23:16] *  rsrc2[23:16] + rsrc3[23:16] *  rsrc4[23:16] 
rdest1[23:16] = Max (Min ((temp + 0x20) >> 6, oxff), 0) 
temp               = rsrc1[15:8]   *  rsrc2[15:8]   + rsrc3[15:8]   *  rsrc4[15:8]   
rdest1[15:8]   = Max (Min ((temp + 0x20) >> 6, 0xff), 0) 
temp               = rsrc1[7:0]     *  rsrc2[7:0]     + rsrc3[7:0]     *  rsrc4[7:0] 
rdest1[7:0]     = Max (Min ((temp + 0x20) >> 6, 0xff), 0) 

SUPER_USCALEFIR8UI 
       rsrc1 rsrc2 rsrc3 rsrc4 -> rdest1 
 

temp =   rsrc1[31:24] *  rsrc2[31:24] + rsrc1[23:16] *  rsrc2[23:16] 
           + rsrc1[15:8]   *  rsrc2[15:8]   + rsrc1[7:0]     *  rsrc2[7:0] 
           + rsrc3[31:24] *  rsrc4[31:24] + rsrc3[23:16] *  rsrc4[23:16] 
           + rsrc3[15:8]   *  rsrc4[15:8]   + rsrc3[7:0]     *  rsrc4[7:0] 
rdest1 = Max (Min ((temp + 0x20) >> 6, 0xff), 0) 

SUPER_IFIR8UI 
       rsrc1 rsrc2 rsrc3 rsrc4 -> rdest1 

rdest1 =   rsrc1[31:24] *  rsrc2[31:24] + rsrc1[23:16] *  rscr2[23:16] 
             + rsrc1[15:8]   *  rsrc2[15:8]   + rsrc1[7:0]     *  rscr2[7:0] 
             + rsrc3[31:24] *  rsrc4[31:24] + rsrc3[23:16] *  rscr4[23:16] 
             + rsrc3[15:8]   *  rsrc4[15:8]   + rsrc3[7:0]     *  rscr4[7:0] 

SUPER_DUALISCALEMIX 
       rsrc1 rsrc2 rsrc3 rsrc4 -> rdest1 

temp               = rsrc1[31:16] *  rsrc2[31:16] + rsrc3[31:16] *  rsrc4[31:16] 
rdest1[31:16] = Max (Min ((temp + 0x2000) >> 14, 0x7fff), -0x8000) 
temp               = rsrc1[15:0]   *  rsrc2[15:0]   + rsrc3[15:0]   *  rsrc4[15:0] 
rdest1[15:0]   = Max (Min ((temp + 0x2000) >> 14, 0x7fff), -0x8000) 

SUPER_DUALIMIX 
       rsrc1 rsrc2 rsrc3 rsrc4 -> rdest1 rdest 2 

rdest1 = rsrc1[31:16] *  rsrc2[31:16] + rsrc3[31:16] *  rsrc4[31:16] 
rdest2 = rsrc1[15:0]   *  rsrc2[15:0]   + rsrc3[15:0]   *  rsrc4[15:0] 

DUALISCALEUI_RZ 
       rsrc1 rsrc2 -> rdest1 
 
 
 
Note: “RZ” , rounding to zero. 

temp               = rsrc1[31:16] *  rsrc2[31:16] 
rounding        = (rsrc2[31:16] < 0) ? 0x3fff : 0x0000;  /*  "towards zero" * / 
rdest1[31:16] = Max (Min ((temp+rounding) >> 14, 0x7fff), - 0x8000) 
temp               = rsrc1[15:0] *  rsrc2[15:0] 
rounding        = (rsrc2[15:0] < 0) ? 0x3fff : 0x0000;  /*  "towards zero" * / 
rdest1[15:0]   = Max (Min ((temp+rounding) >> 14, 0x7fff), - 0x8000) 

DUALADDSUB 
       rsrc1 rsrc2 -> rdest1 

rdest1[31:16] = (rsrc1[31:16] == 0) ? rsrc1[31:16] 
                                            : ((rsrc1[31:16] > 0) ? rsrc1[31:16] + rsrc2[31:16] 
                                                                             : rsrc1[31:16]  - rsrc2[31:16]) 
rdest1[15:0]  = (rsrc1[15:0] == 0) ? rsrc1[15:0] 
                                            : ((rsrc1[15:0] > 0)   ? rsrc1[15:0] + rsrc2[15:0] 
                                                                             : rsrc1[15:0]  - rsrc2[15:0]) 

SUPER_DUALIMEDIAN 
       rsrc1 rsrc2 rsrc3 -> rdest1; 

rdest1[31:16] = Min (Max (Min (rsrc1[31:16], rsrc2[31:16]), rsrc3[31:16]), 
                                   Max (rsrc1[31:16], rsrc2[31:16])) 
rdest1[15:0]   = Min (Max (Min (rsrc1[15:0],   rsrc2[15:0]),   rsrc3[15:0]), 
                                   Max (rsrc1[15:0],   rsrc2[15:0])) 

 


