
Instruction Set Architecture Enhancements for Video Processing

Jan-Willem van de Waerdt*+ Stamatis Vassiliadis +
*Philips Semiconductors

San Jose, CA, USA

+ Delft University of Technology,
Delft, The Netherlands

Stamatis@dutepp0.et.tudelft.nl

Abstract

This paper presents some of the enhancements to
the TriMedia instruction set architecture (ISA), as
supported by the TM3270 media-processor. We show
how the new operations are used to optimize the
individual MPEG2 encoder kernels. Furthermore, we
quantify the contribution of these kernels to overall
MPEG2 encoder performance. We introduce two-slot
operations, collapsed load operations wit
interpolations, and new multiplication operations. The
encoder’s texture pipeline for a bi-directionally
predicted 8x8 block is performed in 358 VLIW
instructions. MPEG2 encoding at CIF resolution at 25
frames per second is achieved within 33.5 MHz. of
processor performance.

1. Introduction

Media-processors can be used in many video-
processing applications. Their programmability
provides flexibility, which can be exploited in different
ways. It enables algorithmic changes after design,
multiple algorithms can be mapped to the same
architecture, faster time-to-market, etc.. When enough
performance is available, they provide an interesting
alternative to fixed dedicated hardware solutions.
Furthermore, when a single programmable platform
can address multiple markets, its development costs
can be shared.

Progress in video codec research has led to an
increasing number of standards, such as MPEG2,
MPEG4, and H.264/AVC [1]. More recent standards
introduce new encoding tools to offer improved
performance in terms of picture quality at a certain
bitrate. This, however, does not mean that older
standards become obsolete. The introduction of new
standards to the market is a gradual process, which
means that the latest product needs to support multiple
standards, to ensure backward compatibility. The
multi-standard requirement makes a programmable

platform an interesting implementation platform. The
ISAs of modern processor families are continuously
updated, to address the compute requirements of new
video standards.

This paper presents new operations to the TriMedia
architecture, as supported by the TM3270 media-
processor. We quantify their performance improvement
on MPEG2 encoding. We also show how the new
operations can be used to optimize kernels of other
video standards, such as MPEG4 and H.264/AVC. The
most notable new operations are: two-slot operations
[2], collapsed load operations, and multiplication
operations with scaling, rounding, and clipping
support.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the TM3270. Section 3
presents the selection criteria for new operations.
Section 4 presents a MPEG2 encoder implementation,
and the use of new operations to optimize performance.
Section 5 presents the contribution of the optimized
kernels to overall MPEG2 encoder performance.
Finally, in Section 6, we present our conclusions.

2. TM3270 overview

The TM3270 is backward source code compatible
with the TriMedia architecture [4],[5]. The processor
has a synthesizable design, allowing for fast process
technology mapping. The processor achieves a
frequency of 450 MHz. in a 90 nm process technology,
and measures around 8.1 mm2. The TM3270 has a
VLIW architecture. A VLIW instruction may contain
up to five operations. Each operation may be guarded;
i.e. its execution is conditional on a guard register.
SIMD arithmetic and shuffle operations allow for
efficient manipulation and re-organization of 8-, and
16-bit data types. Operations are grouped into
functional units, and most functional units have
multiple instantiations. The simple arithmetic
functional unit has five instantiations, so up to five
simple arithmetic operations can be issued every cycle.

The TM3270 supports two-slot functional units, which
are located in two neighboring issue slots (providing
twice the normal register-file bandwidth). As a result,
two-slot operations may have up to four 32-bit sources,
and may produce two 32-bit results. The TM3270 has a
64 Kbyte instruction, and a 128 Kbyte data cache.

3. Selection of new operations

Video and audio processing are the processor’s

main application domains. Given the higher
computational requirements of video processing, most
new operations find application in this domain. This
explains the MPEG2 encoder as an example
application. While identifying potentially interesting
operations, we applied certain selection rules:

a). Fits the processor architecture.
• No operations with architectural state.
• Operations are limited to up to two issue

slots.
• The sub-operand fields of SIMD

operations should have the same semantics.
b). Reuse of available processor resources. New

operations typically add functionality to the existing
datapath. The additional silicon area should be kept to
a minimum, to allow for a low-cost implementation.

c). Applicability in multiple domains.
d). Significant performance enhancement.

Performance improvement should be measured at the
application level, rather than the kernel level.

An expert in the areas of processor architecture and
video processing should preferably judge the ISA
enhancement as obvious. Table 3 (found at the end of
this paper) presents the new operations that are
discussed in this paper.

4. MPEG2 encoder

Figure 1 gives an overview of a MPEG2 encoder.
We started with a plain-vanilla C-implementation of a
MPEG2 encoder, and invested 6 man weeks to
optimize the implementation for the TM3270. We have
not undertaken any optimizations that would
compromise MPEG2 compliancy. Most of the
optimizations involve the selection of custom
operations to reduce computational complexity.

The MPEG2 encoder flow is summarized as
follows. Macroblocks of 16x16 image pixels are
processed in a left-to-right, top-to-bottom image order.
First, motion estimation is performed at macroblock
granularity. This kernel decides the encoding mode
(intra-code, or predicted), and produces up to two
motion vectors (two vectors for bi-directionally
predicted macroblocks). Next, the texture pipeline is
executed for every 8x8 block within the macroblock.
The texture pipeline performs the image reconstruction,
and produces a sequence of (run, length) pairs for
every block. Finally, the (run, length) sequences are
variable length encoded, and a bitstream is generated.
This last step is only performed after the texture
pipeline has produced the (run, length) sequences of all
the blocks within a macroblock.

In the following sections we use the TM3270 ISA
enhancements to optimize the grey-shaded parts in
Figure 1. All kernel implementations are self-contained
functions: function-call and –return overhead are
included, function inputs are read from memory, and
function outputs are written to memory. Separate
intermezzo sections discuss related kernel functionality
in other video codec standards such as H.264/AVC.

TEXTURE PIPELINE

MOTION
ESTIMATION

DIFFERENCE
CALCULATION

DCT QUANTIZATION
RUN LENGTH

ENCODING
(incl. zigzag)

VARIABLE
LENGTH

ENCODING
(Huffman)

RATE
CONTROL
(adaptive

quantization)

INVERSE
DCT

INVERSE
QUANTIZATION

IMAGE
RECONSTR.

2 REFERENCE IMAGES

 MPEG2 ENCODER

OUTPUT: BITSTREAM

motion vectors

BITSTREAM
GENERATION

011001000101101INPUT:
SOURCE IMAGE

Figure 1. MPEG2 encoder overview, with a breakdown in kernels.

4.1. Motion estimation

A significant part of the computational complexity
of a video encoder is found in motion estimation.
Motion estimation searches for temporal correlation
between video images, which can be exploited to
achieve a high compression factor. We implemented a
version of the 3DRS motion estimation algorithm [6].
Most of the computational complexity of this algorithm
is found in the “macroblock matching” kernel.

4.1.1. Macroblock matching. This kernel determines
the similarity of a macroblock in the current image with
a motion-displaced macroblock in a reference image.
Typically, the match criterion is the Sum-of-Absolute-
Differences (SAD) cost function. An optimized
implementation uses the LD_FRAC8 collapsed load
operation with interpolation to retrieve reference pixels
from memory, and perform horizontal interpolation on-
the-fly (Figure 2, scenario A). Vertical interpolation
can use the QUADAVG operation (present in the
original TriMedia ISA). The SUPER_LD32R two-slot
operation is used to retrieve eight horizontally
neighboring pixels from the current image. For an
integer horizontal motion vector component, the
SUPER_LD32R operation can also be used to retrieve
reference pixels.

Further optimizations to the kernel are possible at a
degradation in quality. For example, the
LD_PACKFRAC8 operation can be used to perform
on-the-fly down-sampling of image pixels. The
operation retrieves eight pixels from memory, performs
a pair wise weighted average, and returns a quad 8-bit
SIMD result that is input to the SAD calculation (the
amount SAD inputs is reduced by a factor two). A
further performance improvement is achieved by
performing sub-sampling, which reduces the amount of
pixels involved in the SAD calculation by another
factor two (Figure 2, scenario B). Table 1 gives a
performance comparison of scenarios A and B. Both
scenarios assume a fractional horizontal motion vector
component and an integer vertical component.

4.1.2 The estimator. The 3DRS algorithm performs
multiple matches to find the best reference macroblock,
based on the SAD cost function. The complexity
analysis of motion estimation is very dependent on the
specific algorithm and its implementation. Motion
estimation is a much-discussed topic, and it is possible
that more efficient algorithms exist, in terms of
performance complexity and image quality.

Our implementation of the 3DRS algorithm
evaluates a total of 17 motion candidates for every
macroblock in a P-frame. The estimator function
includes all control overhead related to the 3DRS
algorithm. In an initial step 12 motion candidates are
evaluated, using the matching of scenario B. Next, a
refinement step evaluates 5 candidates, using the
matching of scenario A. The matching functions are
inlined in the estimator function (Table 2). The
estimator function comprises 568 VLIW instructions.

The motion estimation algorithm uses the new
SUPER_DUALIMEDIAN two-slot operation to clip
two-dimensional positional information to a certain
range.

Intermezzo. Whereas the MPEG2 standard allows
for fractional motion vectors at half image pixel
granularity, the MPEG4 and H.264/AVC standards
support quarter pixel granularity. Furthermore, the
calculation of data at fractional positions is more
involved than that of MPEG2; multi-taps filters are

SCENARIO A:
64 LD_FRAC8 operations per macroblock

64 quad 8-bit operands per mb. for SAD calculation

SCENARIO B (down-sampling and sub-sampling):
16 LD_PACKFRAC8 operations per macroblock

16 quad 8-bit operands per mb. for SAD calculation

Figure 2. Two implementations of the block-matching kernel (first four lines).

Table 1. Block-matching and estimation,
optimized performance.

New
Operations*

Kernel/
function

SU
PE

R
_L

D
32

R

L
D

_F
R

A
C

8

L
D

_P
A

C
K

FR
A

C
8

T
ot

al
 o

pe
ra

ti
on

s

V
L

IW
 in

st
ru

ct
io

ns

O
pe

ra
ti

on
s/

V
L

IW
 in

st
r.

Block matching
Scenario A

2*32 64 333 108 3.08

Block matching
Scenario B

 32 198 73 2.71

Estimator
(P-frame)

32 768 96 2327 568 4.10

* two-slot operations are counted twice: they occupy two issue slots.

used, rather than the MPEG2 (bi-)linear interpolation.
However, the initial block matching steps of the motion
estimator can use a MPEG2-like (bi-)linear
interpolation as an approximation of the multi-taps
filter. When the loss in precision is unacceptable, new
two-slot operations, like SUPER_USCALEFIR8UI and
SUPER_USCALEMIX8UI, can be used to calculate
fractional data at full precision.

4.2. Texture pipeline

The texture pipeline is executed for every 8x8 block
that is to be encoded. For the discussion in this section
we assume that the block belongs to a bi-directional
predicted macroblock (we are in the process of
encoding a B-frame). Note that uni-directional
predicted or intra-coded macroblocks have a lower
computational complexity. We restrict the discussion to
motion vectors with a fractional horizontal component,
and an integer vertical component. Figure 2 reflects the
pipelined fashion of the texture coding. Most kernels
forward their result to the next kernel in the texture
pipeline. We first evaluate the performance of the
individual kernels of the texture pipeline, and conclude
with an evaluation of the complete texture pipeline.
Table 2 summarizes the performance results.

4.2.1. Difference calculation. This kernel produces a
block of prediction values. Furthermore, the difference
between these prediction values and the block data in
the current image is computed. The prediction values
are 8-bit unsigned values; the difference values are 9-
bit signed values. The optimized implementation uses
the LD_FRAC8 operation. This operation performs
horizontal interpolation for horizontal fractional
positions as dictated by the motion vector. To retrieve a
reference block at a horizontal fractional position
requires 16 LD_FRAC8 operations. For two reference
blocks, a total of 2*16=32 LD_FRAC8 operations are
required. The block in the current image is located at
an integer position, and can be retrieved with 8
SUPER_LD32R operations. Note that the non-
optimized implementation needs to retrieve a 9x8
reference block, before it can start with the calculation
of a reference block at a horizontal fractional location.
For two reference blocks, a total of 2*24=48 load
operations are required, and more operations are
required to perform the interpolation. The block in the
current image is retrieved with 16 load operations.

Intermezzo. The MPEG4 and H.264/AVC standards
prescribe a non-linear multi-taps filter for the
calculation of reference data at fractional positions.
This prohibits the use of LD_FRAC8 operation.

However, the required interpolation is efficiently
implemented with the SUPER_USCALEFIR8UI and
SUPER_FIR8UI operations. Given eight horizontal
neighboring image pixels r0, r1, …, r7, with r i located at
horizontal position i, the H.264/AVC standard
calculates p at horizontal position 3½ using a 6-taps
filter:

p = 2r1–10r2+40r3+40r4–10r5+2r6+32
p = Max (Min (p>>6, 0), 255)

The MPEG4 standard calculates p at horizontal

position 3½ using a 8-taps filter:

p = -2r0+6r1 –12r2+40r3+40r4–12r5+6r6–2r7+rounding
 (with rounding either 31, or 32)
p = Max (Min (p>>6, 0), 255)

For H.264/AVC the SUPER_USCALEFIR8UI
operation performs the required calculation: filtering,
rounding, scaling, and clipping to the range of an
unsigned 8-bit integer. For MPEG4/AVC with a
rounding value of 32, the same operation can be used.
For a rounding factor of 31, the SUPER_FIR8UI can
be used to calculate the 8-taps filter, additional
operations are required to perform rounding, scaling,
and clipping.

4.2.2. DCT. This kernel produces a block of frequency
coefficients. The 8x8 two-dimensional (2D) DCT is
row-column separated into 8-points 1D transforms. We
use the Chen algorithm [7]. The algorithm makes
frequent use of butterfly and rotate operators. Both
operators have two inputs and produce two outputs.
The butterfly and rotate operators are defined by:

Butterfly (input0, input1):
 output0 = input0 + input1
 output1 = input0 – input1
Rotate (input0, input1):
 output0 = input0*cos(a) – input1*sin(a)
 output1 = input0*sin(a) + input1*cos(a)

The TM3270 ISA includes new operations that

allow for calculation of the 2D DCT with signed 16-bit
arithmetic. These operations use dual 16-bit SIMD
arithmetic. As a result, two independent 1D DCTs can
be calculated in parallel. The butterfly operation uses
the dual 16-bit addition and subtraction operations:
DSPIDUALADD and DSPIDUALSUB (both
operations are present in the original TriMedia ISA).
Two independent butterfly structures are calculated in
parallel using one DSPIDUALADD and one
DSPIDUALSUB operation. The rotate operation uses

the new dual 16-bit SUPER_DUALISCALEMIX
operation. Two of these two-slot operations calculate
two independent rotate structures in parallel. Since, the
operation scales its in-between result by a factor 214,
the partial results of the DCT calculation can be kept
within a signed 16-bit representation. Furthermore, the
operation’s rounding improves the accuracy of the
calculation. A similar operation, in terms of rounding
and scaling, is used for the multiplication of partial
DCT results: DUALISCALEUI_RZ. The compiler
kept the working set of this kernel in registers; i.e. no
spill code was generated.

Intermezzo. To avoid accuracy problems, the
H.264/AVC standard prescribes an integer transform
for the spatial-to-frequency domain translation and vice
verse. It is efficiently implemented with signed 16-bit
arithmetic operations DSPIDUALADD and
DSPIDUALSUB, and the new SUPER_DUALIMIX
operation.

4.2.3. Quantization. This kernel produces a block of
quantized frequency coefficients, based on a single
quantizer value (we assume that the quantization matrix
values are all the same1). The quantizer value input is
the product of the quantization matrix value and the
macroblock quantizer value. The MPEG2 standard

1 Our MPEG2 encoder implementation uses a single value for all

64 quantization matrix values for predicted blocks. For intra-coded
blocks the quantization matrix values can be different.

defines the de-quantization for a predicted block by:

dequant_coeff = ((2 * quant_coeff + k) * quantizer) / 32
quantizer = macroblock_quantizer * matrix_quantizer
k = Sign (quant_coeff);
 /: division with truncation to ‘0’ . (Equation 1)

For the de-quantization, an exact implementation of

the above definition is required to ensure accuracy.
However, for the quantization we decided upon a low
complexity approximation. The approximation
performs a single multiplication of the frequency
coefficient with a pre-computed value based on the
quantizer value. It uses the new dual 16-bit
DUALISCALEUI_RZ operation (multiplication with
scaling, and rounding to zero). This operation performs
the quantization of two frequency coefficients. For a
total of 64 coefficients, 32 DUALISCALEUI_RZ
operations are required. The non-optimized
implementation provides the same functionality, but
uses 32-bit arithmetic.

The quantization kernel also produces a “coded”
value. This value identifies whether all the quantized
coefficients have a ‘0’ value. In this case, a possibility
exists to shorten the execution path through the texture
pipeline.

Table 2. Kernels and functions, optimized and non-optimized performance.
Old

operations
New

Operations*

Kernel/
function

O
pt

im
iz

ed
/ (

ye
s/

no
)

Pa
th

 (
fu

ll
/s

ho
rt

)

L
D

32

ST
32

SU
PE

R
_L

D
32

R

L
D

_F
R

A
C

8

D
U

A
L

A
D

D
SU

B

SU
PE

R
_D

U
A

L

IS
C

A
L

E
M

IX

D
U

A
L

_
IS

C
A

L
E

U
I_

R
Z

Other
operations

Total
operations

V
L

IW

in
st

ru
ct

io
ns

O
pe

ra
ti

on
s/

V

L
IW

 in
st

ru
ct

io
n

no 68 48 190 306 78 3.92 Difference
calculation yes 4 48 2*8 32 163 263 62 4.24

no 32 32 738 802 179 4.48
Dct

yes 32 2*16 2*48 32 188 380 103 3.69
no 32 32 391 455 98 4.64

Quantization
yes 32 2*16 32 35 131 32 4.09

Run length no 32 65 292 357 76 4.70
no 32 32 269 333 74 4.50

Dequantization
yes 32 2*16 32 140 236 55 4.39
no 32 32 655 719 162 4.44

Idct
yes 32 2*16 2*48 48 189 397 109 3.64
no 48 16 126 190 57 3.33

Reconstruction
yes 16 2*24 140 204 43 4.74
no 276 257 2629 3162 724 4.37

Sum of kernels
yes 4 257 2*96 32 32 2*96 112 1147 1968 480 4.10

Text. pipeline full 12 104 2*16 32 32 2*96 112 1063 1579 358 4.41
full 12 92 2*16 32 32 2*96 112 1111 1615 383 4.22 Text. pipeline

(non-coded) short 9 36 2*16 32 2*48 64 409 678 196 3.46
full 12 76 2*16 32 25 2*91 104 1006 1469 339 4.33 Text. pipeline

(non-coded, 48) short 9 36 2*16 32 2*48 48 397 650 180 3.61
* two-slot operations are counted twice, since they occupy two issue slots.

4.2.4. Run-length encoding. This kernel processes the
quantized coefficients in a zigzag order and produces a
sequence of (run, length) pairs. It checks the presence
of ‘0’ values, and produces (“run” , “ length”) pairs of
quantized coefficients “run” , with a “ length” value
indicating the amount of preceding ‘0’ values in zigzag
order. The use of new TM3270 operations, like
SUPER_LD32R, does not improve performance.

4.2.5. Dequantization. This kernel produces a block of
dequantized frequency coefficients, based on an
inverse quantizer value (Equation 1). The optimized
implementation is performed with dual 16-bit
arithmetic, and uses the new dual 16-bit
DUALADDSUB operation. This operation is used to
add the sign bit to the doubled quant_coeff:

(2 * dual_quant_coeff + k) =
DUALADDSUB (DSPIDUALADD (
 dual_quant_coeff, dual_quant_coeff),
 0x00010001)

4.2.6. IDCT. This kernel produces an block of image
pixel difference values. The 8x8 2D IDCT is row-
column separated into 8-points 1D transforms. We use
a version of the Loeffler algorithm [9]. Like the
forward DCT, the algorithm makes frequent use of
butterfly and rotate operators. The optimized
implementation is performed with dual 16-bit
arithmetic. The rounding and scaling capabilities of
SUPER_DUALISCALEMIX and
DUALISCALEUI_RZ allow for a standard compliant
accuracy. The compiler kept the working set of this
kernel in registers; i.e. no spill code was generated.

4.2.7. Image reconstruction. This kernel produces a
block of reconstructed image pixels. The prediction
values are represented by 8-bit unsigned integers; the
difference values are represented by signed 16-bit
integers. The initial steps of the reconstruction are done
with 16-bit arithmetic, and the final step clips the
results to an unsigned 8-bit integer range. The
optimized implementation uses the SUPER_LD32R
operation.

4.2.8. Putting it all together. The previous sections
discussed the implementation of the individual kernels
as self-contained functions. The “sum of kernels” rows
illustrate the performance improvement: 720 VLIW
instructions for the non-optimized, and 480 VLIW
instructions for the optimized version. Given the
pipelined organization, it is possible to combine the
kernels into a single “TexturePipeline” function
through function-inlining. This gives the compiler the

opportunity to remove function-call, and –return
overhead, and to pass in-between kernel results through
registers, rather than through memory. Furthermore, the
compiler is offered more operation level parallelism,
which might allow for a higher operations/VLIW
instruction ratio. As a result, the schedule length is
significantly reduced: Table 2 gives 480 VLIW
instructions for the optimized “sum of kernels” , and
358 VLIW instructions for “TexturePipeline” function.

Two further optimizations were investigated: 1).
The “coded” value as produced by the quantization
kernel was used to identify blocks for which no data
needs to be encoded (Table 2: “non-coded”). In this
case, the run-length encoding, inverse quantization, and
IDCT kernels do not need to be performed. The image
reconstruction kernel uses the prediction values as the
reconstructed pixels. For non-coded blocks a shorter
execution path through the texture pipeline is achieved.
Note that this optimization does not compromise image
quality. 2). We reduced the amount of encoded
quantized frequency coefficients to the first 48
coefficients in zigzag order. The non-coded
coefficients are assumed ‘0’ , which allows for
optimizations in some of the kernels (Table 2: “non-
coded, 48”). In [8] it was shown that for low bitrate
applications, the encoding of only a few frequency
coefficients in the low frequency domain resulted in
only limited image quality degradation. Applying both
optimizations reduces the schedule length to 180
VLIW instructions for the short execution path.

4.3. Bitstream generation

The bitstream generator writes bit patterns to a

sequential stream located in memory. It makes frequent
use of the “PutBits” function, which takes a bit pattern
of a certain size, and writes the bits to the stream. The
“PutBits” function does not use any new operations.
MPEG2 bit patterns are typically 24 bits or less in size.
The TM3270’s ability to perform non-aligned memory
access allows for an efficient implementation, since a
single store operation can update up to 25 sequential
bits in memory.

5. MPEG2 performance evaluation

We use a cycle accurate C-model of the processor,
which was automatically generated from the Verilog
HDL model, for performance evaluation. The
processor operates at 450 MHz., and is attached to a
32-bit 200 MHz. DDR SDRAM off-chip memory.

We encoded the “Foreman” sequence at CIF
resolution at 25 frames per second, with a target bitrate
of 500,000 bits per second. The rate control kernel
controls the bitrate through the macroblock
quantization factor. Frames are represented in a 4:2:0
format, resulting in six block per macroblock. A
MPEG2 “group of pictures” (GOP) includes 12 frames,
and the frame types in display order are given by the
pattern: I-B-B-P-B-B-P-B-B-P-B-B. The motion
estimation for P-frames is performed as described in
Section 4.1.2 (17 motion vectors are evaluated). For B-
frames, motion estimation is performed with two
reference images. To balance the complexity of B-
frames with that of P-frames, the amount of block
matches per reference image is reduced to 10.

Figure 3 gives an overview of the computational
complexity. The numbers provide average compute
requirements per frame. P- and B-frames have higher
complexity, since they require motion estimation. The
“average” numbers are calculated based on the frame
type frequencies as defined by the GOP pattern. On
average, 1,339,223 cycles are required to encode a
frame, at 25 frames per second, resulting in a 33.5
MHz. processor load. The cycle budget is divided into
a VLIW budget and a stall cycle budget. The
instruction budget is divided into: motion estimation,
texture pipeline, output processing (which includes the
variable length encoding and bitstream generation
kernels), and “other” . The “other” partition includes
MPEG2 control code, including e.g. rate control.

6. Conclusion

We have described new operations, and have shown
that they can significantly improve the performance of
MPEG2 encoder kernels. Collapsed load operations
with interpolation allow for a motion estimation
function that evaluates 17 macroblock candidates, but

only comprises 568 VLIW instructions. This low
complexity 3DRS motion estimation algorithm
accounts for roughly 25% of the overall budget of the
MPEG2 encoder (for B-frames). New multiplication
operations allow for a standard compliant
implementation of (I)DCT kernels with dual 16-bit
arithmetic. The encoder’s texture pipeline for a bi-
directionally predicted 8x8 block is performed in 358
or less VLIW instructions, through function-inlining of
the individual kernels. The optimized kernels account
for more than 90% of the overall budget of the MPEG
encoder. Using the kernel optimizations, the MPEG2
encoder can be performed in 33.5 MHz. for the
evaluated “Foreman” sequence at CIF resolution.

7. References

[1] I.E.G. Richardson, H.264 and MPEG-4 video
compression, video coding for next-generation multimedia,
Wiley, 2003.
[2] J.T.J. van Eijndhoven et al., “TriMedia CPU64
architecture“ , Proc. of the ICCD, pp. 586-592, October 1999.
[3] J.H. Kuo, C.C. Ho, K.L. Huang, J. Shiu, and J.L. Wu, “A
low-cost media-processor based real-time MPEG-4 video
decoder” , IEEE Trans. on Consumer Electronics, vol. 49, no.
4, pp. 1488-1497, November 2003.
[4] S. Rathnam, and G. Slavenburg, “An architectural
overview of the programmable multimedia processor, tm-1” ,
Proc. of the COMPCON, pp. 319-326, 1996.
[5] T. Halfhill, “Philips powers up for video” ,
Microprocessor Report, http://www.mpronline.com/,
November 2003.
 [6] G. de Haan et al., “True-motion estimation with 3-D
recursive search block matching“ , ICCE Trans. on Circuits
and Systems for Video Technology, vol. 3, pp. 368-379,
October 1993.
[7] W. Chen, C. Harrison, and S.C. Fralick, “A fast
computational algorithm for the discrete cosine transform”,
IEEE Trans. on Communications, vol. COM-25, no. 9, pp.
1004-1011, September 1977.

237204
371844 307197

746064

688594
563150 609754

480535
338702

181711 245861

70740 69512

72621 71687
37878

91681
118153 104846

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

I-frame P-frame B-frame Average

C
yc

le
s

stalls

"other"

output processing

texture pipeline

motion estimation

Figure 3. MPEG2 performance breakdown into major functions.

[8] B. Girod, and K.W. Stuhlmuller, “A content-dependent
fast DCT for low bit-rate video coding” , Proc. of the ICIP,
vol. 3, pp. 80-84, October 1998.

[9] C. Loeffler, A. Ligtenberg, and G.S. Moschytz, “Practical
fast 1-D DCT algorithm with 11 multiplications” , Proc. of
the ICASSP, pp. 988-991, May 1989.

Table 3. Some of the TM3270 new operations.
Operation DESCRIPTION

SUPER_LD32R
 rsrc3 rsrc4 -> rdest1 rdest2

Semantics: Load two 32-bit words.
Note: description is in big endian mode.

data0 = Mem[rsrc1]; data1 = Mem[rsrc1 + 1]; data2 = Mem[rsrc1 + 2]
data3 = Mem[rsrc1 + 3]; data4 = Mem[rsrc1 + 4]; data5 = Mem[rsrc1 + 5]
data6 = Mem[rsrc1 + 6]; data7 = Mem[rsrc1 + 7]
rdest1 = (data0 << 24) | (data1 << 16) | (data2 << 8) | data3
rdest2 = (data4 << 24) | (data5 << 16) | (data6 << 8) | data7

LD_FRAC8
 rsrc1 rsrc2 -> rdest1

Semantics: Collapsed load; load combined
with linear interpolation.
Note: description is in big endian mode.

data0 = Mem[rsrc1]; data1 = Mem[rsrc1 + 1]; data2 = Mem[rsrc1 + 2]
data3 = Mem[rsrc1 + 3]; data4 = Mem[rsrc1 + 4]
rdest1[31:24] = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) >> 4
rdest1[23:16] = (data1*(16-rsrc2[3:0]) + data2*rsrc2[3:0] + 8) >> 4
rdest1[15:8] = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) >> 4
rdest1[7:0] = (data3*(16-rsrc2[3:0]) + data4*rsrc2[3:0] + 8) >> 4

 LD_PACKFRAC8
 rsrc1 rsrc2 -> rdest1

Semantics: Collapsed load; load combined
with linear interpolation.
Note: description is in big endian mode.

data0 = Mem[rsrc1]; data1 = Mem[rsrc1 + 1]; data2 = Mem[rsrc1 + 2]
data3 = Mem[rsrc1 + 3]; data4 = Mem[rsrc1 + 4]; data5 = Mem[rsrc1 + 5]
data6 = Mem[rsrc1 + 6]; data7 = Mem[rsrc1 + 7]
rdest1[31:24] = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) >> 4
rdest1[23:16] = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) >> 4
rdest1[15:8] = (data4*(16-rsrc2[3:0]) + data5*rsrc2[3:0] + 8) >> 4
rdest1[7:0] = (data6*(16-rsrc2[3:0]) + data7*rsrc2[3:0] + 8) >> 4

SUPER_QUADUSCALEMIXUI
 rsrc1 rsrc2 rsrc3 rsrc4 -> rdest1

temp = rsrc1[31:24] * rsrc2[31:24] + rsrc3[31:24] * rsrc4[31:24]
rdest1[31:24] = Max (Min ((temp + 0x20) >> 6, oxff), 0)
temp = rsrc1[23:16] * rsrc2[23:16] + rsrc3[23:16] * rsrc4[23:16]
rdest1[23:16] = Max (Min ((temp + 0x20) >> 6, oxff), 0)
temp = rsrc1[15:8] * rsrc2[15:8] + rsrc3[15:8] * rsrc4[15:8]
rdest1[15:8] = Max (Min ((temp + 0x20) >> 6, 0xff), 0)
temp = rsrc1[7:0] * rsrc2[7:0] + rsrc3[7:0] * rsrc4[7:0]
rdest1[7:0] = Max (Min ((temp + 0x20) >> 6, 0xff), 0)

SUPER_USCALEFIR8UI
 rsrc1 rsrc2 rsrc3 rsrc4 -> rdest1

temp = rsrc1[31:24] * rsrc2[31:24] + rsrc1[23:16] * rsrc2[23:16]
 + rsrc1[15:8] * rsrc2[15:8] + rsrc1[7:0] * rsrc2[7:0]
 + rsrc3[31:24] * rsrc4[31:24] + rsrc3[23:16] * rsrc4[23:16]
 + rsrc3[15:8] * rsrc4[15:8] + rsrc3[7:0] * rsrc4[7:0]
rdest1 = Max (Min ((temp + 0x20) >> 6, 0xff), 0)

SUPER_IFIR8UI
 rsrc1 rsrc2 rsrc3 rsrc4 -> rdest1

rdest1 = rsrc1[31:24] * rsrc2[31:24] + rsrc1[23:16] * rscr2[23:16]
 + rsrc1[15:8] * rsrc2[15:8] + rsrc1[7:0] * rscr2[7:0]
 + rsrc3[31:24] * rsrc4[31:24] + rsrc3[23:16] * rscr4[23:16]
 + rsrc3[15:8] * rsrc4[15:8] + rsrc3[7:0] * rscr4[7:0]

SUPER_DUALISCALEMIX
 rsrc1 rsrc2 rsrc3 rsrc4 -> rdest1

temp = rsrc1[31:16] * rsrc2[31:16] + rsrc3[31:16] * rsrc4[31:16]
rdest1[31:16] = Max (Min ((temp + 0x2000) >> 14, 0x7fff), -0x8000)
temp = rsrc1[15:0] * rsrc2[15:0] + rsrc3[15:0] * rsrc4[15:0]
rdest1[15:0] = Max (Min ((temp + 0x2000) >> 14, 0x7fff), -0x8000)

SUPER_DUALIMIX
 rsrc1 rsrc2 rsrc3 rsrc4 -> rdest1 rdest 2

rdest1 = rsrc1[31:16] * rsrc2[31:16] + rsrc3[31:16] * rsrc4[31:16]
rdest2 = rsrc1[15:0] * rsrc2[15:0] + rsrc3[15:0] * rsrc4[15:0]

DUALISCALEUI_RZ
 rsrc1 rsrc2 -> rdest1

Note: “RZ” , rounding to zero.

temp = rsrc1[31:16] * rsrc2[31:16]
rounding = (rsrc2[31:16] < 0) ? 0x3fff : 0x0000; /* "towards zero" * /
rdest1[31:16] = Max (Min ((temp+rounding) >> 14, 0x7fff), - 0x8000)
temp = rsrc1[15:0] * rsrc2[15:0]
rounding = (rsrc2[15:0] < 0) ? 0x3fff : 0x0000; /* "towards zero" * /
rdest1[15:0] = Max (Min ((temp+rounding) >> 14, 0x7fff), - 0x8000)

DUALADDSUB
 rsrc1 rsrc2 -> rdest1

rdest1[31:16] = (rsrc1[31:16] == 0) ? rsrc1[31:16]
 : ((rsrc1[31:16] > 0) ? rsrc1[31:16] + rsrc2[31:16]
 : rsrc1[31:16] - rsrc2[31:16])
rdest1[15:0] = (rsrc1[15:0] == 0) ? rsrc1[15:0]
 : ((rsrc1[15:0] > 0) ? rsrc1[15:0] + rsrc2[15:0]
 : rsrc1[15:0] - rsrc2[15:0])

SUPER_DUALIMEDIAN
 rsrc1 rsrc2 rsrc3 -> rdest1;

rdest1[31:16] = Min (Max (Min (rsrc1[31:16], rsrc2[31:16]), rsrc3[31:16]),
 Max (rsrc1[31:16], rsrc2[31:16]))
rdest1[15:0] = Min (Max (Min (rsrc1[15:0], rsrc2[15:0]), rsrc3[15:0]),
 Max (rsrc1[15:0], rsrc2[15:0]))

