
The Midlifekicker Microarchitecture Evaluation Metric

Stamatis Vassiliadis
Computer Engineering

TU Delft
the Netherlands

stamatis@dutepp0.et.TUDelft.nl
http://ce.et.tudelft.nl

Leonel Sousa
Electrical and Computer Engineering

IST/INESC-ID
Lisboa, Portugal
las@inesc-id.pt

http://sips.inesc-id.pt

Georgi N. Gaydadjiev
Computer Engineering

TU Delft
the Netherlands

georgi@dutepp0.et.TUDelft.nl
http://ce.et.tudelft.nl

Abstract

We introduce the midlifekicker metric for evaluating mi-
croarchitectures mostly during the design process. We
assume a microarchitecture designed at a time T-1 and
estimate if a new microarchitecture projected for time T
has advantages over the microarchitecture designed at T-1
and remapped on the same technology at time T. We con-
sider that microarchitects minimize the product cycles per
instruction (CPI) x cycle time and estimate performance
based on CPI with a ”soft-threshold” to include cycle time
product effects. Some measurements are also reported.

Keywords: ILP, microarchitecture, pipeline.

1 Introduction

For a given architecture 1 performance improvements of
processor products are derived mainly from technology, mi-
croarchitectures, and logic design. In this paper we consider
primary microarchitectures (also called a ”design point”)
and propose a metric as a means to evaluate them. It is
well understood that architectures, technologies and logic
design techniques change (advance) on time making mi-
croarchitectures to have an ”expiration” date. The time pe-
riod spawned between the product release based on a spe-
cific microarchitecture and the product released of the same
architecture based on a completely new microarchitecture it
is called the life of a microarchitecture. In this paper, based

1We assume the original definition described for example in [3] here
and in the rest of the presentation.

on real world design experience, we address microarchitec-
ture related questions including the following:

• Is the microarchitecture to be developed better than the
previous design point?

• Can we determine if the performance due to the mi-
croarchitecture alone is improving through the years?

The approach we propose was used by one of the au-
thor’s team to estimate microarchitecture performance and
it is termed the midlifekicker metric. The name, midlife-
kicker, is the name given by designers to a microarchitec-
ture remapped to a technology other than the one originally
planned and before its life expiration.

This paper is organized as follows. Section 2 introduces
the metric and the justification for the approach. In section
3 the considered processors and the experimental setup are
presented. The CPI results experimentally obtained with the
SPEC2000 benchmark programs for the various processors
are also reported. Finally, section 4 concludes the paper.

2 The Midlifekicker Metric

To take advantage of rapid technology improvements it
is rather common in industrial practice to remap a design
before a new design is made publicly available as a product.
In the context of our discussion this means that a design is
moved to a different (newer) technology (platform) than the
one it was originally developed for. This common practice
is possible because of the following conjunctures:

• It is well known that the number of gates per chip is
increasing, consequently the design will fit to at least



the same number of chips it was originally designed
for.

• The number of I/O’s per chip is increasing implying
that the communication between chips from the old to
the new technology remapping can be easily achieved.
The bottom line is that with minor changes (e.g. if two
chips design has been merged to one then buffers may
be added to emulate the chip crossings) a microarchi-
tecture can be remapped to a newer technology.

• Remapping a design is also made possible because the
primitive functional blocks irrelevant from technology
has remained constant. The fan-in (FI), fan-out (FO)
and functions performed by digital gates in a single
stage is constant. This conjuncture may not appear
evident to novice designers as it is counter intuitive
when it is evident that the number of gates and I/O
have been improving through the years. As an evi-
dence of the conjuncture we suggest to investigate the
logic gate depth of all common building blocks such
as multipliers, adders, shifters, etc. It has not changed
much the reason being the following. Irrespective of
technology (including different families e.g. bipolar,
CMOS etc.) the FI/FO of basic blocks (single logic
stage blocks) has not be changed over the years. To
clarify, consider gate arrays, further consider bipolar
technologies used NAND and dot-AND (also known
as wired-AND) logic as basic blocks. Seldom such
technologies has NANDs FI exceeding 4 (mostly actu-
ally 3) and dot-AND of 8 (mostly 4-6). This in turn can
be easily translated to basic CMOS blocks, where FI
of a basic block in a library seldom exceed 3x8 AND-
OR-INVERT (AOI) blocks (actually mostly 3x4 AOI
blocks).

Improvements can be added to the midlifekicker as long
as the additions make the new scheduled deadlines. A no-
table example is the addition of bigger caches. The basic
microarchitecture remains however unchanged. Also mis-
takes (fixed usually with microcode or traps to software)
and some special paths are also revisited and an attempt is
made to improve them.

In this paper we assume that a design is not improved and
that there is no improvements fixing old critical paths. This
assumption is due to two factors. First of all this informa-
tion usually does not became publicly available. Second,
it is assumed that new designs have to be better than the
old designs thus new designs have to be at least as good as
unchanged old designs. In essence we assume that the nec-
essary condition for a new design to be better than the old
one is that the new design outperforms at least the old one
(without improvements) remapped in the same technology.

A final conjuncture is that the design team follows what
we term as the ”consumer choice premise”. The premiss is
described by the following:

1. Designers face constraints or limits on their choices
when designing;

2. Team preferences and knowledge determine what the
designers will chose;

3. Designers will maximize the benefit for their microar-
chitecture designs to the constrains they face.

The consumer choice model is based on the premisses
that designers are competent and have preferences. They
understand the prices they have to pay due to their choices
and they will act as consumers in the market place (they will
maximize their benefit which is assumed to be the ”best of
bread” microarchitecture).

What has been argued thus far is that an microarchitec-
ture of time T-1 can be remapped to technologies available
at time T with some (little) effort. It was also postulated (be-
cause of the consumer choice premise) that a design team
will do the best it can to develop a microarchitecture. The
implication being that design teams (given the skills and
personnel) will always do the best possible design they can.
It can be postulated then that microarchitecture designs at
time T-1 can be projected to time T and compared to de-
signs at time T under the conjuncture of having designed
the best possible microarchitecture given the constraints. It
should be noted that designers will optimize ”time per in-
struction” that is the product: cycles per instruction (CPI)
and clock cycle time (among other things) and not only the
cycle time or CPI. In evaluating this product in pipelined
designs (a primary concern of this paper) we note the fol-
lowing: pipeline delays can be divided into useful computa-
tion delay and constant overhead delay. Constant overhead
delays depend on technology and designer skills (e.g. clock
skew). Such constants can have an impact on pipeline de-
lays when the pipeline structure is changed. To exemplify,
consider a pipeline structure where an ALU executes in a
single cycle. For a given technology let the useful compu-
tation time be U and the constant overhead be C with the
ALU delay being U+C. By assuming a two pipeline stage
ALU we do not have (U+C)/2 cycle time but at best around
U/2 +C. At best because seldom we can cut a design in half
and by doing so have the critical path also sliced by half.
Computing the constant overhead delay precisely may not
be possible in advance but it can be estimated in the order of
15-20% of an single ALU cycle time. Examples in the liter-
ature exist that justify the above statement. Some examples
follow.

Numerous processor designs rely on a static CMOS logic
and edge triggered flip-flops. This reduces the available
time for useful work within each clock cycle. Usually this is
referred as flip-flop or latch overhead. In addition, real sys-
tems have imperfect clocks due to several (mostly analog
in nature) phenomena. In this paper we will lump those ef-
fects (mainly clock skew and jitter) together and term them
clock overhead. The latch and the clock overheads are as-
sumed to scale with the technology, hence the same technol-



ogy independent measure as for measuring delays is used
- the fanout-of-four (FO4). In [7] the sum of the latch,
clock skew and jitter overhead (referred as pipeline over-
head from now on) is found as 1.8 FO4. In absolute time
this is approximately 129 ps for .18µm process using the
methodology as presented in [5]. If we relate this number
to the SIA roadmap of clock frequencies assuming .18µm
CMOS technology, the total overhead is 16 % of the cycle
time (1.8 out of 11.1 FO4). This is close to our expectation
for the pipeline overhead (the constant overhead delay). To
confirm our assumption, we refer to the numbers presented
in [11]. First, the authors confirm the 125 ps pipeline over-
head using a standard design flow and .18µm technology.
Next, 90 ps overhead for a 2 GHz Pentium 4 processor is
reported using Intel custom design flow. In relation to the
500 ps (2GHz) clock cycle time, this would lead to 18 %
overhead. Kurd et. al [8] describe a Multigzahertz clocking
scheme that decreases the total skew and jitter of a 2GHz
NetBurst implementation from 129ps to 51ps. Assuming
such optimized design, the pipeline overhead becomes 10%.

Briefly stated, the performance metric proposed here as-
sumes the projection of a design at time T-1 at a technology
at time T where time T is the time of a new microarchitec-
ture design delivery. It further assumes the minimization of
the product CPI x cycle time (time per instruction) and the
factoring in this product of an estimation of constants that
will effect both old and new designs for the same technol-
ogy.

We measure the CPI ration between microarchitectures
and we vary it with a tolerance to provide some guidelines
for evaluation. We assume the number of executed instruc-
tions to be about the same for all microarchitectures.

3 Experimental setup and evaluation

A set of experiments is performed on desktop comput-
ers based on IA-32 processors using the midlifekicker de-
scribed previously. Three different microarchitectures and
pipeline depths (see table 2) were used in these experiments:

• Intel Pentium 4 processor with the NetBurst microar-
chitecture [6];

• Intel Pentium II and Celeron processors with the P6
microarchitecture [9, 4] ;

• AMD Athlon processor with the K7 microarchitec-
ture [2].

As stated above, two different processors with the P6 mi-
croarchitecture were considered for our experiments. How-
ever, the CPI for the Pentium Celeron is not directly com-
parable with the other processors since it was specifically
designed as a low cost processor. It does not fulfill the as-
sumption of a well balanced design, since the internal data
cache capacity has been intentionally reduced to lower the

(a) NetBurst (b) P6 (c) K7
Processor Pentium 4 Pentium II Athlon
Frequency 2400 MHz 350 MHz 700 MHz

Physical memory 256 MB 256 MB 128 MB
gcc version 2.96 & 3.2.2 2.96 3.2
g++ version 2.96 & 3.2.2 2.96 3.2
g77 version 3.2.2 2.96 3.2

Red Hat release 9.0 − 8.0
Linux Kernel ver. 2.4.18-27.8.0 patched with perfctr 2.4.5

Table 1. Microarchitectures and compilers

cost. Our experiments confirmed the importance of the mul-
tilevel cache system for the processor’s efficiency [10]. This
was done by sampling events related to memory accesses
on Celeron and Pentium II processors. The Celeron results,
however, are not considered as part of the discussion to fol-
low and will not be reported in this paper.

To compare the performance of the considered microar-
chitectures, the CPI was experimentally measured by us-
ing the SPEC2000 integer and floating point benchmarks.
Each of the analyzed microarchitecture implementations
have dedicated on-chip hardware for performance moni-
toring, which can be used to obtain statistics about a va-
riety of performance events [12]. In addition to the num-
ber of cycles and executed instructions, more data is col-
lected by counting several events, such as: cache misses,
branch miss-prediction and floating point operations. The
Performance Programming Interface (PAPI) tool (version
2.3.4.3) [1] was used to configure these event detectors and
counters and to collect the data.

The work stations that were used in the experiments ran
Red Hat (RH) Linux operating system. The benchmarks
were compiled with the gcc, g++ and g77 compilers from
GNU, using the “-O3 “ optimization level. The main char-
acteristics of computers and compilers can be found in ta-
ble 1. The benchmarks were applied with the standard
“test” input sets from the SPEC distribution. Several in-
dependent runs were made for each benchmark in each ma-
chine. The complete SPECint suite was used and all the
SPECfp benchmarks, except for the Fortran 90, were also
applied.

Table 2 presents the number of pipeline stages required
to perform some relevant operations on the considered mi-
croarchitectures. The frequency ratio of about 1.5 referred
in [6] for NetBurst and P6 can be used as a starting point
for relating the critical paths. This is exactly the achieved
value if the integer ALU is considered to be the critical path
and the clock overhead, due to latch delay, clock skew and
jitter, is ignored. Since the critical path is unknown, simi-
lar approach can be applied in respect to the floating point
functional units. The following frequency ratios can be as-
sumed for the NetBurst based processor by using the P6 and
K7 microarchitectures as reference:

1.4(FPM) < 1.5(ALU) < 1.67(FPA) for P6

1.25(FPA) < 1.5(ALU) < 1.75(FPM) for K7



where, FPA and FPM are floating point adder and floating
point multiplier pipeline stage ratios (see table 2). For sim-
plicity, we base our considerations around the 1.5 frequency
ratio. It is interesting to notice that this central ratio does not
only directly correspond to the ALU but it is also the aver-
age value for the FPA and FPM. In addition, we assume
that K7 and P6 clock architectures and ALU designs per-
form similarly. We understand that such assumption is not
in favor of the aggressive AMD design, e.g. K6 uses Partovi
pulsed latches, however it is considered as a good approxi-
mation for our study.

Based on the clock overhead percentages as introduced
earlier, and in case it is assumed that all microarchitec-
tures are implemented on the same silicon technology, e.g.
.18µm, the frequency of the NetBurst will be somewhere
between fl = 1.275 and fh = 1.725 times greater than P6
and K7. This corresponds to a tolerance of approximately
±15% around the average value of 1.5 times. In case one of
the clock system architectures is highly optimized this dif-
ference may become ±20%, e.g. fl = 1.2 and fh = 1.8
respectively. Those four frequency ratios are used to setup
the upper and lower bounds for the relative CPI from which
it can be clearly stated the performance of one microarchi-
tecture is better than the other:



CPINetBurst
CPIP6,K7

≤ 1.2 NetBurst performs better

1.2 < CPINetBurst
CPIP6,K7

≤ 1.275 NetBurst probably better

1.275 < CPINetBurst
CPIP6,K7

< 1.725 none is better

1.725 ≤ CPINetBurst
CPIP6,K7

< 1.8 P6, K7 probably better
CPINetBurst

CPIP6,K7
≥ 1.8 P6, K7 perform better

(1)

Microarchitecture NetBurst P6 K7
integer ALU 1.5 1 1

FP adder (FPA) 5 3 4
FP multiplier (FPM) 7 5 4

Fetch → Retirement 20 13 a/14 b 11

athe reservation station write and dispatch can usually be performed in only
2 (vs 3) cycles.

boften it is said that P6 has 10 pipeline stages, since after 10 cycles the
results are available for other instructions to use (before the instruction that
generated them retires).

Table 2. Number of pipeline stages.

The experimentally obtained CPI for the integer bench-
marks are presented in tables 3 and 4 and illustrated in fig-
ures 1 to 3. These tables provide different results for the
NetBurst due to the two different compiler versions used on
the P6 and K7 based machines. In this way, similar com-
piler versions are used for each comparison.

For the SPECint benchmarks, the NetBurst/P6 CPI ra-
tio is equal or bellow 1.2 for five of the benchmarks. For
the remaining seven benchmarks (more than half of the to-
tal number), the relative CPI is between 1.275 and 1.725.
These results show that by using SPECint benchmarks it

NetBurst P6 NetBurst/P6
Processor Pentium 4 Pentium II −

Bzip2 2.37 1.4 1.69
Crafty 1.52 1.35 1.13
Eon 1.85 1.26 1.46
Gap 1.82 1.32 1.38
Gcc 1.75 1.74 1
Gzip 1.3 1.2 1.09
Mcf 3.8 2.3 1.65

Parser 1.47 1.31 1.12
Perlbmk 2.27 1.55 1.47

Twolf 2.31 1.63 1.41
Vortex 1.35 1.23 1.1

Vpr 1.93 1.4 1.38

Table 3. SPECint CPI results (gcc/g++ 2.96)

0,500
0,600
0,700

0,800
0,900
1,000
1,100
1,200

1,300
1,400

1,500
1,600
1,700

1,800

Bzip2 Crafty Eon Gap Gcc Gzip Mcf Parser Perlbmk Twolf Vortex Vpr
CINT2000

1,275

1,725

+15% +20%

-15% -20%

Figure 1. NetBurst/P6 SPECint CPI ratio

can not be clearly stated which of the microarchitectures
exhibits a better performance. If all the uncertainty results
are considered on the side of the older P6 microarchitecture,
the latter exhibits better performance than the NetBurst for
approximately 60% of the benchmarks.

0,500

0,600
0,700

0,800
0,900

1,000

1,100
1,200

1,300

1,400
1,500

1,600
1,700

1,800

CINT2000
Bzip2 Crafty Eon Gap Gcc Gzip Mcf Parser Perlbmk Twolf Vortex Vpr

1,275

1,725

+15% +20%

-15% -20%

Figure 2. NetBurst/K7 SPECint CPI ratio

The CPI results for the NetBurst and K7 microarchitec-
tures are presented in table 4 and illustrated in fig. 2. In this
case, the CPI of the NetBurst is equal or bellow 1.2 for only
three benchmarks. Two other benchmarks are in the uncer-
tain region between 1.2 and 1.275. For the remaining seven
benchmarks, the relative CPI is in the ”no improvement” re-
gion (1.275 and 1.725). Moreover it should be noticed that
two out of the three CPI results bellow 1.275 are close to
the lower limit for the CPI relations defined in expression 1.



NetBurst K7 NetBurst/K7
Processor Pentium 4 Athlon −

Bzip2 1.78 1.2 1.49
Crafty 1.48 0.97 1.52
Eon 1.9 1.14 1.67
Gap 1.82 1.38 1.31
Gcc 1.75 1.44 1.22
Gzip 1.33 1.13 1.18
Mcf 3.76 3.28 1.15

Parser 1.38 1.33 1.04
Perlbmk 2.2 1.43 1.53

Twolf 2.13 1.6 1.33
Vortex 1.41 1.12 1.26

Vpr 1.73 1.3 1.33

Table 4. SPECint CPI results (gcc/g++ 3.2.X)

These results where obtained using a slightly older compiler
version on the K7 based computer (see table 1).

In fig. 3, the CPI of the P6 and K7 microarchitectures
are compared. The CPI values were normalized by using
the results for the two compiler versions for the NetBurst.
It can be seen that for exactly half of the SPECint programs
the CPI of the K7 is smaller than the CPI of the P6. On
average, the CPI of the K7 is slightly lower than the CPI of
the P6 (please mind the K7 cycle time assumption in this
paper).

0,50

0,60

0,70

0,80

0,90

1,00

1,10

1,20

1,30

1,40

1,50

Bzip2 Crafty Eon Gap Gcc Gzip Mcf Parser Perlbmk Twolf Vortex Vpr

CINT2000

0,85

1,15
+15
%

+20
%

-15%
-20%

Figure 3. K7/P6 SPECint CPI ratios

The experimentally obtained CPI for the 3 microarchi-
tectures with the floating point benchmarks (SPECfp) are
presented in tables 5 and 6 and illustrated in figures 4 and 6.
As for the integer benchmarks, the two versions of the C
compiler were used on the NetBurst powered computer.
Unfortunately, one unique Fortran77 compiler version is not
available for both the NetBurst and P6. This puts the P6 mi-
croarchitecture in a disadvantageous position. For the six-
track benchmark compiled with the g77 3.2.X versions, the
output data does not conform with the expected output, and
therefore the CPI could not be considered in the compari-
son.

The ratio between the CPI obtained with the NetBurst
microarchitecture and the CPI obtained with the P6 in two
of the nine considered benchmarks is much above 1.8 times.

NetBurst P6 NetBurst/P6
Processor Pentium 4 Pentium II −
wupwise a 0.99 0.97 1.02

swim a 4.5 2.84 1.59
mgrid a 1.65 1.99 0.83
applu a 1.79 1.54 1.16
apsi a 1.84 1.5 1.22

art 9.77 4.36 2.24
equake 2.1 1.8 1.17
ammp 5.39 2.44 2.21
mesa 1.86 1.35 1.37

aFortran- g77 2.96 on Pentium II and g77 3.2.2 on Pentium 4

Table 5. SPECfp CPI results (NetBurst and P6)

0,500

0,700

0,900

1,100

1,300

1,500

1,700

1,900

2,100

2,300

Wupwise Swim Mgrid Applu Apsi Art Equake Ammp Mesa
CFP2000

1,800

1,200

1,725

1,275

+15% +20%

-15% -20%

Figure 4. NetBurst/P6 SPECfp CPI ratios

For two other benchmark programs, this relationship is be-
tween 1.275 and 1.725 (none is better), while apsi is in the
”NetBurst can be made better” region (1.2 - 1.275). The re-
maining four benchmark programs lead to values bellow 1.2
and for those it can be clearly stated that NetBurst performs
better than P6. These results are more favorable to the Net-
Burst microarchitecture than those obtained with SPECint
programs. However, it should be mentioned that four values
from the set of results below 1.2 have been obtained with
Fortran programs and a more recent version of the Fortran
compiler was used on the NetBurst powered computer (see
table 5). In case only the C benchmark programs are consid-
ered, just one is bellow 1.2, one other is in the non-defined
area and the remaining two benchmark programs are above
1.8.

In what concerns the K7 microarchitecture, the NetBurst
to K7 CPI ratio is greater than 1.725 (K7 may be better)for
one of the nine considered benchmarks. The majority of the
benchmarks (five) produce values in the uncertainty area.
The CPI ratio for the remaining 3 benchmarks is bellow the
1.2 threshold value. It can also be observed in figures 4
and 5 that the CPI ratio is much more balanced over the
different benchmarks for the K7 than for the P6. By com-



NetBurst K7 NetBurst/K7
Processor Pentium 4 Athlon −
wupwise a 0.99 0.92 1.07

swim a 4.5 3.06 1.47
mgrid a 1.65 2.06 0.8
applu a 1.79 1.32 1.36
apsi a 1.84 1.3 1.41

art 11.3 6.98 1.62
equake 2.19 2.22 0.99
ammp 4.9 2.77 1.77
mesa 1.54 1.13 1.37

aFortran- g77 3.2.2 on Pentium 4 and g77 3.2 on Athlon

Table 6. SPECfp CPI results (NetBurst and K7)

0,500

0,600

0,700

0,800

0,900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

1,700

1,800

Wupwise Swim Mgrid Applu Apsi Art Equake Ammp Mesa

CFP2000

1,275

1,725

+15%
+20%

-15%
-20%

Figure 5. NetBurst/K7 SPECfp CPI ratios

puting the average and the standard deviation values (ta-
bles 5 and 6) it can be concluded that the average CPI ratio
is slightly smaller for the K7 (1.42 against 1.32) and the
standard deviation is considerably lower for this microar-
chitecture (0.1) compared to (0.17) for P6. This last dif-
ference is probably due to the different number of cycles
required for computing the two basic floating point opera-
tions in P6 (see table 2).

These CPI results show that different but balanced de-
sign points were achieved for all analyzed processors.
None of the processors shows a clear superiority in per-
formance against the others. Therefore, the claimed im-
provement on performance for the most recent processors
does not arise from a real step forward in the pipeline struc-
ture/microarchitecture but mainly due to advances in the
technology.

4 Conclusions

The paper has introduced the midlifekicker metric to es-
timate the performance of microarchitectures. It has been
argued that designs at time period T-1 can be projected to

0,50

0,60

0,70

0,80

0,90

1,00

1,10

1,20

1,30

1,40

1,50

Wupwise Swim Mgrid Applu Apsi Art Equake Ammp Mesa

CFP2000

+15% +20%

-15% -20%

0,85

1,15

Figure 6. P6/K7 SPECfp CPI ratios

time T and that the estimation of the product CPI x cycle
time can be established as a CPI soft threshold taking into
account constant and useful computation delays. Numer-
ous experiments have also been presented. We note that the
midlifekicker is an estimation methodology thus it provides
approximations (as most estimators) not certainties.

References

[1] Papi. http://icl.cs.utk.edu/projects/papi.
[2] AMD. Athlon Processor x86 Code Optimization: Processor

Microarchitecture (App A) and Pipeline and Execution Unit
Resource Overview (App. B), September 2000.

[3] G. Blaauw and F. Brooks Jr. Computer Architecture.
Addison-Wesley, One Jacob Way, 1997.

[4] R. Colwell and R. Steck. A 0.6 micron bicmos processor
with dynamic execution. In Proc. IEEE Int. Solid-state Cir-
cuits Conf., 1994.

[5] D. Haris. Skew-Tolerant Circuit Design. Morgan Kaufman,
340 Pine Street, SF, 2001.

[6] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyler, and P. Roussel. The microarchitecture of the pen-
tium 4 processor. Intel Technology Journal, Q1 2001.

[7] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W.
Keckler, and P. Shivakumar. The optimum logic depth per
pipeline stage is 6 to 8 FO4 inverter delays. In Proc. of the
29th Annual International Symposium on Computer Archi-
tecture, pages 14–24, 2002.

[8] N. Kurd, J. Barkatullah, R. Dizon, T. Fletcher, and P. Mad-
land. Multi-ghz clocking scheme for intel(r) pentium(r) 4
microprocessor. In Proc. of the International Solid-state Cir-
cuits Conference, pages 404–405, 2001.

[9] J. Shen and M. Lipasti. Modern Processor Design: Funda-
mentals of Superscalar Processors. McGraw-Hill, 1st edi-
tion, 2003.

[10] L. Sousa, S. Vassiliadis, and G. Gaydadjiev. Experimental
Characterization of IA-32 Microarchitectures. Technical re-
port, Computer Engineering, TU Delft, 2004.

[11] E. Sprangle and D. Carmean. Increasing processor perfor-
mance by implementing deeper pipelines. In Proc. of the
29th Annual International Symposium on Computer Archi-
tecture, pages 25–34, 2002.

[12] B. Sprunt. The basis of performance-monitoring hardware.
IEEE Micro, pages 64–71, July 2002.


