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Abstract. Little research in compiler optimizations has been undertaken to elim-
inate or diminish the negative influence on performance of the huge reconfigura-
tion latency of the available FPGA platforms. In this paper, we propose an in-
terprocedural optimization that minimizes the number of executed hardware con-
figuration instructions taking into account constraints such as the ”FPGA-area
placement conflicts” between the available hardware configurations. The pro-
posed algorithm allows the anticipation of hardware configuration instructions
up to the application’s main procedure. The presented results show that our opti-
mization produces a reduction of up to 3 - 5 order of magnitude of the number of
executed hardware configuration instructions.

1 Introduction

The combination of a general purpose processor (GPP) and a Field Programmable Gate
Array (FPGA) is becoming increasingly popular (e.g. [1], [2], [3], [4], [5] and [6]). Re-
configurable computing (RC) is a new style of computer architecture which allows the
designer to combine the advantages of both hardware (speed) and software (flexibil-
ity). However, an important drawback of the RC paradigm is the huge reconfiguration
latency of the actual FPGA platforms. As presented in [7], the potential speedup of
the kernel hardware executions can be completely wasted by the repetitive hardware
configurations that produce a performance decrease of up to 2 order of magnitude.

When targeting reconfigurable architectures, the compiler should be aware of the
competition for the reconfigurable hardware resources (FPGA area) between multiple
hardware operations during the application execution time. A new type of conflict -
called in this paper ”FPGA area placement conflict” - emerges between two hardware
configurations that cannot coexist together on the target FPGA.

In this paper, we propose an interprocedural optimization that anticipates hardware
configuration instructions up to the application’s main procedure. The optimization
takes into account constraints such as the ”FPGA-area placement conflicts” between
the available hardware configurations. The presented results show that a reduction of
up to 3 - 5 order of magnitude of the number of executed hardware configuration in-
structions is expected for MPEG2 and M-JPEG multimedia applications.

This paper is organized as follows. Section 2 presents background information and
related work for compiler optimizations targeting dynamic hardware configuration in-
structions, followed by a motivational example in Section 3. The proposed interproce-
dural optimization algorithm is introduced in Section 4. Experimental results for two



multimedia applications are provided in Section 5, and Section 6 presents the conclud-
ing remarks.

2 Background and Related Work

In this paper, we assume the Molen programming paradigm ([8], [9])which is a sequen-
tial consistency paradigm for programming Field-Programmable Custom Computing
Machines(FCCMs) possibly including a general purpose computational engine(s). The
paradigm allows for parallel and concurrent hardware execution and is intended (cur-
rently) for single program execution. It requires only a one time architectural extension
of few instructions to provide a large user reconfigurable operation space. The added
instructions include SET < address > for reconfigurable hardware configuration and
EXECUTE < address > for controlling the executions of the operations on the recon-
figurable hardware. In addition, two MOVE instructions for passing values to and from
the GPP register file and the reconfigurable hardware are required.

In order to achieve significant performance improvement for real applications, more
operations are usually executed on the reconfigurable hardware. As the available area of
the reconfigurable platforms is limited, the coexistence of all hardware configurations
on the FPGA for all application execution time may be restricted, resulting in ”FPGA-
area placement conflicts”. Two hardware operations have an ”FPGA-area placement
conflict” (or just conflict in the rest of the paper) if i) their combined reconfigurable
hardware area is larger than the total FPGA area or ii) the intersection of their hardware
areas is not empty.

Several aproaches have been proposed for reducing the impact of the reconfigu-
ration latency on performance. A compiler approach that considers the restricted case
of two consecutive and non-conflicting hardware operations is presented in [10]. In
this approach, the hardware execution of the first operation is scheduled in parallel
with the hardware configuration of the second operation. Our approach is more general
as it performs scheduling for any number of hardware operations at procedural level
and not only for two consecutive hardware operations. The performance gain produced
by our scheduling algorithm results from reducing the number of performed hardware
configurations. In [11], the reconfiguration overhead is reduced by using manual inter-
procedural optimizations such as localizing memory accesses, partial hardware reuse
and pipeling. Our approach is different as the optimization is automatically applied in
the compilation phase and it minimizes the number of performed hardware configura-
tions without specific information about the target FPGA and hardware operations. The
instruction scheduling approach presented in [12] uses data-flow analyses and profile
information for reducing the number of executed hardware configurations. In this paper,
we extend this approach at interprocedural level, taking into account all procedures of
the target applications. As a consequence, the impact of the proposed optimization is
significantly increased as presented in Section 5.
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Fig. 1. Motivational example for MPEG2 encoder

3 Motivation and Contribution

In order to illustrate the goals and the main features of the proposed interprocedural
optimization, we present in Figure 1 a motivational real example. The presented sub-
graph is included in the call graph of the MPEG2 encoder multimedia benchmark where
an edge < pi, p j > represents a call from procedure pi to procedure p j. We consider
that the procedures SAD, DCT and IDCT are executed on the reconfigurable hardware
and that initially the hardware configuration (a SET instruction) is performed before
each hardware execution (an EXEC instruction). One first observation is that the con-
figuration for the SAD operation can be safely anticipated in the motion estimation
procedure. This anticipation will significantly reduce the number of performed hard-
ware configurations as it will not be performed for each macroblock but only for each
frame of the input sequence. This observation also holds for the DCT configuration in
transform and the IDCT configuration in itransform. Moreover, the SAD configura-
tion from motion estimation can be moved upwards in the putseq procedure, imme-
diately preceding the call site of motion estimation in putseq. Additionally, it can be
noticed that the propagation of the SAD configuration from putseq to the main proce-
dure depends on the FPGA area allocation for SAD, DCT and IDCT. When the SAD
operation does not have any FPGA-area placement conflict with the other two hardware
operations DCT and IDCT, its configuration can be safely performed only once, at the
entry point in the main procedure.

The contribution of this paper includes the following. The optimization proposed
in this paper allows to anticipate the hardware configurations at interprocedural level,
while prior work was limited to optimizations at procedural level (intraprocedural).



Secondly, although the interprocedural optimizations are considered to provide little
benefit and significantly increase the compiler complexity, we show that our optimiza-
tion significantly reduces the number of hardware configurations (a major drawback of
the current FPGAs).

4 Interprocedural Optimization for Dynamic Hardware
Configurations

The main goal of the proposed interprocedural optimization presented in this section is
to anticipate the dynamic hardware configuration instructions taking into account the
hardware conflicts between the available hardware operations. As such hardware con-
figuration does not cause an exception, a speculative algorithm is used for anticipating
the hardware configuration instructions. The interprocedural optimization consists of
three steps. In the first step, the program’s call graph is constructed based on an inter-
procedural control-flow analysis. Next, the set of live hardware configurations for each
procedure is determined using an interprocedural data-flow analysis. Finally, the hard-
ware configuration instructions are anticipated in the call graph taking into account the
available conflicting operations.

Interprocedural Optimization Algorithm

INPUT: Call graph G =< N,S,r >, hardware conflicts f : HW xHW− > {0,1}
OUTPUT: Insertion edges L
1. //Verify assumptions for G

check if G is DAG

2. //RMOD computation
traverse G in reverse topological order

compute for each procedure p
RMOD(p) = LRMOD(p)

S

s∈Succ(p)
RMOD(s)

//Compute CF
for each procedure p

CF(p) = {op1 ∈ RMOD(p)|∃op2 ∈ RMOD(p),op1 = op2}
3. //Compute the insertion edges

L = /0
for each edge < pi, p j >

for each op ∈ [RMOD(p j)−CF(p j)]∩CF(pi)
L = L∪< pi, p j,op >

for each op ∈ [RMOD(r)−CF(r)]
L = L∪< r,r,op >

Table 1. The interprocedural optimization algorithm for hardware configuration instructions



4.1 Step 1: Interprocedural Control-Flow Analysis for Dynamic Hardware
Configurations

Starting point of the proposed optimization is the construction of the program’s call
graph. Given a program P consisting of a set of procedures < p1, p2, ..., pn >, the pro-
gram’s call graph of P is the graph G =< N,E,r > with the node set N = {p1, p2, ..., pn},
the set E ⊆N x N, where < pi, p j >∈ E denotes a call site in pi from which p j is called,
and the distinguished entry node r ∈ N representing the main entry procedure of the
program . An example of a real call (sub)graph is presented in Figure 1.

The construction of the call graph for a program written in C is straightforward as
there are no higher-order procedures in the C programming language. For this purpose,
we used the sbrowser cg library included in the suifbrowser package available in the
SUIF environment. The constructed call graph is the input of the optimization algo-
rithm presented in Table 1. As explained in the next subsection, the constructed graph
is required to be a DAG (Directed Acyclic Graph) (see Table 1, step 1).

4.2 Step 2: Interprocedural Data-Flow Analysis for Dynamic Hardware
Configurations

The goal of the interprocedural data-flow analysis is to determine what hardware oper-
ation can modify the FPGA configuration as a side effect of a procedure call. We define
LRMOD(p) (Local Reconfigurable hardware MODification) as the set of hardware op-
erations associated with a procedure p. In order to simplify this discussion, we assume
that there is at most one hardware operation that can be associated with a procedure.
More specifically, op1 ∈ LRMOD(p) if there is a pragma annotation that indicates that
procedure p is executed on the reconfigurable hardware and its associated hardware op-
eration is named op1. RMOD(p), Reconfigurable hardware MODification, represents
the set of all hardware operations that may be executed by an invocation of procedure
p and it can be computed using the following data-flow equation:

RMOD(p) = LRMOD(p)
[

s∈Succ(p)

RMOD(s) (1)

A hardware operation op may be performed by calling procedure p if op is associ-
ated with procedure p (i.e. op ∈ LRMOD(p)) or if it can be performed by a procedure
that is called from procedure p. For an efficient computation, the RMOD values should
be computed in reverse topological order (i.e. reverse invocation order) when the call
graph does not contain cycles (see step 2 from Table 1). The RMOD values for the
example presented in Figure 1 are shown in Figure 2. For the basic blocks where LR-
MOD values are missing, they are implicitly assumed as /0. We notice that by calling
putseq procedures, all three hardware operations sad,dct and idct may be executed on
the reconfigurable hardware.

Due to the increasing complexity of the interprocedural data-flow analysis, this step
is performed only when the call graph G satisfies the following criteria. We assume that
there are no indirect procedure calls (using pointer to functions). These limitations can
be eliminated by considering all candidate set of functions that have the same prototype.
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Fig. 2. Interprocedural data-flow analysis for MPEG2 encoder

Another limitation concerns the data-flow equations for procedures with recursive pro-
cedure calls (when the call graph contains cycles). In this case, the strongly connected
components (scc) should be computed and the data-flow equations should be collapsed
for each scc into a single equation. The proposed optimization is applied only when the
call graph is a DAG.

4.3 Step 3: Interprocedural Scheduling for Dynamic Hardware Configuration
Instructions

In this step, the hardware configuration instructions are anticipated in the call graph
taking into account the possible hardware conflicts discovered in the previous step. In
the first phase, the set of conflicting operations CF(p) is computed for each procedure
included in the call graph based on the RMOD values as follows:

CF(p) = {op1 ∈ RMOD(p)|∃op2 ∈ RMOD(p),op1 = op2} (2)

Next, for each edge of the call graph < pi, p j >, if there is an hardware operation
op which does not have conflicts in p j (op 6∈ CF(p j)) but it has conflicts in the call-
ing function pi (op ∈ CF(pi)), then a SET op instruction is inserted at all call sites
of p j from pi. Finally, for all non-conflicting operations of the entry node of the call
graph G (i.e. RMOD(r)−CF(r)), the corresponding SET instructions are inserted at
the beginning of the r procedure (see step 3 from Table 1).

The CF values for the example presented in Figure 1 are shown in Figure 3, for the
case where all considered hardware operations conflict with each other. For the basic



blocks where CF values are missing they are implicitly assumed as /0. It can be noticed
that the hardware configuration instructions cannot simultaneously propagate upwards
of putseq procedure due to the considered hardware conflicts.
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Fig. 3. Interprocedural optimization for MPEG2 encoder

5 Results

In order to present the results of our algorithm with respect to the number of performed
hardware configurations, we first describe the experimental setup, including the target
architecture and applications. Next, we concentrate on the impact of the optimization
on the number of hardware configurations. Finally we present several important ob-
servations about the presented results and possible improvements of the optimization
algorithm.

5.1 Experimental Setup

The application domain of these experiments is video data compressing. We consider
two real-life applications namely Motion JPEG (M-JPEG) encoder which compresses
sequences of video frames applying JPEG compression for each frame and the MPEG2
encoder multimedia benchmark. The input test sequence for M-JPEG contains 30 color
frames from ”tennis” in YUV format with a resolution of 256x256 pixels. For MPEG2
encoder, we used the standard test frames included in the benchmark. The operations



considered for execution on the FPGA for the M-JPEG applications are DCT (2-D
Discrete Cosine Transform), Quantization and VLC (Variable Length Coding), while
for MPEG2 the candidates are SAD (Sum of Absolute-Difference), DCT and IDCT
(inverse DCT).

The described optimization algorithm has been implemented in the Molen com-
piler, more specifically in the SUIF compiler frontend. We used the link suif pass that
combines all input SUIF files, making their global symbol tables consistent and the
sbrowser cg library included in the suifbrowser package available in the SUIF environ-
ment for the construction of the interprocedural call graph. The call graph for the M-
JPEG encoder includes 47 nodes (i.e. the applications contains 47 procedures), while
the call graph for MPEG2 encoder (a subgraph is presented in Figure 1) has 111 nodes.

5.2 Interprocedural Optimization Results

The aim of the proposed optimization is to significantly reduce the number of the exe-
cuted SET instructions for each hardware operation. In the results presented in the rest
of this section, we compare the number of executed hardware configurations with and
without our optimization (denoted as SET OPT and respectively NO SET OP cases).

M-JPEG Encoder Results Table 2 shows the number of hardware configurations
required in the M-JPEG encoder multimedia application for the SET OPT (columns
3-7) and NO SET OPT (column 2) cases. When measuring the effects of the proposed
optimization (Table 2, columns 3-7), we consider different possible conflicts between
DCT, Quant and VLC; in the best case there is no conflict (column 3), while in the
worst case all hardware operations are in conflict with each other (column 7). The first
observation is that, for the no conflict case, our optimization algorithm eliminates all
hardware configurations and introduces at the application entry point only one hardware
configuration for each hardware operation; thus, all the hardware configurations but one
from the initial application (Table 2, column 2) are redundant. A second observation
is that our optimization reduces the number of DCT hardware configurations with at
least 75 % for all conflict cases. Finally, we notice that even for the worst case (Table 2,
columns 7), the proposed optimization reduces the number of executed SET instructions
for DCT configuration by 4x. This reduction is due to the anticipation of DCT hardware
configuration at the macroblock level, while the configurations for Quant and VLC are
already performed at this level and cannot be anticipated upwards due to the hardware
conflicts.

MPEG2 Encoder Results The number of hardware configurations for the consid-
ered functions in the MPEG2 encoder benchmark is presented in Figure 3. One im-
portant observation is the 3-5 order of magnitude decrease of the number of hardware
configurations produced by our optimization algorithm for all conflict cases. The main
cause of this decrease is the particular features of the MPEG2 algorithm where the
SAD, DCT and IDCT hardware configurations can be anticipated out to the frame level
rather than macroblock level (see Figure 3). In consequence, due to our optimization
algorithm, the hardware configuration is transformed from a major bottleneck in a neg-
ligible factor on performance.

In order to conclude this section, four points should be noticed regarding the pre-
sented results and optimization. Firstly, the reduction of the number of hardware con-



Initial With interprocedural SET optimization
HW op [# SETs] No DCT Quant DCT VLC Quant VLC DCT Quant VLC

conflict conflict conflict conflict conflict
DCT 61440 1 15360 15360 1 15360
Quant 15360 1 15360 1 15360 15360
VLC 15360 1 1 15360 15360 15360

Table 2. The impact of the interprocedural optimization on the number of required hardware
configurations in M-JPEG encoder

Initial With interprocedural SET optimization
HW op [# SETs] No SAD DCT SAD IDCT DCT IDCT SAD DCT IDCT

conflict conflict conflict conflict conflict
SAD 117084 1 3 3 1 3
DCT 1152 1 3 1 3 3
IDCT 1152 1 1 3 3 3

Table 3. The impact of the interprocedural optimization on the number of required hardware
configurations in MPEG2 encoder

figurations depends on the characteristics of the target applications. As previously pre-
sented, the impact of our optimizations for MPEG2 encoder is substantial, while for
other applications (e.g. M-JPEG) it depends on the possible hardware conflicts between
operations. Second, it should be mentioned that this optimization can also increase
the number of hardware configurations, e.g. when the considered procedure associated
to the hardware operations have multiple call sites and conflicting operations. Flow-
sensitive data-flow analysis and profile information can be used to prevent this situation.
Nevertheless, taking into account that the hardware configuration can be performed in
parallel with the execution of other instructions on the GPP, the reconfiguration latency
may be (partially) hidden. The final major point is that a significant reduction of the
number of executed hardware configurations is directly reflected in a significant reduc-
tion in power consumption, as the FPGA reconfigurations is a main source of power
consumption.

6 Conclusions

In this paper, we have proposed an interprocedural optimization algorithm for hardware
configuration instructions. This algorithm takes into account specific features of the
target applications and of the reconfigurable hardware such as the ”FPGA area place-
ment conflicts”. It allows the anticipation of hardware configuration instructions up to
the application’s main procedure. The presented results show that our optimization pro-
duces a reduction of up to 3 - 5 order of magnitude of the number of executed hardware
configuration instructions for the MPEG2 and M-JPEG multimedia benchmarks.

Future research will focus on compiler optimizations to allow for concurrent execu-
tion. We also intend to extend the compiler to provide information for an efficient FPGA



area allocation of the different hardware operations in order to eliminate the FPGA-area
placement conflicts.
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