Reconfigurable Multiple Operation Array

Humberto Calderon and Stamatis Vassiliadis

Computer Engineering Laboratory,
Electrical Engineering Dept., EEMCS, TU Delft, The Netherlands
Email:{H.Calderon,S.Vassiliadis}@ewi.tudelft.nl,
WWW home page: http://ce.et.tudelft.nl

Abstract. In this paper, we investigate the collapsing of eight multi-
operand addition related operations into a single and common (3:2)counter
array. We consider for this unit multiplication in integer and fractional
representations, the Sum of Absolute Differences (SAD) in unsigned,
signed magnitude and two’s complement notation. Furthermore, the unit
also incorporates a Multiply-Accumulation unit (MAC) for two’s com-
plement notation. The proposed multiple operation unit was constructed
around 10 element arrays that can be reduced using well known counter
techniques, which are feed with the necessary data to perform the pro-
posed eight operations. It is estimated that 6/8 of the basic (3:2)counter
array is shared by the operations. The obtained results of the presented
unit indicates that is capable of processing a 4x4 SAD macro-block in
36.35 ns and takes 30.43 ns to process the rest of the operations using a
VIRTEX II PRO xc2vpl00-7ff1696 FPGA device.

1 Introduction: The need for reconfigurability

The need of multimedia Instruction Set Architectures (ISA) extensions with high
performance processing and flexibility characteristics are potentially met with
the use of reconfigurable technologies|[7]. The new emerging capabilities in Re-
configurable Computing (RC) are letting us to dynamically reconfigure a portion
of a FPGA. Reconfigurable fabrics can be used to support a common and basic
logic blocks intended to be used in several operand addition related operations.
The common blocks can be configured in advance; therefore, the hardware differ-
ences needed for performing a particular operation will be reconfigured partially
based on the hardware differences between the common basic array and the new
needed functionalities, instead of programming totally the new entire desired op-
eration [10]. This work presents the collapsing of eight multi-operand addition
related operations into the common hardware suitable to be implemented into a
VLSI as a run time configurable unit and also over a reconfigurable technology
as a reconfigurable run time unit. The multiple operation array has the following
embedded units and features:

— A 16 x 16 bit multiplier for integer and fractional representations with uni-

versal notations !.

! Universal notation, in the context of this article, assumes operands and results to
be in unsigned, sign magnitude and two’s complement notations

— A 4 x 4 picture elements concurrent SAD macro-block in universal notation.

— The Multiply-Accumulation Unit (MAC) for two’s complement notation.

— A performance of 35.6 ns for 4x4 SAD macro-block and 30.43 ns for the rest
of 7 operations.

The paper is organized as follows. Section 2 outlines the Reconfigurable Mul-
tiple Operation Array organization. Section 3 presents the experimental results
of the mapped unit, as well as other comparison units in terms of area used and
time delay. Finally, the article is concluded in section 4.

2 Reconfigurable Multiple Operation Array

This section begins presenting a background and relevant work; consequently, a
general array description of the Reconfigurable Multiple Operation Array is de-
scribed. Finally, a complete description of the equations set for the construction
and reproduction of the proposed unit are shown.

2.1 Background and related work

Motion estimation techniques divide an image frame for its processing in macro-
blocks of n * n picture elements (pels). The processing establishes if there is
a difference between two image blocks using the Sum of Absolute Differences
(SAD) operation, establishing the pels differences between two chosen frames.
Equation 1 states the metric to evaluate the searched block.

[IN1(z+i,y+37) — IN2((x +7) + 1, (y + s) + 7)| (1)

j=1i=1
where, the duple (z,y) represents the position of the current block, and the pair
(r, s) denotes the displacement of I N2, relative to reference block TN 1. Different
investigations including a previous author’s work have been proposed to speed
up the critical SAD kernel [3],[4],[5]. The processing requires that SAD input
terms received by the multiple operation array have to be ordered previously,
in order to compute correctly the operation; therefore, the absolute operation
| IN1 — IN2 | can be substituted, with IN1 — IN2 or IN2 — IN1 depending
whether IN1 or IN2 is the smallest and thus obtaining a positive result. As
is suggested in [5] we can make this operation inverting one of the operands
and computing the carry out of the addition of both operands as stated by the

following equations:
INT+IN2>2'—1 (2)
therefore IN2> IN1 (3)
means checking whether the addition of the bit inverted INI and the operand
IN2 produces a carry out. The outcome determines which one is the smallest,
depending on the existence or not of the carry output. Consequently, a simple
logic can be used to correct the terms and feed the array. Regarding universal
units capable to work with universal notations, the reader is referred to view
the predecessor unit in [6] and a recent reintroduction in [2]. An extra row of

(3:2)counter for MAC operation is used into the Reconfigurable Multiple Oper-
ation Array as a technique for accelerating the processing, a detailed description
of this kind of approach units can be seen in [12].

2.2 The array description

The proposed unit has been constructed around a rectangular array that can be
reduced using (3:2)counters; all ten operational fields of the array presented in
figure 1(a), called sections in the paper, receive the integer numbers X (¢) and
Y (é), the fractional numbers A(i) and B(), (all represented with 16 bits), the
W (i) summand represented with 32 bits for MAC operation as well as the 32
SAD terms depicted in equation 4 for the computation of a 4x4 macro-block:

LGy = 1gasyIGaay - IGnlgoe ¥V 1<j<32 (4)
where the index j states the 32 inputs; and ¢ is used to denote the positional
weight of the data bits in each input.

The multiplication related operations of the proposed unit requires the partial
product creation as stated by the following equations: V. 0 < j < 15 while
vV 0 <i< 15
2, = X - Y (5)
F0 = Aw - By) (6)

All these data, feeds the (3:2)counters through 3 inputs I1(5)(¢), 12(5)(#) and
I3(5)(7); and produces two outputs S(j)(¢) and C(j)(¢). The basic layout topol-
ogy of the (3:2)counter is presented on figure 1(b) and this detail is replicated in
all sections of the array; nevertheless, in the limit of both sides, left and right,
the carry input I3(j)(¢) uses an additional multiplexor which is in charge of
propagating or inhibiting the carry out of the (3:2)counters of the right side,
and introduces a Hot One (HO) or a zero for SAD processing. The multiplexor
presented in the aforementioned figure 1(b), represented by the bar, has a signal
e to control the data related operations and reconfiguring in this way the oper-
ation being computed by the array. Furthermore has to be noticed that the first
row of both sides, the left and the right uses three multiplexors instead of one
as is described further (see equations, section 2.3).

S(j)(i+1) Ch)i+1) S(j)(i) C(i)i)

AG(@, B()(), or 1()() X[, Y6, or IG)() vhoy - ey
¢ LeftSide Right Side ¢ AL RIBAL
: : + +
Cj+1)(i+2, [Cli+1)(i+1 e
2 [—“—‘—' S(n)|i+1) SGi+1)(0)
3 6 7 |2 B8 | . vy ... * C(j+1)()
4 8 ° ny rY [/3 /1* RAAL
; + +
W(31) W(30) 10 W(1) W(0) T

]
*cmz)(m) L

* #:(Hz)(uz) ¢
S(+2)(+1) S(+2)(0)

XxY, AxB, XxY+W, or SAD outcomes
(a) (b)
Fig. 1. The Reconfigurable Multiple Operation Array Scheme

Regarding the use of these sections, depicted in figure 1(a), (3:2)counters of sec-
tions 5, 6, 3 and 4 process the integer partial products described by equation 5.
Fractional processing is achieved with sections 1, 3, 6 and 8; furthermore, sec-
tions 1 and 2 as well as 2 and 4 process the sign extensions, and zeros given the
universal characteristic to the multiplier processing for integers and fractional
numbers respectively. Concerning SAD processing, two main sections of the ar-
ray are been used, the left and right side. The left side utilizes the sections 1,
2, 3 and 4 and the right side uses section 5, 6, 7, 8. Additionally, section 9 as
part of the multiplier array, is used to add the last partial products; and section
10 receives the W(i) addend for MAC processing. Table 1 summarizes the terms
received by I1 in each one of the main sections through the 8 to 1 multiplexor.
From the table is evident that we process numbers of two complement repre-
sentation with sign extension, and signed magnitude numbers are processed like
positive numbers, making the sign bit zero and updating the result with the
XOR of multiplicand and multiplier signs.

Table 1. Sections of the Reconfigurable Multiple Operation Array

SAD |Unsigned|Signed | Two’s | MAC | Unsigned | Signed Two’s
Integer |Integer|Integer| T'wo’s |Fractional |Fractional|Fractional

Section 1 1I¢; 5| 0 0 |ZGas)|ZGas)| Fup i Fi
Section 2 |I(; 4 0 0 Zj15)|Zj,15) 0 0 F(j15)
Section 3 (50| ZGiy | 2G| 26 | 2G| Fua i Fia
Section 4 |1 4 0 0 Zj15) | Zj.15) 0 0 Fj15)
Section 5|1 4| Z(j,4) Zay | ZGo | 26,0 0 0 0
Section 6 150y Ziy | 2G| 26 | 2G| Fua i i
Section 7 |1 4) 0 0 0 0 0 0 0
Section 8 |I(; 4 0 0 0 0 Fjo) Fj) Fj
Section 9 | 0 Z1s,1) | 25,4 | 215,49 |Z15,0) 0 0 0
Section 10| 0 0 0 0 | w 0 0 0

2.3 The Array Construction equations description

The multiple operation array is conformed by 32 columns and 16 rows of (3:2)coun-
ters, giving a total of 496 (3:2)counters, see figure 2. It can be mentioned that
figure 2 contains all the details from figure 1(a). The notation used for represent-
ing (3:2)counters gives us information of the different kind of data received by
these core logic blocks. The first columns of sections 3 and 7 (columns 0 and 16,
see figures 1(a) and 2) from row 1 to 8, are used to introduce the Hot One (HO),
the rest of the column introduces zero, this data is necessary for SAD calculation
due to A — B = A+ B + 1, also column 16 inhibits the carry propagation from
the right side. It should also be noted that the last row of this figure, symbolized
with a plus sign + represents the final adder used to calculate outcome values of
the (3:2)counter array. The remainder of the section describes in a detailed way
the equations for the 10 element arrays of (3:2) counter subsections, detailing
for all cases the input I1 and also the other equations for inputs 72 and I3 when
the application is different to the functionality presented in figure 1(b).

31 25 20 15 10 5 0
cxXANENEEERERERERCOHNOO0O0OO0O0DOOOODOO ¢
QOO VVVVVVVVVVVOHGGOVIVIVVVVVVVVVCO
0000V VVVVVVVVOOH GGGV IVVIVVVVVVO OO
(A X X X AVAVAVAVAVAVAVECROROM=R X X X X 2 A A A A A A ACECRRC)
L X N X N N AVAVAVAVAVASRCIONOR:R X X X X X 2 A A A A ACRCEeReNe)

0000000V /VOOOOOH G600 666VVVIOOOOCO
(LA A K X 2 X N AVACXOICHCRONORER R X R X R 2R X 2 ACECRCRCECREEC)
L A N LN NN N K IOICROXCIONORR X X X X R X X ECECECRCRCECReNC)
I A XXX X R E R Ioololelo):iR R X R R R X EVERECROECRReEe)
(A X KX X ARRERRICISICIOI=R X X R X X VA URENRCRERCReN
A XX EERRRERER ISR R X X X EUVEEUREURECRO R
0000 ((UIIIIACOOH GO COOD
(J X ERERRERRRRERERJOISR X R SRR GEVRREEUEIR] >
R L ERERERERRERRERERRERR ISR R SRR R
SV VYVVYVVYVVVY VYV NRGNNVIVAVAVAVAVAVAVAVAWAVAWAWAN 4

XX XX XX XXX X XXX X XXX XXX X XXX XX XXX XXX
++ttttt bttt bbbt

Fig. 2. The Reconfigurable Multiple Operation Array Organization

Section 1 The section is divided into four subsections; the first three are embedded
into the first row.

O Ilo,6) = L(1,0) - €0 + Z(1,15) - €1 + Z(1,15) - €2 + Z(1,15) * €3 + Z(1,15) - €a + Fus,1) - es+
Fs1y - e + Fasy - er

12(0,16) = I(2,0)-€0+0-e1+0-€2+Z(0,15) €3+ Z(0,15) €4+ F14,2) €5+ F(14,2) €6+ F(14,2) €7

130,16) = I(30)-e0+0-e1+0-e2+0-e3+0-e4+0-e5+0-e+0-e7

Wm: Vv 1<i{i< 13

Il iv16) = L(1,5) €0 +0-e1+0-e2+ Z(o,15) - €3 + Z0,15) - €4 + F15,i+1) - €5 + Flis,i41) - €6+
F(15,z‘+1) - er

120,i416) = I(2,5) €0 +0-e1+0-e2+ Z(1,15) - €3+ Z(1,15) - €a + Flaai42) - €5 + Flua,iy2) - €6+
F(14,i+2) - er

I30,i+16) = I3,ne0 +0-e1+0-e2+0-e3+0-e4+0-e5+0-e6+0-e7

% 2 I130) = I(1,14) €0+ 0-e1+0-ex+ Z1 15 - €3+ Z,15) - ea + Fus1) - es + Fus1) - €6
+ Fas,1) - ez

120,30) = I(2,14) €0 +0-e1+0-e2+ Zg,15) - €3+ Z0,15) €4 +0-e5+0-ec + Fl14,15) - €7

I3(0,30) = I(304) -0 +0-e1+0-e2+0-e3+0-es+0-e54+0-ec+0-e7

® : Ilos1) =Iaas)-e0o+0-e1+0-ea+Zas) -es+ Zaasy-ea+0-es+0-e6+ Fus1)-er

12(0,31) = I(2,15) €0 +0-e1+0-e2+ Z,15) - €3+ Z0,15) €4 +0-e5 +0-ec + Fl14,15) - €7
130,31 = I(3,15)-e0o+0-e1+0-e2+0-e3+0-ea+0-e5+0-¢e+0-e7

ViLlt n=2,m=12; V1 <j< 6 and;V n <7< m ,withm=m —1; and
in =n + 1; for each column

I1Giv16) = L(j43,) - €0 +0-e1+0- €2+ Z(ji1,15) - €3+ Z(j1,15) - €4 + Fua—jivs) - es+

Foa_jit3) €6+ Flua—jivs) - er

Section 2 The section has the two representative equations:

o: Letn=13;V 1 <j< 6andV n <i< 15,withn=n-1

Il ivie) = 43,00+ 0-e1+0-ea+ Zr115) - e3+ Zr1,15) - ea+0-e5+0-es+
Flaa—j5) - er

o: Jletn=8§V 7 <j< 183andV n <i< 15, withn=n+1
Il iv16) = I(j+3,0)-€0t0-e1+0-e2+Z(j 11 15) €3+ Z(j11,15)-€a+0-e5+0-e6+ Fl14—j,15) €7

Section 3 The section is subdivided into four main parts:
B: Vv 1 <j<8

I1i16) = L(j43,0) - €0 + Z(j41,15—5) - €1 + Z(j+1,15—5) - €2 + +Z(j,16—5) - €3 + Z(j,16—5) - €4+
Faa—jjy2) - es + Fraa—jjy2) - €6 + Flua—j j42) - €7

I3j,16) = 1-eo + Cli—rit15) - €1 + Cjivae) - €2 + Clyitae) - €3 + Cjitae) - €a + Citae - €5
+ Cji+16) - €6 + Cjit16) - €7
B: vV 9 <j< 13

I1j16) = 1(j43,0) - €0 + Z(j4+1,15—5) - €1+ Z(j+1,15—5) - €2 + Z(j,15—j) - €3 + Z(j,15—) - €4+
Faa—jjy2) - es + Faa_jjy2) - €6 + Flua_j j42) - €7

I3(j,16) = 13(j,16) = 1 - €0 + C(j,i+16) - €1 + Cjit16) - €2 + Cjit16) - €3 + Cpjit16) - €at+
Ciiit16) - €5 + Cjitie) - €6 + Cljivie) - €7

First part o: Let m=1;V 1 <j< 6andV 1 <i< m,withm=m+1

I1jit16) = I(j+3,0) - €0 + Z(j+1,i414) - €1 + Z(j41,i414) - €2 + Z(j41,i414) - €3 + Z(j+1,i414) - €4t
Faa—jivs) - es + Flaa—jits) - €6 + Fia—jiv3) - €7

Second part o : Let m=6;V 7 <j< 12andV 1 <i< m,withm=m-—1

I1(i016) = I(j43,0) - €0 + Z(j41,i415—5) - €1 + Z(jt1,i+15-5) - €2 + Z(j41,i+15—) - €3+
Z(i+1,i+15—5) - €4 + Faa—jivit2) - €5 + Faajitjve) - €6 + Flaa—jitjv2) - €7

Section 4 € : et n=7, m=7V 7 <j< 13andV n <i< m; with
n=n—landm=m+1

IN1iv16) = LG+3,0) - €0 + Z(j41,15—540) €1 + Z(j41,15—540) - €2 + Z(j41,15—5+40) - €3+
Z(j+16,15—j+i) * €4+ 0-es +0-es + Fua—js) €7

Section 5 The section is divided into four subsections; the first three are embedded
in the first row.

J[: 11(0,0) =](17’0) -€eo +Z(0,0) -e1 +Z(070) -eg +Z(070) -es +Z(0,0) ceq+0-e5+0-e6+0-e7
1290y = I(18,0y €0 +0-e1+0-e2+0-e3+0-e4+0-e5+0-e6+0-e7

13(0’0) :1(19,0) ce0+0-e1+0-e2+0-e3+0-e4+0-e5+0-e6+0-e7

O 1 <i< 13

Il(oyi) = I(171i) ceo + Z(O,z‘) -e1+ Z(O,z’) -es + Z(O,i) -es3+ Z(O@ ces+0-e5+0-e6+0-e7

12005 = Ias,iy-eotZai—1y-e1+Zai—1y-e2+Z(1,i-1y-e3+Za,i—1)-€a+0-e5+0-€6+0-e7
1305 = I(19,5¢0 +0-e1 +0-e2+0-e3+0-e4+0-e5+0-e6+0-e7

O Tl =](17’14) -eq + Z(0’14) -e1 + Z(0714) -ea + Z(0,14) -e3 + Z(0,14) -eq + F(14,0) -e5+

F14,0) - €6 + F1a,0) - €7

120,14y = I(18,14) €0+ Z(1,13) -1+ Z(1,13)-e2+ Z(1,13)-e3+ Z(1,13)-ea+0-e5+0-e6 +0-e7
13(0’14) :I(lgy14) ceo+0-e1+0-ea4+0-e3+0-e4+0-e5+0-e6+0-e7

© : Ilo,15) = L17,15) - €0 + Z(0,15) " €1 + Z(0,15) - €2 + Z(0,15) - €3 + Z(0,15) * €4+
Fis,0) - €5 + Flas,0) - €6 + Flis,0) - €7

120,15y = I(18,15) " €0 + Z(1,14) - €1 + Z(1,14) - €2 + Z(1,14) - €3 + Z(1,14) - €4 + Fl14,1) - €5+
Fia1) -e6 + Fraany -er
130,15y = I(19,15y €0 +0-e1+0-e2+ HO-e3+ HO-es4+0-e5+0-e6 + HO - e7
Vi:Letn=2,m=12;V 1 <j< 6andV n <i< m,withm=m —1; and
n=n+1;

Il i116) = L(j+19,6) - €0 + Z(j41,i—j—1) - €1 + Z(j41,i—j-1) - €2 + Z(j+1,i—j-1) - €3+
Z(i41,i—j—1) €a+0-e5+0-e6+0-e7

Section 6 The section has the two representative equations:
o: Letn=13; V 1 <j< 6andV n <i:< 15, withn=n—-1

Il = I(j410,4) - €0 + Z(j41,i—j—1) - €1 + Z(j41,i—5-1) - €2 + Z(j41,i—j-1) - €3+

Z(j+1,i7j—1) ceq + F(14—j,i—14+j) -es + F(147j,i—14+j) -e6 + F(147j,i714+j) - er
e: Letn=8, V 7 <j< 183andV n <i< 15, withn=n-1

Il = I(j419,4) - €0 + Z(j41,i45-1) - €1 + Z(j41,i45-1) - €2 + Z(j41,i45-1) - €3+

Z(j+1,i+5-1) €4 T Fuaji1a4j) - €5 + Flaa—ji1a4j) - €6 + Flaa—ji—1a4j) - €7

Section 7 The section is conformed by three subsections:

©@:V 1 <j< 8,

Ilo0) = I(j419,5)eo+0-e1+0-e2+0-e3+0-e4+0-e5+0-e6+0-e7

13(3-70)=1~60+0~61+O~62+O~63+O~64+0~65+0~66+0~67
>:letn=1,m=6,V 9 <j< 13, withm=m-—-1

Il(jyo):I(j+19’i)-60+0-61+0-62+0-63+0-64+0~65+0'66+0'67

30, =0

OiLetm=1;V 1 <j< 7andV 1 <i< m,withm=m+1
I1,i4+16) = I(j419,i) €0 +0-e1+0-e2+0-e3+0-e4+0-e5+0-e6+0-e7

OQ:Letm=6;V 8 <j< 12andV 1 <i< m,withm=m-—1

Il(jyi):I(]urlg’i)-60+O-61+O-62+O-€3+O-€4+0-65+0'66+0'67

Section 8 <t:Letn=7,m=8V 9 <j< 13andV n <i< m,withn=n-1
while m =m + 1

11y = Ig417,0)ceo+0-e1+0-e2+0-e3+0-es+ Fae—j16—j—4) " €5 + Flae—j16—j—1)

Fae—j16—j—i) - €7

et

Section 9 The section is divided into six subsections.

> : 1140 =0-e0+0-e1+0-e2+0-e3+0-es+ Flo,0) €5+ Fo,0) - €6 + Flo,0) - €7
AV 1 <i< 14,

1114 =0-e0+0-e1+0-e2+0-e3+0-es+ F, -es+ Fo,i - es + Floy - er

@ : Il(1415) = 0-eo + Z1s,0) - €1+ Zs,0) - €2 + Z(15,0) - €3 + Z(15,0) - €a + Flo,15) - €5+
Flo,15) - €6 + Flo,15) - €7
® : Il(1406) = 0- €0+ Zas,1) - €1+ Zas,1) €2+ Zas,1) - €3 + Zs,1) - ea + Flois) - es+

Flo,15) - €6 + Flo,15) - er
A:V 1 <i< 14

I1(14;i416) = 0- €0+ Zs,it1) - €1 + Z(15,i41) - €2 + Z(15,i4+1) - €3 + Z(15,i41) €4 + 0 - es5+
0-e6 + Fo,15) - €7

O 11431y =0-e0+0-e1+0-e2+ Z(1515 €3+ Zs,15) -€a+0-e5+0-es + Fo,15) - €7

Section 10 V 0 <i< 31;withn=n—1whilem=m+1
Iy =0-e0+0-e1+0-e2+0-e3+W(i)-ea+0-e5+0-e6+0-e7

3 Experimental Results and Analysis

The Reconfigurable Multiple Operation Array with all necessary control logic
and the Carry Unit were described using VHDL, synthesized and proved with
ISE 5.2i Xilinx environment [11], for the VIRTEX II PRO xc2vpl00-7{f1696
FPGA device. Additionally, all operations such us: unsigned multiplier, signed
magnitude multiplier, two’s complement multiplier, rectangular SAD unit (half
of the rectangular array), and MAC unit were implemented individually without
the overhead logic. Furthermore, previous presented units like the Universal
SAD-Multiplier array (U-SAD-M) [2] for integer numbers and Baugh and Wooley
(B&W) signed multiplier [1] were synthesized with the same tool in order to
have more comparison parameters with our new proposal. Table 2 summarizes
the performance in terms of time delay of those structures.

The additional logic introduced into the core array reduces the performance
of the functionalities, as can be seen in table 2. The extra delay in terms of time
is between 12 % for a 16 bits MAC operand in the proposed unit, and up to
50 % for a 32 bits MAC over the previous single functionality units like Baugh-
Wooley or a simple integer U-SAD-M unit. This extra time delay diminishes to
27 % when the fast carry logic provided into the FPGAs Xilinx is used [9] in
the final adder. The additional extra delays of the proposed unit compared with
the previous ones are due two principal factors: the first one is related to the
multiplexor used to feed the data into the input I1, which presents a constant
delay for all the logic blocks, and the extra multiplexor introduced in the array
to separate logically the right and left sides, given the possibility of propagating
or inhibiting the carry and also force a Hot One or a zero for SAD processing.
An acceleration into the processing can be achieved using a parallel reduction
tree. Instead of using a regular array, a Wallace tree [8] can be implemented in

Table 2. Multiple Operation Array Unit and related units - time delay

Unit Logic Delay (ns)|Wire Delay (ns)|Total Delay (ns)
SAD f 13.184 12.006 25.191
Unsigned Multiplier 14.589 14.639 29.282
Two’s I § 12.595 15.564 28.159
Two’s F § 15.153 16.825 31.978
Baugh&Wooley } 15.555 15.826 31.381
U-SAD-M i 15.877 15.741 31.618
U-SAD-M ¢ 14.311 9.568 23.879
MAC 1 15.062 19.064 34.662
Our Proposal I 21.351 26.040 47.391
Our Proposal-16 MAC } 16.521 19.065 35.586
Our Proposal 1 15.311 15.127 30.438
Carry Unit 2.576 3.338 5.914

RCA final adder: § : LUT based ; f: Based on Xilinx Fast Carry Logic.[9]

order to accelerate the performance of the operations. Considering that n(h) =
L3n(h — 1)/24 quantifies the number of necessary levels h of (3:2)counters for
the reduction of n input bits, we estimate that a logic delay has been reduced in
3.22 ns and cut 4.65 ns off in routing delay, accelerating the processing in 7.87ns.
This amount of time represents an improvement of a 25.87 % in the total array
delay.

Concerning the silicon used by the Reconfigurable Multiple Operation Unit
and the other structures, depicted on table 3, the overhead in terms of hardware
of the presented unit is considerable and is the paid price for its multi-functional
characteristic. Nevertheless, if the eight units are implemented separately we will
need two times the hardware resources and we will have one third of additional
bandwidth needs in the worst case scenario. We should also consider that 6/8 of
the basic logic block array are shared by the eight operations making this chosen
operations a good candidates for it’s implementation with partial reconfiguration
paradigm, based on differences of the functional units.

4 Conclusions

We have presented a novel Reconfigurable Multiple Operation Array organiza-
tion. The proposed unit can be implemented on a VLSI intended to be used as
a run time configurable unit, and it can also be used in a reconfigurable tech-
nology as a run time reconfigurable unit. The whole array is configured using
multiplexors, which can be replaced with faster connections on a partially re-
configurable environment. Several units are been coded and synthesized to have
a wide comparison environment, furthermore, a brief analysis of the obtained
results in terms of area used and time delay are presented given a maximum
work frequency of 27.5 MHz for the calculus for a 4x4 SAD macro-block and a
32.85 MHz for MAC and the other multiplier operations in a VIRTEX II PRO
device using a 3% of the available slices of the chosen FPGA.

10

Table 3. Multiple Operation Array Unit and related units - hardware Use

Unit # Slices|# LUTs|# I0Bs
SAD f 242 421 272
Unsigned Multiplier 300 524 64
Two’s T 1 294 511 64
Two’s F 443 770 64
Baugh&Wooley i 330 574 65
U-SAD-M § 686 1198 322
U-SAD-M { 658 1170 322
MAC 1 358 622 96
Our Proposal I 1373 2492 643
Our Proposal-16 MAC {| 1360 2465 643
Our Proposal 1 1354 2458 643
Carry Unit 35 61 64

RCA final adder: f : LUT based ; f : Based on Xilinx Fast Carry Logic[9].

References

1. C. Baugh and B. Wooley. A two’s complement parallel array multiplication algo-
rithm. IEEE, Transactions on Computers, pages 10451047, Dic. 1973.

2. H. Calderon and S. Vassilidis. Reconfigurable universal sad-multiplier array. Ac-
cepted for publication in: Proccedings of ACM international conference - Computer
Frontiers, May. 2005.

3. D. Guevorkian, A. Launiainen, P. Liuha, and V. Lappalainen. Architectures for
the sum of absolute differences operation. IEEE Workshop on Signal Processing
Systems (SPIS’02), Oct. 2002.

4. P. Kuhn. Fast mpeg-4 motion estimation: Processor based and flexible vlsi imple-
mentations. Journal of VLSI Signal Processing, pages 67-92, 1999.

5. S. Vassiliadis, E. Hakkennes, S. Wong, and G. Pechanek. The sum-absolute-
difference motion estimation accelerator. Proceedings of Euromicro Conference,
2/th, pages 559-566, Aug. 1998.

6. S. Vassiliadis, E. Schwarz, and M. Putrino. Quasi-universal vlsi multiplier with
signed digit arithmetic. Proceedings of the 1987 IEEE,Southern Tier Technical
Conference, pages 1-10, Apr. 1987.

7. S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. Panainte.
The molen polymorphic processor. IEEE Transactions on Computers, pages 1363
— 1375, Nov. 2004.

8. C. S. Wallace. A suggestion for a fast multiplier. IEEE, Transactions on Electronic
Computers, pages 14 — 17, Feb 1964.

9. Xilinx. Virtex ii pro platform fpga handbook. Oct. 2002.

10. Xilinx. Two flows for partial reconfiguration: Module based or difference based.
Application Note:Virtex, Virtez-E, Virtez-1I, Virtexr II Pro Families, XAPP290,
pages 1 — 28, Nov. 2003.

11. Xilinx. The xilinx software manuals, xilinx 5.2i. hitp://www.zilinz.com/support/
sw-manuals/zilinz /index.htm, 2003.

12. N. Yaday, M. Schulte, and J. Glossner. Parallel saturating fractional arithmetic
units. Proccedings of the Ninth great lakes Symposium on VLSI, Mar. 1999.

