
Christos Strydis

Universal Processor Architecture
for Biomedical Implants

The SiMS Project

Universal Processor Architecture for
Biomedical Implants

The SiMS Project

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.Ch.A.M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op dinsdag 15 maart 2011 om 10:00 uur

door

Christos STRYDIS

Master in Computer Engineering

Technische Universiteit Delft

geboren te Athene, Griekenland

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. P.J. French

Copromotor:

Dr. G.N. Gaydajiev

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit Delft, NL

Prof. dr. P.J. French, promotor Technische Universiteit Delft, NL

Dr. G.N. Gaydadjiev, copromotor Technische Universiteit Delft, NL

Prof. dr. Y.N. Patt University of Texas at Austin, USA

Prof. dr. A.V. Veidenbaum University of California, Irvine, USA

Prof. dr. D.F.A.M.E. De Ridder Universiteit Antwerpen, BE

Prof. dr. ir. H.J. Sips Technische Universiteit Delft, NL

Dr. H.R. Lopuhaä Technische Universiteit Delft, NL

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Christos Strydis

Universal Processor Architecture for Biomedical Implants — The SiMS Project

Delft: TU Delft, Faculty of Elektrotechniek, Wiskunde en Informatica - III

Thesis Technische Universiteit Delft. – With ref. –

Met samenvatting in het Nederlands.

ISBN 978-90-72298-14-0

Subject headings: implant, survey, taxonomy, benchmark, processor, cache, branch

prediction, microarchitecture, instruction set, design-space exploration.

Copyright c© 2011 Christos Strydis

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without permission of the author.

Printed in The Netherlands

Dedicated

to Stamatis who made sure this thesis would be started;

to Georgi who made sure this thesis would be concluded.

Universal Processor Architecture

for Biomedical Implants
The SiMS Project

Christos Strydis

Abstract

H
EALTHCARE in the 21st century is changing rapidly. In advanced

countries, in particular, healthcare is moving from a public to a more

personalized nature. However, the costs of healthcare worldwide

are increasing every year. Better use of technology can and should be used

to get control of these costs. At the same time, implants have clearly ben-

efitted from the astounding technology-miniaturization trends of late, boast-

ing smaller sizes, lower power consumption and increased performance of the

transistor devices. However, such advances do not come for free. Adverse ef-

fects in current implant designs are being witnessed, such as increasing power

consumption, absence of design for reliability and highly application-specific

nature. Operating under the assumption that implants will constitute an impor-

tant means towards improved, personal healthcare and, in view of the afore-

mentioned design phenomena, we believe that a new paradigm in implant de-

sign is required. This dissertation establishes the concept of Smart implantable

Medical Systems (SiMS). SiMS is a systematic approach – a framework – for

providing biomedical researchers and, hopefully, industry with a toolbox of

ready-to-use, highly reliable implant sub-systems and models in order to con-

struct optimal implants for various medical applications. The SiMS framework

has to guarantee essential attributes, such as high dependability, modular de-

sign, ultra-low power consumption and miniature size. Having defined the

SiMS framework, this dissertation is, then, concerned with exploring the op-

timal microarchitectural details of a crucial SiMS component: the SiMS pro-

cessor. Contrary to the current state of the art, this processor aspires to be a

new universal, low-power and low-cost processor and capable of efficiently

serving a wide range of diverse implant applications.

i

Acknowledgements

There is a very good reason why acknowledgements are always found in the

beginning of a book. They tell the private story of how the book you are

holding in your hands came to be. A number of people have contributed in a

number of ways to its contents and looks. Had they not helped when they did, I

am certain this work would have never reached its present state of completion.

So, I would like to start off by thanking my co-promotor Georgi Gaydadjiev

for the sustained insight and support he provided throughout the hardships of

this thesis work. His being the yin, I would also like to thank my yang – my

late promotor Stamatis Vassiliadis for his initial encouragement and ab initio

backing of my research. God rest his soul. I will always consider both men as

my mentors and my friends. I am also deeply grateful to my thesis-committee

member Rik Lopuhaä for offering unstinting support on statistics, and on a

very short notice at that. This thesis would have been far from complete with-

out his contribution.

As far as the tool flow that was necessary for this thesis is concerned, the

work would have come to an early standstill, had it not been for the valuable

contributions of Stefanos Kaxiras, Margaret Martonosi and Gilberto Contr-

eras who have been instrumental in providing me with an excellent power-

simulation tool (XTREM) and all support I could ask. I am also indebted to

Demid Borodin for his assistance in setting up and understanding the chaos

that is called cross-compilation, as well as to Pepijn de Langen, Filipa Duarte

and Vlad-Mihai Sima for their helpful insights on the matter. I would also

like to thank Kyriakos Stavrou for his prompt, catalytic help with the CACTI

cache-simulation tool and Carlo Galuzzi specifically for his formulating of

the XTREM power analysis and, overall, for his valuable comments and help

throughout. Special thanks are due to Bert Meijs, Erik de Vries and Eef Hart-

man – the past and present CE-Laboratory system administrators – for their in-

explicable sympathy for my outrageous technical requests and for their excel-

lent support in setting up and operating the custom computer cluster needed for

our DSE experiments. Without them, this work would not have taken shape.

iii

Furthermore, I remain truly grateful to all those people who responded to my

persistent requests or unequivocal threats by offering precious resources, in-

sights or even strong criticism. To name a few: Christopher Sadler for provid-

ing the sources of his intriguing SLZW compression algorithm, Peter Cross for

providing the original sources for the excellent DMU application and limitless

support, Johnny Ray Sears for providing resources on his biotelemetric heart-

valve monitor, Pietro Valdastri for providing the assembly sources of running

in his implantable telemetry platform system and Niki Frantzeskaki for her

valuable help on statistics and otherwise. Also, Christoforos Kachris, Dhara

Dave and Zhu Di for the fruitful collaboration we have achieved. Furthermore,

I greatly appreciate and wish to thank Dimitris Theodoropoulos for his helpful

insights on data encryption and computer architecture, Sebastian Isaza, Yian-

nis Sourdis, Daniele Ludovici and Lotfi Mhamdi for being the boxsack for me

to hone my work on; and Nicolae & Nicole Stefu for giving me a nudge in

the right direction when I needed it the most. My thanks are also due to both

the CE-group secretaries Lidwina Tromp and Monique Tromp for their excep-

tional administrative assistance throughout my PhD years. My deep thanks are

also due to Ana Laura Santos for – among other things – putting together the

elegant design that is the book cover of this dissertation document. What is

more, I wish to acknowledge the authorities responsible for (partially) funding

this thesis work: the ICT Delft Research Centre (DRC-ICT) of the Delft Uni-

versity of Technology and Google Inc.. It was their timely aid that ensured the

completion of this thesis.

Last but certainly not least, I feel the need to deeply thank my wife Olga and

my parents Stefanos and Aristea for their immeasurable emotional as well as

downright material support, for their patience and faith throughout the course

of this research effort. I am – and always will be – in their debt.

Christos Delft, The Netherlands, March 2011

iv

Table of Contents

Abstract . i

Acknowledgments . iii

Table of Contents . v

List of Tables . xi

List of Figures . xiii

List of Acronyms . xxi

1 Introduction . 1

1.1 Background . 1

1.2 Problem overview . 2

1.2.1 Socioeconomic trends 2

1.2.2 Implant-device trends 4

1.3 Motivation . 5

1.4 Dissertation challenges & contributions 6

1.5 Dissertation organization . 7

2 A survey on microelectronic implants 9

2.1 Survey goals . 9

2.2 Survey scope . 10

2.3 Survey structure . 12

2.4 An implant primer . 12

2.5 Survey setup . 14

2.5.1 Major categories . 16

2.5.2 Minor categories . 17

2.5.2.1 ELECTROMECHANICAL FEATURES . . . 17

v

2.5.2.2 POWER FEATURES 17

2.5.2.3 GENERAL IMPLANT FEATURES 18

2.5.2.4 PROCESSING/CONTROLLING-CORE

FEATURES 18

2.5.2.5 MISCELLANEOUS IMPLANT FEATURES . 19

2.5.3 Discussion . 20

2.5.4 Statistical tests . 21

2.5.4.1 Testing independence of two categorical

variables 21

2.5.4.2 Testing whether categorical variables

change over time 22

2.5.4.3 Exploring the relation of a scale variable

over time 23

2.5.4.4 Exploring the relation of a scale variable

over time over groups 23

2.5.4.5 Comparing a scale variable over groups . . . 24

2.6 Survey results . 26

2.6.1 Implant applications & functionality 26

2.6.2 Electromechanical features 32

2.6.3 Power features . 41

2.6.4 General implant features 49

2.6.5 PCC features . 60

2.6.6 Miscellaneous implant features 69

2.7 Summary . 85

3 The SiMS concept & background 87

3.1 Motivating a new generation of implants 88

3.1.1 Socioeconomic trends 88

3.1.2 Technological trends 89

3.1.3 Survey-based implant trends 90

3.2 Smart implantable Medical Systems (SiMS) 91

3.2.1 The SiMS concept 91

3.2.2 SiMS digital processor 93

3.2.3 Typical SiMS workloads 94

3.2.4 SiMS HLL Compiler 95

3.2.5 SiMS peripherals . 97

3.2.6 SiMS wireless transceiver 98

vi

3.2.7 SiMS chip interfaces 99

3.2.8 Miscellaneous SiMS components 100

3.2.9 SiMS relevance . 100

3.2.10 Minimizing risks and costs 101

3.2.11 Prior art on generic implant designs 102

3.3 Technical background . 103

3.3.1 Work organization 104

3.3.2 Processor simulators 105

3.3.3 Evaluation of suitable implant benchmarks 107

3.3.3.1 Compression algorithms 108

3.3.3.2 Encryption algorithms 108

3.3.4 Investigating benchmark suites for implants 109

3.3.5 Processor microarchitecture exploration 110

3.3.5.1 Evaluation of L1 I-/D-cache organizations . 111

3.3.5.2 Evaluation of branch-prediction schemes . . 112

3.3.6 Automated, multiobjective DSE for implant processors 112

3.4 Summary . 114

4 SiMS-processor simulation environment 117

4.1 XTREM processor simulator 118

4.1.1 Hardware-modeling details 118

4.1.2 Program-execution details 119

4.1.3 Sampling details . 120

4.2 Implant workloads . 122

4.2.1 Workload characteristics 123

4.2.2 Identifying generic workloads 123

4.2.2.1 Real implant applications 124

4.2.2.2 Data reduction & compression 125

4.2.2.3 Data & command encryption 125

4.2.2.4 Data & command integrity 126

4.2.3 Workload acquisition 126

4.3 Input datasets . 127

4.4 Profiling of encryption algorithms 129

4.4.1 Selection criteria of ciphers 131

4.4.2 Experimental setup 132

4.4.2.1 Simulator configuration 132

vii

4.4.2.2 Encryption datasets 132

4.4.2.3 Encryption algorithms 133

4.4.3 Profiling analysis . 134

4.4.3.1 Power consumption 134

4.4.3.2 Energy expenditure 137

4.4.3.3 Encryption rate 138

4.4.3.4 Executable-binary size 139

4.4.3.5 Security margin 141

4.4.4 Results & discussion 142

4.5 Profiling of compression algorithms 144

4.5.1 Selection criteria of compression algorithms 144

4.5.2 Experimental setup 145

4.5.2.1 Simulator configuration 145

4.5.2.2 Compression datasets 146

4.5.2.3 Compression algorithms 146

4.5.3 Profiling analysis . 147

4.5.3.1 Compression ratio 147

4.5.3.2 Compression rate 148

4.5.3.3 Average & peak power consumption 149

4.5.3.4 Overall energy budget 150

4.5.3.5 Executable-binary size 151

4.5.4 Results & discussion 152

4.6 ImpBench: A novel benchmark suite for implants 155

4.6.1 The need for a new benchmark suite 156

4.6.2 The ImpBench components 156

4.6.3 Experimental setup 159

4.6.4 Benchmark characterization 160

4.6.5 Performance, caches and branch prediction 160

4.6.5.1 Dynamic & static benchmark size 163

4.6.5.2 Instruction distribution 164

4.6.5.3 Power consumption 166

4.6.6 Summary . 168

4.7 A SiMS case study . 168

4.7.1 Implant characteristics 168

viii

4.7.2 Crafting a realistic application 169

4.7.3 Experimental setup 172

4.7.4 Profiling analysis . 172

4.7.5 Discussion . 176

4.8 Summary . 176

5 SiMS-processor microarchitecture evaluation 179

5.1 Evaluation of cache organizations 179

5.1.1 Experimental setup 180

5.1.1.1 Input datasets 181

5.1.1.2 Benchmarks 181

5.1.1.3 Simulation testbed 181

5.1.2 Profiling analysis . 183

5.1.2.1 Cache sizes 184

5.1.2.2 Cache associativity 190

5.1.3 Conclusions . 196

5.2 Evaluation of branch-prediction schemes 197

5.2.1 Experimental setup 197

5.2.2 Considered branch-prediction schemes 198

5.2.3 Evaluation study . 200

5.2.4 Conclusions . 209

5.3 Summary . 209

6 Automated exploration of SiMS-processor microarchitectures 211

6.1 ImpEDE: A DSE tool for implant processors 212

6.1.1 Framework organization 213

6.1.1.1 Genetic algorithm: NSGA-II 214

6.1.1.2 Processor & cache simulators 216

6.1.1.3 Biomedical benchmarks & input datasets . . 217

6.1.1.4 Parallelization & optimization 218

6.1.2 Framework fine-tuning 219

6.1.2.1 Chromosome encoding & XTREM errata . . 219

6.1.2.2 Population size 220

6.1.2.3 Number of Generations 220

6.1.2.4 Mutation 223

ix

6.1.2.5 Crossover probability 224

6.1.3 Selected results & validation 224

6.1.3.1 Implant-processor results 224

6.1.3.2 Framework expansion 226

6.1.4 Conclusions . 228

6.2 ImpBench v1.1: Revisiting the implant benchmark suite . . . 229

6.2.1 ImpBench v1.1 overview 230

6.2.2 Experimental setup 233

6.2.3 Benchmark characterization 234

6.2.3.1 Lossless compression 235

6.2.3.2 Symmetric encryption 240

6.2.3.3 Data integrity 241

6.2.3.4 Real applications & stressmarks 243

6.2.4 Conclusions . 246

6.3 Exploration of optimal SiMS Processors 247

6.3.1 Experimental setup 247

6.3.1.1 Exploration framework 247

6.3.1.2 Worst-case workload mix 248

6.3.2 SiMS-processor DSE execution 250

6.3.3 Implant study cases 250

6.3.4 Exploration results 255

6.3.5 Discussion . 257

6.3.6 Conclusions . 258

6.4 Summary . 258

7 Conclusions . 261

7.1 Outlook . 262

7.2 Contributions . 264

7.3 Open Issues and Future Directions 265

Bibliography . 269

List of Publications . 281

Samenvatting . 283

Curriculum Vitae . 285

x

List of Tables

4.1 XScale architecture details. 119

4.2 1-KB and 10-KB physiological datasets. Double-precision (8-

Byte) data samples are used. 127

4.3 Experimental setup and acquisition parameters of input datasets. 129

4.4 XTREM configuration for the encryption profiling study. . . . 132

4.5 Collection of profiled symmetric ciphers. 133

4.6 Program sizes (in KB) of the encryption algorithms. 140

4.7 Security margins of the encryption algorithms. 141

4.8 Five best-performing encryption algorithms. 142

4.9 µop mix and frequencies for IDEA and RC6 operating on the

1-KB BP plaintext. 143

4.10 XTREM configuration for compression profiling study. 145

4.11 Collection of profiled lossless-compression algorithms. 146

4.12 Compression algorithms’ program sizes. 151

4.13 Five best-performing compression algorithms. 152

4.14 Popular mlzo µop frequencies. 153

4.15 Instruction-dependency algorithm. 153

4.16 Popular mlzo µop pairs and triplets. 153

4.17 ImpBench components. 157

4.18 XTREM configuration for ImpBench evaluation. 159

4.19 XTREM configuration for exploring a SiMS-processor case

study. 171

xi

5.1 ImpBench components and (static) binary size. 181

5.2 XTREM configuration for study on cache geometries. 182

5.3 Precision levels for IPC, power and energy in I/D-cache-size

objective functions. 189

5.4 Precision levels for IPC, power, energy and area in I/D-cache-

way objective functions. 195

5.5 ImpBench components and useful general statistics. 197

5.6 XTREM configuration for study on BPRED schemes. 198

5.7 Branch-prediction and I/D-cache configurations used. 200

5.8 Precision levels for IPC, power, energy and area in objective

function (5.1) for all cache configurations when area is con-

sidered. 206

5.9 Precision levels for IPC, power, energy and area in objective

function (5.1) for all cache configurations when area is not

considered. 208

6.1 XTREM configuration for ImpEDE integration. 216

6.2 ImpBench components for ImpEDE integration. 217

6.3 Physiological input datasets with double-precision (8-Byte)

data samples of sizes 1-KB and 10-KB. 217

6.4 Processor design parameters considered in this work, encoded

as 36 chromosomal bits. 221

6.5 ImpBench v1.1 components and useful general statistics. . . . 231

6.6 Pareto-front distance and normalized-spread metrics, and av-

erage simulation time per benchmark. 239

6.7 ImpEDE-evolved, optimal processor configurations. 251

6.8 Study cases of real implantable applications. 253

xii

List of Figures

1.1 The Da Vinci glider design. 2

1.2 Block diagram of the SiMS concept. 5

2.1 Concept of a typical implantable system. 13

2.2 Overview of imposed survey taxonomy. 15

2.3 CA plots between two categorical variables. 22

2.4 Various regression lines fitting the power-consumption (peak

active) data over the years. 24

2.5 Implant power-consumption (peak active) trends over the years. 25

2.6 Power-consumption trends over the years for different implant

functionalities. 25

2.7 Boxplot of implant power consumption (peak active) with re-

spect to PCC design. 26

2.8 Implant functionality. 30

2.9 CA plot of functionality vs. publication year. 32

2.10 Implant PCC design. 33

2.11 CA plot of PCC design vs. publication year. 35

2.12 CA plot of PCC design vs. functionality. 36

2.13 Implant and mainstream microelectronics fabrication-

technology trends over the years. 37

2.14 Implant physical-dimensions trends over the years. 40

2.15 Schematic representation of RF-induction principle. 41

2.16 Implant low-power provisions. 43

xiii

2.17 CA plots of low-power provisions vs. power source and pub-

lication year. 44

2.18 CA plot of implant low-power provisions vs. PCC design. . . 45

2.19 Implant power-consumption and operating-voltage trends

over the years. 46

2.20 Power-consumption trends over the years for different implant

functionalities. 48

2.21 Boxplots of implant power consumption (peak active) with re-

spect to different device characteristics. 50

2.22 Number of peripherals per implant over the years. 51

2.23 Implants including both actuating and sensory elements over

the years. 52

2.24 Internal-processing-enabled implants over the years. 55

2.25 Implant internal-data-memory availability and size. 56

2.26 Internal-data-memory trends over the years. 57

2.27 Implant sampling-frequency trends over the years. 59

2.28 ADC and DAC resolution trends over the years. 60

2.29 Implant PCC architecture. 61

2.30 CA plots of PCC architecture vs. PCC design and publication

year. 62

2.31 Implant PCC architecture vs. functionality 64

2.32 Implant PCC architecture vs. power features. 66

2.33 PCC-operating-frequency characteristics with respect to PCC

architecture and trends over the years. 68

2.34 Number of used and total instructions per implant PCC over

the years. 69

2.35 Relative distribution of implants featuring adjustable periph-

erals over the years. 71

2.36 CA plot of implant adjustability vs. publication year. 72

2.37 Relative distribution of implants featuring versatile (inter-

changeable) peripherals over the years. 73

2.38 CA plot of implant versatility vs. publication year. 75

2.39 CA plot of implant programmability vs. publication year. . . . 76

xiv

2.40 Implant programmability capabilities and trends over the years. 77

2.41 Relative distribution of implants based on a modular design

over the years. 79

2.42 CA plot of implant modularity vs. publication year. 80

2.43 Relative distribution of implants with reliability provisions

over the years. 81

2.44 CA plot of implant reliability vs. publication year. 82

2.45 Distribution of reliability per PCC design and per PCC archi-

tecture. 83

3.1 Block diagram of the SiMS concept. 92

3.2 Reconfigurable hardware, replicated hardware and mi-

crocoded units in the SiMS processor. 93

3.3 Overview of dependability guarantee through SiMS-compiler

provisions. 96

3.4 Compiler scheduling of test instructions. 97

3.5 Involved risk factors with (A) and without (B) a design platform. 101

4.1 XTREM-generated power profile for single program execution. 120

4.2 Envisioned standard tasks of implant processors. 124

4.3 Dataset amplitude vs. time and first-order derivative of ampli-

tude vs. time. 130

4.4 Per-component, average power consumption (in mW) for two

plaintext sizes. 134

4.5 Average and peak power consumption (in mW) for two plain-

text sizes. 136

4.6 Per-component and total encryption energy costs (in Joules). . 137

4.7 Computation overhead of ciphers manifested as energy

penalty (in Joules) when encrypting one 10-KB and ten 1-KB

plaintexts. 138

4.8 Encryption rate (in KB/sec). 139

4.9 ARM microcode representation and MISTY1 µop frequencies 142

4.10 Averaged compression ratios for 1-KB and 10-KB datasets. . . 147

xv

4.11 Averaged, average compression rates for 1-KB and 10-KB

datasets. 148

4.12 Averaged, average and peak power consumption for 1-KB and

10-KB datasets. 149

4.13 Averaged, total energy expenditure for 1-KB and 10-KB

datasets. 150

4.14 IPCs, I-/D-cache hit rates and branch-prediction rates 161

4.15 Static code size (in KB) and dynamic code size (instruction

and clock-cycle count). 163

4.16 Relative frequencies for load/store/move, arithmetic (int/fp),

compare, logic and branch/jump instructions. 165

4.17 Relative frequencies of data-dependent, dynamic-instruction

combinations. 166

4.18 Per-component and overall average power consumption. . . . 167

4.19 DMU device lateral photograph. 169

4.20 Block diagram of simulated implant application and data-

payload sizes. 171

4.21 Average IPCs, I-/D-cache hit rates and branch-prediction rates. 172

4.22 Per-component and overall average power consumption. . . . 173

4.23 Per-component and overall total energy expenditure. 174

4.24 Relative frequencies for load/store, move, arithmetic, com-

pare, logical and branch/jump µop. 174

4.25 Relative frequencies of data-dependent, dynamic-µop combi-

nations. 175

5.1 Averaged, average IPC and I/D-cache miss rates for various

direct-mapped, I-cache sizes. 183

5.2 Averaged, total and per-component average power consump-

tion (in mW) for various direct-mapped, I-cache sizes. 185

5.3 Averaged, total and per-component energy budget (in mJ) for

various direct-mapped, I-cache sizes. 186

5.4 Averaged, average IPC and I/D-cache miss rates for various

direct-mapped, D-cache sizes. 186

xvi

5.5 Averaged, total and per-component average power consump-

tion (in mW) for various direct-mapped, D-cache sizes. 187

5.6 Averaged, total and per-component energy budget (in mJ) for

various direct-mapped, D-cache sizes. 187

5.7 Results for various I- and D-cache sizes of objective function

(5.1). 189

5.8 Averaged, average IPC and I/D-cache miss rates for various

I-cache associativity degrees. 190

5.9 Averaged, total and per-component average power consump-

tion (in mW) for various I-cache associativity degrees. 191

5.10 Averaged, total and per-component energy budget (in mJ) for

various direct-mapped, I-cache associativity degrees. 192

5.11 Data-array, tag-array and total area (in mm 2) for various I-

cache associativity degrees. 192

5.12 Averaged, average IPC and I/D-cache miss rates for various

D-cache associativity degrees. 193

5.13 Averaged, total and per-component average power consump-

tion (in mW) for various D-cache associativity degrees. 194

5.14 Averaged, total and per-component energy budget (in mJ) for

various D-cache associativity degrees. 194

5.15 Data-array, tag-array and total area (in mm 2) for various D-

cache associativity degrees. 195

5.16 Results for various I- and D-cache associativity degrees of ob-

jective function (5.3). 196

5.17 Illustration of a BTB entry in the case of a bimodal predictor. . 199

5.18 Normalized, average IPCs and normalized overall branch miss

rate for various BPRED/cache configurations. 201

5.19 Normalized, average power consumption for various

BPRED/cache configurations. 202

5.20 Normalized, average power consumption per instruction per

cycle for various BPRED/cache configurations. 203

5.21 Normalized, total energy expenditure for various BPRED/-

cache configurations. 204

xvii

5.22 Normalized, total energy expenditure per instruction per cycle

for various BPRED/cache configurations. 205

5.23 Total BPRED-scheme area (in mm 2) for all BPRED configura-

tions. 205

5.24 Normalized results to the minimum value for various cache

configurations of objective function (5.1) when area is included. 207

5.25 Normalized results to the minimum value for various cache

configurations of objective function (5.1) when area is not in-

cluded. 208

6.1 Framework organization. 214

6.2 ImpEDE-generated Pareto solutions. 215

6.3 Smoothed distance and diversity metrics over 1000 genera-

tions (Benchmark: checksum) 223

6.4 Distance and Diversity metrics for various crossover probabil-

ities (Pc) over 200 generations (Benchmark: checksum) 225

6.5 Baseline DSE results for 1 KB and 10 KB datasets running on

all benchmarks. 227

6.6 Block diagram of simulated implant application with realtime

deadlines. 228

6.7 DSE results expanded with hard realtime deadlines of

2 seconds and 1 second for 10 KB datasets running on all

benchmarks. 229

6.8 Final Pareto-fronts (after 200 generations) for lossless-

compression benchmarks on 10− KB datasets. 236

6.9 Hardware requirements of optimal processors, as evolved over

200-generation runs. 238

6.10 Final (after 200 generations) Pareto-fronts for symmetric-

encryption benchmarks on 10− KB datasets. 240

6.11 Final (after 200 generations) Pareto-fronts for data-integrity

benchmarks on 10− KB datasets. 242

6.12 Final (after 200 generations) Pareto-fronts for real applica-

tions on 10− KB datasets. 244

6.13 Final (after 200 generations) Pareto-fronts for real applica-

tions and stressmarks on their respective datasets. 245

xviii

6.14 Block diagram of simulated implant application with realtime

deadlines. 249

6.15 Comparison of study cases and DSE results for 10 KB datasets

running on the selected benchmarks. 256

xix

List of Acronyms

ADC Analog-to-Digital Converter

ASIC Application-Specific Integrated Circuit

BAN Body-area Network

BiCMOS Bipolar CMOS

BioMEMS Special MEMS class wherein biological matter is manipulated

BP Blood Pressure

BPRED Branch PREDiction

CMOS Complementary Metal-Oxide Semiconductor

CNS Central Nervous System

COTS Commercial-Of-The-Shelf

CRC Cyclic-Redundancy Check

DAC Digital-to-Analog Converter

DBS Deep-Brain Stimulation

DDM Denervated, Degenerated Muscle

DFR Design For Reliability

DSE Design-Space Exploration

ECG Electro-Cardio-Graphy

EDA [in Computer Eng.] Electronic Design Automation

EDA [in Statistics] Exploratory Data Analysis

EMC Electro-Magnetic Compliance

EMG Electro-Myo-Graphy

xxi

EMI Electro-Magnetic Interference

ENG Electro-Neuro-Graphy

EOG Electro-Oculo-Graphy

EPIC Explicitly-Parallel-Instruction Computing

FES Functional Electrical Stimulation

FNS Functional, Neuromuscular Stimulation

FP Floating Point

FSM Finite-State Machine

GA Genetic Algorithm

HDL Hardware Description Language

HLL High-Level Language

HPC Hardware Performance Counter

IC Integrated Circuit

ICD Intra-Cardiac Defibrillator

ICP Intra-Cranial Pressure

ILP Instruction-Level Parallelism

IP Intellectual Property

IPC Instructions per Cycle

ISA Instruction-Set Architecture

LSK Load-Shift Keying

MEMS Micro-Electro-Mechanical System

NPA Non-Programmable Accelerator

NPM New Public Management

PCB Printed-Circuit Board

xxii

PCC Processing and/or Controlling Core

PD Parkinson’s Disease

PDA Personal Digital Assistant

PNS Peripheral Nervous System

QoS Quality of Service

QRS The most visually obvious deflections seen on a typical ECG

RAS Return-Address Stack

RF Radio Frequency

RSNA Renal-Sympathetic-Nerve Activity

SC Switched-Capacitor

SCS Spinal-Cord Stimulation

SE Standard Error (σ)

SNR Signal-to-Noise Ratio

SoC System-on-Chip

ULP Ultra-Low Power

UWB Ultra-Wide-Band

VLIW Very-Long-Instruction Word

WSN Wireless Sensor Network

xxiii

1
Introduction

C
OME to think of it, human inventions have always aspired to imitate

nature. And shameless imitation it has been to the accuracy allowed

by each era’s conquered scientific knowledge and available technical

means. This mimicry has at times been conscious and at others not. The Da

Vinci Glider [ca. 1500] (Figure 1.1) is an infamous instance of such an attempt

to imitate bird flight. Da Vinci went all the way from the theory of flight to –

actually – designing flying machines and attempting to fly them. The fact that

the original design proved to be too heavy for flight is besides the point.

1.1 Background

It may sound far-fetched at first but (bio)medical implants are just another in-

stance of mimicking nature throughout human history. Prosthetic body parts

such as wooden limbs and reeds for looking and listening inside the human

body are proved to have been used by ancient Egyptians as early as 3,000

years B.C.. In recent years, scientific knowledge underpinned by astounding

technological achievements – the “technical means” previously mentioned –

in fields such as microelectronics technology as well as material science and

more have led to the fully implantable pacemaker. The implant was developed

in 1958 and 1959 (of course, not microelectronic at the time) by Wilson Great-

batch and William M. Chardack and has been the first device to be implanted

successfully into the human body and to operate seamlessly for long periods of

time – modern pacemakers feature an in-body lifetime of a decade or longer.

Perhaps more importantly, it has also acted as a catalyst on the general public

closed-mindedness against biomedical implants. Ever since the pacemaker, a

plethora of other biomedical implants has also been proposed for solving vari-

ous medical problems, however, only a few of them have made it to the market

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The Da Vinci glider design.

such as the widespread cochlear implants and the deep-brain stimulators for

treating Parkinson’s Disease.

1.2 Problem overview

1.2.1 Socioeconomic trends

Signified by the advent of the first, implantable pacemaker in the late fifties,

biomedical microelectronic implants have evolved rapidly over the last 50

years, as much in application scope as in sophistication. However, a close

look at the current implant market reveals relatively few successfully commer-

cialized ideas. The phenomenon can be attributed to a number of reasons:

• the – until recent times – limited knowledge of many aspects of the hu-

man body combined with the large inter-patient genetic variability when

coming to human pathoses, which makes it difficult and risky to define

clear-cut implantable solutions to address all of them; and

• the practical limitations posed so far by technology; for instance, tran-

sistor sizes have not been small enough to allow for complex implant

designs to fit inside the tight constraints of the human body. Besides,

substituting sophisticated, physiological structures with artificial ones is

a highly complex and largely interdisciplinary task.

1.2. PROBLEM OVERVIEW 3

While problems such as the above have been allowing for slow yet steady im-

plant progress, current socioeconomic trends manifesting in modern societies

may not permit us even this pace any longer. To illustrate, in advanced coun-

tries the following cascading trends are currently being observed:

• Population is aging through a net reduction in birth rates combined with

an increase in life expectancy;

• Healthcare costs are growing out of proportion; and

• Higher demands for betterment of quality of life are placed (health, fit-

ness, convenience etc.).

Healthcare in the 21st century is changing rapidly. In advanced countries,

in particular, healthcare is moving from a public to a more personalized na-

ture [3, 26]. The costs of healthcare worldwide are increasing every year. In

the Netherlands, in particular, the government is trying to keep the health in-

surances affordable for all citizens by periodically reorganizing the system.

Since healthcare spending always increases at a much faster rate than the aver-

age income, such practices work only for a limited period of time. The rising

healthcare costs, in combination with population aging (i.e. more potential

customers for the healthcare system), form a tough challenge for modern soci-

eties.

Such socioeconomic trends have given birth to the notion of personalized

healthcare. The term introduces a new approach to effective healthcare – as

far as economics go, at least – whereby default hospitalization and generic

treatment of patients will be discouraged and supplanted by patient-targeted

prognosis, diagnosis and, mainly, treatment. It is highly conceivable that tech-

nology will be the vehicle for enabling personalized healthcare. Similar trends

have already been witnessed in the cell-phone and portable-computing techno-

logical revolutions.

Better use of technology – and, in our case, implants – can and should be

used to get control of healthcare costs. For example, continuous monitoring

of physiological parameters can be used instead of occasional meetings with

the doctor. Having an up-to-date and complete picture of the changes in a

patients condition will enable disease prognosis, which by definition is more

effective and less costly than disease treatment. It should be stressed that such

technology will be used not only for high-risk or chronic patients, but also for

general lower-risk patients over periods of normal activity in their home or

work environment.

4 CHAPTER 1. INTRODUCTION

Implants have clearly benefitted from the astounding recent technology-

miniaturization trends [66], boasting smaller sizes, lower power consumption

and increased performance of the transistor devices. Simply put, while the

human-body dimensions have not changed, microelectronics dimensions have

– by proportion – shrank to such an extent that modern implants are becoming

sufficiently sophisticated and small so as to treat various human pathoses, even

at the most constrained parts of the human body. It is this practical property

along with their wider acceptance in modern societies that is making them a

primary technological driver towards personalized healthcare.

1.2.2 Implant-device trends

Although biomedical implants may be (advertised to be) a primary vehicle for

the brave, new era in personalized healthcare, it has come to our attention – and

we have verified it through an extensive survey – implant design is undergoing

a shift itself. Namely, implants are gradually moving from application-specific,

rigid (e.g. FSM-based) systems to more flexible (e.g. µProcessor-based) ones.

This implies that, in the near future, implant functionality will be based on

executed software (written in some high-level, established language like C)

rather than on hardwired circuits. However, this turn of events does not come

for free; adverse effects are being witnessed:

• Implant power budgets are increasing over time, even though transistor

dimensions are shrinking and implemented device functionality is not

overtly complex;

• Implants exhibit serious absence of design for reliability. Software-

based, ad-hoc reliability techniques have been replacing inherently reli-

able implant designs over the years. For a field of highly-mission critical

embedded systems where human lives and high costs are involved, this

poses a significant problem;

• Product development is still highly application-specific, even though im-

plant designs are becoming more structured. Already established prod-

uct cases such as the family of pacemakers introduced by Medtronic,

Inc. [91], where previous design expertise is (re)used to enhance the

next device version, are currently the exception.

1.3. MOTIVATION 5

Power

Module

SiMS

processor

Sensor 1

Sensor

Actuator 1

Actuator

Wireless

Transceiver

S
td

 I
/F

S
td

 I/F

Std I/F

Std I/F

SiMS system

… …

Remote system that:

 compiles source code of application,

 downloads it to the chip,

 exchanges data with the chip etc.

Figure 1.2: Block diagram of the SiMS concept.

1.3 Motivation

Operating under the assumption that implants will be the vehicle towards im-

proved, personal healthcare and, in view of the aforementioned transitions, we

believe that a new paradigm in implant design is required.

In this dissertation we introduce Smart implantable Medical Systems

(SiMS). SiMS is a systematic approach – a framework – for providing biomed-

ical researchers (and, hopefully, industry) with a toolbox of ready-to-use,

highly reliable implant sub-systems and models in order to construct (optimal)

implants for various medical applications. The SiMS framework is conceptu-

ally illustrated in Figure 1.2; it has to guarantee the following attributes:

• high dependability (reliability, availability, maintainability and safety);

• modular, versatile design for design reuse;

• ultra-low power consumption; and

• miniature size.

6 CHAPTER 1. INTRODUCTION

Devices built on the SiMS framework will be small, fine-tuned implantable

devices to the application at hand, yet built of generic components. Without

requiring redesign, they will be able to measure and/or regulate one or multiple

biomedical parameters simultaneously and communicate with external (out-of-

body) computing equipment wirelessly. Given that such devices are directly

related to human life, they will be characterized by very high reliability and

some degree of autonomy and self-awareness (within extremely demanding

low power and size constraints).

A cornerstone of the SiMS framework is the SiMS processor which will be

characterized by and will support the aforementioned attributes. After describ-

ing the overall SiMS framework, our foremost goal in this dissertation is the

specification of the SiMS processor. In effect, we explore optimal processor

configurations which are best-suited for serving diverse implant applications

(i.e. have universal applicability) while exhibiting low power consumption,

low energy expenditure and low area cost.

1.4 Dissertation challenges & contributions

Throughout this dissertation work, we have encountered various challenges of

which we were utterly oblivious at the outset. Such challenges are as follows:

• Since the SiMS approach is original, no useful literature or resource base

exists: Design specifications, reference designs, established benchmark-

ing platform as well as suitable design tools are unavailable;

• The implant field is ruled by high risks and high profits. Implant compa-

nies generally assume a highly conservative (and often secretive) stance

towards new product development. Their current state of the art has

virtually been inaccessible to us to use for reference. A lot of careful

guess-work is required;

• We are attempting to propose a different approach on implant design.

As with everything new, this has raised strong reactions from the current

status-quo and, conversely, has made us question every new step we

made in this unknown ground.

With this dissertation, the following diverse contributions have been delivered:

• Comprehensive survey and analysis of implantable systems revealed

crucial trends in the field,

1.5. DISSERTATION ORGANIZATION 7

• Conceptualization and setup of a new, top-down design paradigm for

implantable systems (SiMS),

• Development of new simulation/evaluation/DSE tools for implant pro-

cessor design. Development of benchmarking base, and

• Automatic, multiobjective design-space exploration of optimal SiMS

processor architectures.

We should make clear that, within the SiMS project, it has not been our ex-

press goal to propose novel implant applications but, rather, to specify a sound

framework upon which many existent (but certainly not all) and, most impor-

tantly, new implant applications can be built. SiMS shall guarantee a reduction

of development times by providing a solid substrate onto which prior art will be

brought together, combined and integrated in the final product. Such prior art

will be in the form of Intellectual-Property hardware and software components,

all proven, pre-verified and pre-tested according to (inter)national medical-

safety regulations. This shall, in turn, guarantee an increase in component-

and device-level reliability.

By being fully aware that implantable devices are fruits of a multidisciplinary,

combined effort, we also work within the SiMS framework towards a clear

separation of partner expertices. That is, we aim at a framework where en-

gineers from different fields provide the system architecture, the sensors and

actuators, the power source, the wireless transceiver etc., while medical experts

are actively involved in composing, adjusting the final system to the particular

patient needs.

1.5 Dissertation organization

The dissertation at hand has been organized in chapters, each handling a dif-

ferent item of study.

In Chapter 2 we present the findings of an extensive survey performed on more

than 60 different implantable systems, found in the literature. To make the

analysis manageable, findings have been taxonomized in different categories

covering all aspects of modern implantable systems. The chapter concludes by

summarizing the most crucial trends observed in the implant domain, thus, pro-

viding the scientific background onto which the SiMS project has been based.

In Chapter 3 we discuss at length the socioeconomic drifts necessitating the

8 CHAPTER 1. INTRODUCTION

inception of SiMS. We, then, describe the SiMS concept in detail and present

the background information required for its realization.

Chapter 4 is occupied with defining the simulation environment – simula-

tor, benchmarks, input datasets – for our further experiments. The simulator

employed is detailed and practical issues are discussed. Original benchmark

programs are being investigated and the most suitable ones are grouped in a

novel benchmark suite for implant processors, called ImpBench. Proper input

datasets to these benchmarks are also discussed. With all pieces of the simula-

tion environment finally in place, we conclude the chapter with the case study

of an instance SiMS-processor application.

In Chapter 5, we offer an in-depth exploratory study on suitable cache organi-

zations and branch-prediction policies for a novel processor for SiMS-based

implants. Our standard first-order, optimization goals performance, power

consumption and energy expenditure are in this chapter expanded by a third

one, area utilization.

In Chapter 6, we first introduce ImpEDE, a new tool offering automated, mul-

tiobjective DSE (Design-Space Exploration) of optimal SiMS processor mi-

croarchitectural configurations. Through ImpEDE, we introduce one more op-

timization goal – execution time – next to performance, power consumption,

energy expenditure and area. The need to introduce the notion of “hard dead-

lines” in program execution have coerced us in developing an updated version

of ImpBench (v1.1), reported next. As a last and culminating point in this

thesis, we utilize ImpEDE, ImpBench v1.1 and suitable implant applications

extracted from the survey in Chapter 2 to offer a number of optimal SiMS-

processor solutions.

Last, Chapter 7 provides concluding remarks on the work presented. The chap-

ter summarizes the dissertation, outlines its contributions and proposes future

research directions.

2
A survey on microelectronic implants

W
HILE at first restricted to the field of pacemakers, biomedical

microelectronic implants nowadays boast an expanding number

of biomedical applications. These technological innovations have

brought about a revolution in existing methods for disease diagnosis and ther-

apy. However, the relatively short lifespan of the implant domain – tradition-

ally subject to tight, demand-driven design policies and bound by economical

constraints – has resulted in the absence of a holistic view of the field.

Structured, repeatable methods of implant design are currently sorely missed

and previous, precious know-how is currently being wasted and rediscovered.

Before any systematic implant-design approach such as the one we take in

SiMS is feasible, a careful exploration of the field must take place.

In this chapter we present selected findings of an extensive survey performed

on more than 60 different implantable systems, found in the literature. To

make the analysis manageable, findings have been taxonomized in different

categories covering all aspects of modern implantable systems. The chapter

concludes by summarizing the most crucial trends observed in the implant

domain, thus, providing the scientific background onto which the SiMS project

has been based.

2.1 Survey goals

An extensive survey has been performed and serves a twofold purpose.

Firstly, we create a detailed implant taxonomy of a large number of systems.

An extensive list of device attributes has been extracted and a subset thereof

(pertinent to the rest of this thesis) is presented in this chapter. Information has

been collected, organized and is presented in a highly structured manner.

9

10 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

Secondly, we attempt to present a clear picture of the past and present state

of things in the field: More than 60 implant cases over the period 1974–2005

have been studied and included in the survey. We also attempt to uncover

potential problems along the way, and, through making suggestions for future

design, to propose new directions for implant design. Survey results are, thus,

extensively commented and annotated, and analysis is backed by statistical

tests of the gathered data, where possible.

2.2 Survey scope

For this survey, reported literature dating back to 1974 has been collected but

the scarcity of reported study cases in those earlier years has forced us to pri-

marily focus on the more densely populated 12-year period 1994–2005. As we

shall see through the course of this analysis, even for this later period, avail-

able data is very limited (i.e. sample size is small). To make matters worse,

collected data is very ”noisy” (i.e. variance is large), reflecting the aforemen-

tioned diverse nature and non-structured approach in implant design. Although

both these effects weaken the strength of many of our performed statistical

tests, we do include many such tests in the current study for completeness pur-

poses and in the hopes of repeating them in an extended, future study on a

larger sample size. Splitting the data into more focused subgroups might solve

the variance problem but would result in prohibitively small sample-data sizes

which would weaken our analysis.

While the, often, significant data variance is an inherent side-effect of the stud-

ied field, we have attempted to collect robust albeit more limited sample data.

Robustness stems from the scope of this survey which has been restricted to

study cases adhering to the following two requirements:

1. Complete systems: Stand-alone working devices providing complete

functionality are considered; thus, simple implant components such as

electronic front-ends, biosensors, readout electronics etc. are excluded.

2. Microelectronic devices: Microelectronics- and MEMS-based devices

for in-vivo operation are considered; thus, mechanical implants (e.g. ar-

tificial limbs), implant packaging, devices for medical studies (e.g. bio-

assay chips) etc. are excluded.

2.2. SURVEY SCOPE 11

The rationale behind the above requirements lies in the fact that, first, we are

interested in complete implant solutions available so far. We wish to inves-

tigate functional devices which have been designed with the whole system

in mind, under system-wide design considerations. Second, we are especially

focusing on the architecture of the processing and/or controlling cores (col-

lectively termed PCC’s) residing inside such systems since our expertise, in-

terest and prior work chiefly lies in the field of computer architectures. It is,

further, our strong belief that the implant architecture is a design aspect to ben-

efit greatly from the recent advances in microtechnology and, due to this fact,

also an aspect wherein lies much room for improvement.

Overall, with this study we are primarily interested in presenting how micro-

electronic implants have developed over the years from a system’s perspective.

This is not to say that other aspects of implant design such as e.g. device pack-

aging should be overlooked. On the contrary, packing is one of the key ele-

ments for chronic implantation of implantable devices these days. However,

it pertains to other fields of study like, for instance, materials science and, as

such, lies outside the scope of this survey.

It should be stressed that all surveyed systems originate from published liter-

ature across various biomedical, microelectronics and other fields of science.

That is, almost all devices are academic-level and not commercialized systems,

with all that this implies. We are aware that this selection is biased in a number

of ways: i) surveyed devices may have not reached the level of optimization

demanded of industrial products, and ii) surveyed devices may not be accu-

rately reflecting the at-the-time commercial state of the art, as devices used for

research tend to be more ambitious and, in many ways, ahead of their time.

However, we do not expect these biasing effects to have a annulling effect on

the findings of this survey for academia and industry alike: As it turns out, the

implant domain still is a very limited embedded-systems subdomain whereby

the path from a successfully researched new implant to a commercial product

is short and straightforward.

What is more – and as will be made evident through the process of this study

– most of the studied devices have actually been implanted in living animal or

human specimens and in-vivo evaluated. As a result, functional specifications

as well as physical dimensions had to have reached a high level of sophisti-

cation1 before being tested, which is more than most experimental embedded

devices can brag in other domains.

1See, for instance, the discussion on implant chipset and packaging size in Section 2.6.2.

Dimensions are very close to those of existing commercial systems.

12 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

In any case, this survey and analysis is a best-effort yet unique attempt at col-

lecting, taxonomizing and characterizing data from a domain traditionally gov-

erned by high risks as well as profits; thus, by high secrecy, royalty-protected

designs and largely non-disclosed information.

Last but not least, this survey has not been intended as a starting point for

discussions on the impact biomedical implants have on societies or their ethical

implications thereupon. Without dismissing the ethical repercussions arising

from the improvement and widespread adoption of such devices, we restrict

discussion on strictly technical matters throughout this document.

2.3 Survey structure

Overall survey structure is as follows: Section 2.4 gives a short description

of the main components of microelectronic implants and their functionality.

In Section 2.5, we discuss at length the imposed classification parameters we

have used for organizing the survey information and we present the different

types of statistical tests we are going to perform on them. Section 2.6 analyzes

the survey findings through the use of illustrated observations and statistical

analysis. Overall conclusions are drawn in Section 2.7.

2.4 An implant primer

Since various parameters of microelectronic implants are investigated in this

survey, a quick overview of the major implant subsystems is given here. A

conceptual illustration of a typical microelectronic implant is depicted in Fi-

gure 2.1. As can be seen from the figure, a typical, modern implantable system

comprises the following parts:

• Internal part: The actual implant with peripherals (sensors, actuators,

wireless transceiver, power source etc.)

• External part: The (optional) external host unit (e.g. PDA) controlling

or simply auditing the implant.

• Communication link: The (optional) wireless link between the internal

and external part for exchange of physiological data and/or implantable-

device commands.

2.4. AN IMPLANT PRIMER 13

commandsdata

wireless link

Processing/Controlling Core (PCC)

Peripherals (sensors/actuators)

Wireless transceiver

Battery

External host

Implant

ds

 link

Figure 2.1: Concept of a typical implantable system.

The internal part consists of combinations of different components, most of-

ten, what we have termed a Processing/Controlling Core (PCC) lies in the heart

of the device coordinating overall operation. Acquisition of physiological data

on the part of the implants is usually achieved through appropriate sensors

whereas intervention to the human body (such as insulin administration, nerve

and muscle electrical stimulation, to name a few) is effectuated through actu-

ators. One or more sensors and/or actuators collectively termed peripherals

are included in the implant. Such peripherals realize the physical interface to

the body, measuring and/or affecting physiological quantities, respectively.

A common characteristic in many modern implants is their ability to percuta-

neously accept commands from an external host system (e.g. computer, hand-

held device) and/or to transmit physiological data outwards, as measured from

inside the body over a transcutaneous interface. Communication between the

internal and external parts is optional yet is increasingly used these days, is

commonly achieved wirelessly and can, per case, be unidirectional or bidirec-

tional. For this reason implants also include some kind of wireless transceiver

as a peripheral unit to the PCC.

Power inside the implant is provided by a separate peripheral, either an in-

cluded battery cell or an induction coil receiving EM-power wirelessly from

an external coil. Oftentimes, the same coil used for information broadcasting

is also used for power transfer through living tissue.

14 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

The (also) optional external part typically is a (portable) computing unit such

as a laptop or a palmtop or, even, a desktop computer. This is under the direct

control of the patient, his/her treating physician and/or technician. From the

external host, commands can be transmitted to the implant and physiological-

data reception can be achieved. The external host often serves also as a data

logger, storing large quantities of measured readouts acquired through the im-

plant sensors since implant-native data memory is usually very limited.

2.5 Survey setup

The existence of so many diverse attributes in the studied biomedical implants,

makes their classification a non-trivial issue. We have attempted to take into

consideration as many of these attributes as possible while, at the same time,

keeping complexity manageable. To this end, a two-level hierarchical classifi-

cation of data has been designed, as illustrated in Figure 2.2.

In the first level, eight major categories have been identified covering core

aspects of an implantable system. In the second level, these categories have

been further broken down, each into a set of related parameters considered to

be pertinent to our study, as outlined in the previous section. For the purposes

of this thesis document, we shall limit our analysis to only those categories

related to the SiMS project. For an exhaustive analysis of all categories, the

interested reader can refer to a complete technical report [133]. Below, we give

a detailed description of the selected categories along with their measurement

units and the policy followed in filling in the taxonomy tables. The omitted

categories have been denoted with an asterisk (‘*’) in Figure 2.2.

2.5. SURVEY SETUP 15

T
A

X
O

N
O

M
Y

A
P

P
L

IC
A

T
IO

N
F

U
N

C
T

IO
N

A
L

IT
Y

E
L

E
C

T
R

O
M

E
C

H
.

F
E

A
T

U
R

E
S

P
O

W
E

R

F
E

A
T

U
R

E
S

G
E

N
E

R
A

L

F
E

A
T

U
R

E
S

P
C

C

F
E

A
T

U
R

E
S

M
IS

C
.

F
E

A
T

U
R

E
S

C
O

M
M

.

F
E

A
T

U
R

E
S

*

P
C

C
 I

C
 c

o
u

n
t*

to
ta

l
c
h

ip
(s

e
t)

 a
r
e
a

P
C

C
 d

e
si

g
n

p
a

c
k

a
g

e
 v

o
lu

m
e

P
C

C
 t

y
p

e
*

to
ta

l
w

e
ig

h
t

*

to
ta

l
tr

a
n

si
st

o
r

c
o

u
n

t
*

fa
b

r
ic

a
ti

o
n

 t
e
c
h

n
o

lo
g

y

p
o

w
e
r
 s

o
u

r
c
e

p
o

w
e
r
 c

o
n

su
m

p
ti

o
n

lo
w

-p
o

w
er

 p
r
o

v
is

io
n

s

p
e
r
ip

h
e
r
a

ls

st
im

u
la

ti
o

n
 m

e
th

o
d

*

in
te

r
n

a
l
p

r
o

c
e
ss

in
g

sa
m

p
li

n
g

 r
a

te

in
te

r
n

a
l
d

a
ta

 s
to

r
a

g
e

A
D

C
 r

e
so

lu
ti

o
n

D
A

C
 r

e
so

lu
ti

o
n

P
C

C
 a

r
c
h

it
e
c
tu

r
e

n
u

m
b

e
r
 o

f
in

st
r
u

c
ti

o
n

s

n
o

n
-P

C
C

 f
r
e
q

u
e
n

c
y

in
st

r
u

c
ti

o
n

-w
o

rd
 s

iz
e

P
C

C
 f

r
e
q

u
e
n

c
y

d
a

ta
-w

o
rd

 s
iz

e

a
d

ju
st

a
b

il
it

y

m
o

d
u

la
r
it

y

v
e
r
sa

ti
li

ty

r
e
li

a
b

il
it

y

p
r
o

g
r
a

m
m

a
b

il
it

y

m
u

lt
ip

o
in

t-
c
o

m
m

 s
u

p
p

t.

c
o

m
m

a
n

d
 e

n
c
.
sc

h
e
m

e

c
o

m
m

u
n

ic
a

ti
o

n
 t

y
p

e

c
o

m
m

a
n

d
-p

a
c
k

e
t

si
z
e

R
x
-c

a
r
r
ie

r
fr

e
q

u
e
n

c
y

c
o

m
m

a
n

d
 r

a
te

R
x
-m

o
d

u
la

ti
o

n
 s

c
h

e
m

e

d
a

ta
 e

n
c
.
sc

h
e
m

e

d
a

ta
-p

a
c
k

e
t

si
z
e

T
x
-c

a
r
r
ie

r
fr

e
q

u
e
n

c
y

d
a

ta
 r

a
te

T
x
-m

o
d

u
la

ti
o

n
 s

c
h

e
m

e

c
o

m
m

.
e
r
r
o

r
 h

a
n

d
li

n
g

F
ig

u
re

2
.2

:
O

ve
rv

ie
w

o
f

im
p
o
se

d
su

rv
ey

ta
xo

n
o
m

y.

16 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

2.5.1 Major categories

In detail, seven major categories are described in this thesis, as follows:

1. APPLICATION: The medical problem the specific implantable system is

designed to remedy. Intensive-care continuous monitoring, pain therapy,

disease diagnosis, restoration of paralyzed limbs are all typical applications.

2. FUNCTIONALITY: The functional principles employed by the im-

plantable system for fulfilling its application purpose. This can typically

be sensor-based acquisition of biological data or electrical stimulation of

living tissue.

3. ELECTROMECHANICAL FEATURES: The design approach and imple-

mentation technology of its microelectronic parts and packaging as well as

the mechanical aspects of the implantable system, such as physical size.

4. POWER FEATURES: The power consumption of the implant, the power

source used and any implemented special features for low power.

5. GENERAL IMPLANT FEATURES: The most common attributes of mi-

croelectronic implants such as supported number and type of sensors and

actuators, provision for internal data storage (for data-acquisition systems),

supported sampling rate, ADC or DAC resolution and so on.

6. PROCESSING/CONTROLLING-CORE FEATURES: Further and more

involved details of the PCC (if present) of the implant. Examples are the

core frequency and the instruction- and data-word sizes.

7. MISCELLANEOUS IMPLANT FEATURES: More specific attributes of

an implant; for instance, its ability to support various parameter settings, to

support different peripheral modules (e.g. sensors), to feature hardware- or

software-supported error handling during operation and so on.

The above categories make it obvious that the attempted classification includes

almost exclusively attributes of the implanted components of the surveyed sys-

tems but not of the external components. External components (as seen in Sec-

tion 2.4) have diverse features of their own and present their own challenges.

However, they are not subject to the tight constraints or requirements their

implanted counterparts are. As previously mentioned, the concern in this sur-

vey resides mainly on the characteristics of the central PCC that, if present, is

implementing (or, at a minimum, supporting) the functionality of the implant.

2.5. SURVEY SETUP 17

2.5.2 Minor categories

We have further broken down the major categories, presented above, into 25

parameters2. In what follows, each one is analytically presented and its con-

text is explained. It is noted that, for the first two major categories, i.e. AP-

PLICATION and FUNCTIONALITY, no underlying parameters exist. For the

remaining five categories the parameters are as follows:

2.5.2.1 ELECTROMECHANICAL FEATURES

i. ’PCC design’: The design style (full-custom, semi-custom or based on

commercial, off-the-shelf (COTS) components) of the PCC IC(s) in the

implant. This field is meaningless if the ’PCC IC count’ parameter equals

zero and is, in such cases, marked as ”non-applicable”.

ii. ’total chip(set) area’: The area in mm 2 of the PCC chip(s) and/or of the

overall implant chipset in case of discrete-component or multi-chip imple-

mentation. If more detailed dimensions figures are given (e.g. PCC area

and total PCB area), all are reported and distinguished in this field.

iii. ’package volume’: The dimensions in mm 3 of the implant packaging.

iv. ’fabrication technology’: The fabrication process used for realizing the

implant IC(s). When COTS-based or no IC(s) are used in an implant, the

fabrication technology used is reported as ”non-applicable”.

2.5.2.2 POWER FEATURES

i. ’power source’: The type of power source the implantable device uses.

ii. ’power consumption’: The overall power consumption of the implant.

If the design includes digital (PCC) components, the fraction of the to-

tal power consumed by them is included as well (if known) in square

brackets next to the overall figure. Also, the operating voltage is re-

ported last, in curly braces. Thus, the form of this field is: power total

[power digital] {operating voltage}.

iii. ’low-power provisions’: The special provisions in hardware and/or soft-

ware of the implant for achieving low-power state(s) of operation. This

2In the technical report [133], the full range of 43 parameters is included.

18 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

field does not take into account low-power components used in the design

(e.g. low-power amplifiers) since this is almost always the case in such

devices. It, rather, pertains to more dynamic or system-level methods of

reducing power such as sleep modes of PCC operation, pulse-powering of

subsystems etc.

2.5.2.3 GENERAL IMPLANT FEATURES

i. ’peripherals’: The set of peripherals (stimulating/monitoring electrodes,

sensors, actuators etc.) implemented in the implant. In case the implant

features a more generic design which theoretically supports a larger or

different set of peripherals (thus, a superset of the given instance), they

are also reported last, in square brackets.

ii. ’internal processing’: The ability of the core (if present) to perform, apart

from common signal conditioning operations (like ADC3/DAC4, filtering

etc.), further data manipulation, e.g. Fourier transformation, data com-

pression, control feedback, application-specific algorithms etc.

iii. ’internal data-storage capability’: The ability of the implant to store data

internally, i.e. in some internal memory block. Such data can be physi-

ological recordings, stimulation control settings etc. If the data-memory

type and size utilized are available, they are also reported in this field.

iv. ’sampling rate’: The sampling rate in Hz supported by the implanted sys-

tem if/when biological-data acquisition takes place.

v. ’ADC resolution’: The resolution in bits of the included ADC(s) in an

implant (if present).

vi. ’DAC resolution’: The resolution in bits of the included DAC(s) in an

implant (if present).

2.5.2.4 PROCESSING/CONTROLLING-CORE FEATURES

i. ’PCC architecture’: The structural nature of the implant PCC (if present).

This can be a custom or commercial µC or µP, a simple Finite-State ma-

chine (FSM), a hardware counter or other.

3ADC: Analog-to-Digital Converter
4DAC: Digital-to-Analog Converter

2.5. SURVEY SETUP 19

ii. ’PCC frequency’: The PCC(s) clock frequency in MHz (if present).

iii. ’non-PCC timing’: If a PCC is present in the design, this field is non-

applicable. Otherwise, this field holds the (highest) running frequency

in kHz of the overall implant design, e.g. for some included Switched-

Capacitor (SC) circuitry.

iv. ’number of instructions’: The number of available instructions featured

by the PCC(s). If the maximum number of instructions (as specified by

e.g. the opcode bits) is known, then it is noted in curly braces right next

to the first number (if known). If the two numbers coincide, there is no

maximum number included.

v. ’instruction-word size’: The core instruction size in bits (if present).

vi. ’data-word size’: The core data size in bits (if present). Since many

designs are highly customized, it may happen that this figure does not

coincide with the instruction-word size. In cases where internal memory

is included in the implant, this size is typically equal to the memory width.

2.5.2.5 MISCELLANEOUS IMPLANT FEATURES

i. ’adjustability’: The capacity of the implant to accommodate diverse op-

erational settings (e.g. sample rate, filter bandwidth, amplifier gain,

stimulus-pulse duration and amplitude, sensor sensitivity etc.) of its pe-

ripherals (e.g. sensors, actuators).

ii. ’versatility’: The ability of the implant to serve in different operational

roles by being able to drive different peripheral modules.

iii. ’programmability’: Characterizes implants featuring a program (and data)

memory with specific downloaded code for achieving their functionality.

This parameter does not refer to temporary data storage as e.g. in the case

of FSM’s where data are kept in registers for controlling the FSM state

transitions. The parameter pertains to the ability of an implant to execute

different source codes rather than operating based on some hardwired or

hard-coded function. If available, the type and size of the program mem-

ory is also reported in this column. Also, if the PCC can be in-system

reprogrammed, that is, different source codes can be downloaded and ex-

ecuted after implantation, this trait is also reported.

20 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

iv. ’modularity’: The design nature of the PCC(s) (if present). It describes

generically designed cores that can inherently (i.e. without modifications)

support many different biomedical applications by allowing the plugging-

in of a large (infinite, theoretically speaking) set of different peripherals.

This field also refers to any other feature that extends the (re)usability of

part or whole of a specific design to other designs.

v. ’reliability’: This trait includes all provisions made in an implant design

(either in hardware or in software) for incorporating error-handling func-

tionality. This may range from simple error-detection to error-correction

or -recovery techniques. It also entails fault-tolerant design, built-in di-

agnostic systems, design for testability etc. Mechanical aspects such as

packaging, assembly and materials are not considered.

2.5.3 Discussion

In the above, we have laid out a rather extensive list of taxonomy parameters

against which we have queried the collected implant designs for data. The ac-

commodated parameters, while focusing on the PCC component(s) of the im-

plants, address other crucial aspects of implant designs, as well. Such aspects

include low power and small feature size as well as value-creating enhance-

ments; namely, wider versatility, improved (multi)functionality and built-in

reliability, to name a few.

Except for offering a taxonomized and highly structured review of related art,

these parameters serve a second, more crucial role. They are essentially used as

the statistical variables encoding all gathered information in a form suitable for

statistical analysis. In this analysis, these variables have been used in various

illustrations and statistical tests for extracting educated conclusions in the field,

as will be presented in the following sections.

Although there is an almost one-to-one relation between the taxonomy data

and the variables, some differences exist. For instance, taxonomized data be-

longing to one parameter (e.g. ’power consumption’) had to be split in more

than one actual variables (e.g. ’standby power’, ’average power’, ’transmission

power’, ’active power’ and ’operating voltage’) to allow for accurate statistical

tests to be performed.

A final word on terminology: In this dissertation, the terms “(taxonomy) pa-

rameters” and “(statistical) variables”, although slightly different, shall hence-

forth be used interchangeably, referring to the same data quantities seen from

a different perspective, unless otherwise stated. The terms “PCC” and “core”

2.5. SURVEY SETUP 21

also refer to the same implant component. Last, commonly met components in

implantable systems such as sensors, actuators, electrodes and even wireless-

communication modules shall also be collectively referred to as “peripheral

units”, “peripheral modules” or, simply, “peripherals”.

2.5.4 Statistical tests

Through the course of the survey analysis, numerous research questions have

been raised, the answers to which have been formulated into five statistical

tests. In order to familiarize the reader with the following analysis, five repre-

sentative research-question instances, along with their corresponding tests, are

presented next.

2.5.4.1 Testing independence of two categorical variables

Question: “Does implant functionality have an effect on the PCC

design employed?”

This question translates to the equivalent question whether there is a strong

correlation between the two variables ‘functionality’ and ‘PCC design’. Both

the dependent (or response) variable ‘functionality’ and the independent (or

explanatory) variable ‘publication year’ are categorical. In effect, a suitable

statistical test to employ for testing the hypothesis between two categorical

variables is a chi-square test.

In this case, the test reveals a significant correlation between the variables at

the .05 level (p = 0.0235). Since the variables contain multiple categories,

we would like to explore further the relation between the various categories.

We could try to investigate this through a scatterplot but since both our vari-

ables are categorical (i.e. non-numerical), we have plotted a Correspondence-

Analysis (CA) plot, as shown in Figure 2.3a. The plot does indicate there is a

correlation between the two variables and we further identify relations between

their categories; for instance, most stimulation implants have been developed

as full-custom processes.

There are, however, other cases in this study that the chi-square test returns

non-significance, meaning that the null hypothesis cannot be rejected (i.e. im-

plant functionality does not change over time). Unfortunately, this is often due

to the large standard error of the limited sample data. Even in those cases, we

would like to get a feeling of what the relation between the categories of the

22 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

-0.5 0.0 0.5 1.0

-0
.5

0
.0

0
.5

1
.0

A

B
C

-0.5 0.0 0.5

-0
.5

0
.0

0
.5

1

2

3
4

A

B

C

1

2

3

4

generic function

measurement

stimulation

no

commercial

semi-/structured-custom

full-custom

(a) CA plot of PCC design vs. func-

tionality.

-1.5 -1.0 -0.5 0.0

-1
.5

-1
.0

-0
.5

0
.0

A
B

C

D

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0
.0

0
.2

1

2

3

A

B

C

D

1

2

3

drug delivery

measurement

stimulation

stimulation / measurement

1994--1997

1998--2001

2002--2005

(b) CA plot of functionality vs. pub-

lication year.

Figure 2.3: CA plots between two categorical variables.

two variables is. In such cases, a CA can also be used.

2.5.4.2 Testing whether categorical variables change over time

Question: “Do the relative percentages of implant-functionality

categories change significantly over time?”

This question translates to the equivalent question whether there is a strong

correlation between the two variables ‘functionality’ and ‘publication year’.

In this case, the response variable ‘functionality’ is categorical while the ex-

planatory variable ‘publication year’ is scale. However, as will be explained

later in the analysis, publication years can be grouped into 3 time periods (i.e.

categories), effectively allowing for treating ‘publication year’ as a categorical

variable, too. Therefore, for testing the hypothesis of the above research ques-

tion, a chi-square test and assorted CA plot can be used in this case, too. In

fact, in this case the test does not reveal a significant correlation (p = 0.4240)

between the two variables but the CA plot (Figure 2.3b) can reveal some inter-

esting trends.

2.5. SURVEY SETUP 23

2.5.4.3 Exploring the relation of a scale variable over time

Question: “How does implant power consumption (peak active)

change over time?”

We wish to explore how the scale variable ‘power consumption (peak active)’

changes over time which is represented by the scale variable ‘publication year’.

This type of question can be answered by simple regression analysis. Both

linear and polynomial regression lines have been fitted through least-squares

(LS), least-median-of-squares (LMS) and least-trimmed-squares (LTS) estima-

tors, as seen in Figure 2.4. A simple (non-parametric) smoother line has also

been plotted. As the smoother line also hints, a quadratic regression line based

on LS has been fitted to the data, as shown in Figure 2.5. Confidence-Interval

(CI) bands of 95% have also been plotted.

2.5.4.4 Exploring the relation of a scale variable over time over groups

Question: “How does power consumption (peak active) change

over time for different implant functionalities?”

Through asking this question we wish to investigate whether implants from

the two major functionalities (measurement and stimulation) exhibit different

power-consumption trends over time. In statistics jargon, we wish to determine

whether ‘functionality’ affects ‘power consumption (peak active)’, controlling

for ‘publication year’. For this kind of questions, a so-called dummy-variable

regression model is created accommodating also interactions between the two

categories (or factors) of dummy-variable ‘functionality’ and the independent

scale variable ‘publication year’.

For this question instance, let us revisit Figure 2.5 and highlight with differ-

ent colors the two categories of the dummy variable; see Figure 2.6a. On the

scatterplot, (non-parametric) smooth curves have also been drawn to assist ex-

ploration. Quadratic regression lines have been fitted on both stimulation and

measurement points and are illustrated in Figure 2.6b. Although the shape of

the two fitted curves is not identical, we wish to test whether the observed

difference between them is statistically significant. Therefore, we append to

our analysis a Log-Likelihood ratio (G) test which yields non-significance

(G = 1.0080, p = 0.7993). For the particular question, this outcome

means that the two implant functionalities do not differ significantly in their

power-consumption trends over time to merit separate handling.

24 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

0
2
0

4
0

6
0

8
0

1
0
0

Lines

Publication year (-)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 -

 p
e
a
k
 a

c
ti
v
e
 (

m
W

)

1994 1996 1998 2000 2003 2005

Smoother line

LS fit

LMS fit

LTS fit

0
2
0

4
0

6
0

8
0

1
0
0

Quadratic Curves

Publication year (-)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 -

 p
e
a
k
 a

c
ti
v
e
 (

m
W

)

1994 1996 1998 2000 2003 2005

Smoother line

LS fit

LMS fit

LTS fit

0
2
0

4
0

6
0

8
0

1
0
0

Third-Degree Polynomials

Publication year (-)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 -

 p
e
a
k
 a

c
ti
v
e
 (

m
W

)

1994 1996 1998 2000 2003 2005

Smoother line

LS fit

LMS fit

LTS fit

0
2
0

4
0

6
0

8
0

1
0
0

Fourth-Degree Polynomials

Publication year (-)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 -

 p
e
a
k
 a

c
ti
v
e
 (

m
W

)

1994 1996 1998 2000 2003 2005

Smoother line

LS fit

LMS fit

LTS fit

Figure 2.4: Various regression lines fitting the power-consumption (peak ac-

tive) data over the years.

2.5.4.5 Comparing a scale variable over groups

Question: “Does the chosen implant PCC design has an impact

on its power consumption (peak active)?”

We wish to perform a “within-groups” comparison of a given categorical vari-

able (here, ‘PCC design’) with respect to a scale variable (here, ‘power con-

sumption (peak active)’). It is interesting to see whether power consumption

is generally affected by implant PCC design. Exploration has been performed

numerically, through a Kruskal-Wallis rank sums test, and visually, through

boxplots.

2.5. SURVEY SETUP 25

0
2

0
4

0
6

0
8

0
1

0
0

Quadratic regression fit and 95% CI's

Publication year (-)

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 -

 p
e

a
k
 a

c
ti
v
e

 (
m

W
)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Fitted regression line

Confidence-interval (upper/lower) line

Figure 2.5: Implant power-consumption (peak active) trends over the years.

0
2

0
4

0
6

0
8

0
1

0
0

Power cons. vs. pub. year over funct.

Publication year (-)

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 -

 p
e

a
k
 a

c
ti
v
e

 (
m

W
)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Smoother line for: measurement

Smoother line for: stimulation

(a) Smoother lines.

0
2

0
4

0
6

0
8

0
1

0
0

Quadratic regression fits over funct.

Publication year (-)

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 -

 p
e

a
k
 a

c
ti
v
e

 (
m

W
)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Fitted line for: measurement

Fitted line for: stimulation

(b) Fitted quadratic lines.

Figure 2.6: Power-consumption trends over the years for different implant

functionalities.

The boxplots in Figure 2.7 indeed reveal different median power profiles for

implants employing different PCC designs. For instance, full-custom implants

consume, on average, more power than ones built of off-the-shelf components.

Of course, implants with no PCC at all consume the lowest power overall.

Even though such differences are easily visible in the figure, we wish to use

some suitable statistic to verify them. Since the comparison is “within-groups”

and we have a combination of a scale and a categorical variable, a Kruskal-

Wallis (KW) rank sums test appears to be the most suitable choice. For this par-

26 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

no comm. semi/struct full

0
2
0

4
0

6
0

8
0

1
0
0

PCCdesign

Figure 2.7: Boxplot of implant power consumption (peak active) with respect

to PCC design.

ticular research question, a KW test returns non-significance (X 2 = 3.9675,

p = 0.2650).

2.6 Survey results

In the following sections, survey findings will be presented and analyzed in an

organized fashion. An important issue to keep in mind is that in the current

study we have attempted to cover a wide as well as representative range of

existing implantable devices (either for research or for commercial purposes).

Nonetheless, we are aware that the field has not been covered in a perfectly

homogenous manner. As a result, the statistics generated hereafter are at times

skewed which will be diligently discussed throughout. Even so, they currently

constitute the best possible (and, to our knowledge, the only) study of the

present state of implants.

2.6.1 Implant applications & functionality

It is highly didactic to, first, take a close look at the application spectrum mi-

croelectronic implants are covering these days and the functionalities they are

employed for. Thus, the categories APPLICATION and FUNCTIONALITY

are investigated first. The APPLICATION column, reveals the wide spreading

of implantable devices across diverse medical fields. As will be shown below,

these devices generally serve two distinct functionalities: diagnosis & therapy.

2.6. SURVEY RESULTS 27

Modern implants display a largely (micro)electronic nature which has been

an excellent substrate for developing electricity-based measurements. What is

more, their miniature size has enabled researchers to build minimally invasive

systems for the first time. By deploying such systems, measured-signal dis-

tortions due to e.g. electrodes penetrating the skin (conductive medium) have

been averted, resulting in precise, low-noise measurements [12].

These traits have encouraged the development of many implants for diagnos-

tic purposes. Commonly encountered ones - and amply met in this study -

are in-vivo electrocardiography (ECG) [38], electromyography (EMG) [73]

and electrooculography (EOG) [109] while an increasingly popular of appli-

cations involves electroneurography (ENG) [4], i.e. the recording of neural

signals (biopotentials) from the central (CNS) or peripheral (PNS) nervous

system. Typical cases of ECG-enabled implants are implantable pacemak-

ers, which deliver cardiac pacing, and implantable intra-cardiac defibrillators

(ICD’s), which monitor the cardiac rhythm and attempt to prevent or to counter

any spontaneous cardiac arrhythmias (antitachycardia pacing, cardioversion,

defibrillation) in an automated, closed-loop fashion.

Recording of neural activity (i.e. ENG), on the other hand, has long been pur-

sued by physiologists as a means to understanding the operation of individual

neurons, to deciphering the organization and signal-processing techniques of

biological neural networks and to controlling a variety of prosthetic devices.

Implantable devices have contributed to rapid developments in the field as they

have permitted physicians and engineers the unprecedented ability to perform

the measurement, conditioning and storage of such highly sensitive signals

(range can vary from 10 µV to 100 mV) in-vivo. To give a feeling of the popu-

larity of this class of applications, 13 in a total of 60 entries (about 22%) have

been encountered with the actual percentage anticipated to be much higher.

Apart from the above, a plethora of other in-vivo measurements has been

achieved through implants: body temperature [152], intracranial pressure

(ICP) [45] for preventing brain diseases (especially in post-operation, head-

trauma patients), pH [107], blood pressure (BP) [123], gastric pressure [140],

renal-sympathetic-nerve activity RSNA [38], cardiac output for monitoring

the performance of an artificial heart valve [121] and tissue bio-impedance [94]

have also been implemented in implantable systems. Also, graft monitor-

ing (through pulse oximetry) following organ-transplantation surgery [39] and

intra-articular mechanical stress such as tibial-force monitoring inside titanium

implants [32] are less widespread, yet important contributions to the field.

28 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

A physiological parameter that has received special attention, and is also

present in this study, is glucose concentration in the blood. This is a hot topic

these days given the large (and steadily increasing) number of diabetic pa-

tients worldwide. High glucose levels (hyperglycemia) in the blood stimulate

the pancreas for releasing insulin to lower glucose concentration. Since in di-

abetic patients the pancreas cannot produce insulin, an ”artificial pancreas” is

required, virtually a closed-loop control system which samples the glucose lev-

els in the blood stream and releases insulin as needed. Glucose-level-sensing

implants constitute only half of this control circle, the other half being drawn

by implantable micropumps for administering insulin. Even though the de-

sign of an actual, chronic artificial pancreas has not been achieved yet, due

to pending unsolved issues, the glucose-sensing implants have constantly in-

creased in numbers and improved over the years. Examples of such attempts

are the work of Shults et al. [123] and Beach et al. [13]. Lastly, regarding

diagnostic-purpose implants in general, it is important to mention that a signif-

icant number of modern devices is capable of achieving continuous, real-time

measurements over long periods of time and at a reasonably low power budget

(as will be shown in the following subsections). Of course, not all diagnos-

tic scenarios require continuous monitoring of physiological parameters (e.g

blood pressure), but rather a periodic sampling.

Diagnostics aside, electricity-based therapy has equally, if not further, ben-

efited from advances in microelectronics technology and has been enriched

with many research efforts over the years with many of them turning into suc-

cessful commercial products, too. The first and most prominent application of

electricity-based therapy has been cardiac pacing and defibrillation for treat-

ing cases of cardiac arrhythmia. Ex-vivo pacing techniques have gradually

given way to in-vivo, implantable ones. The pacing implants are the above

mentioned pacemakers which are also the first microelectronic devices to have

ever been successfully implanted into a human being. The success of these

two types of implants has been tremendous. Indicative of the penetration and

impact pacemakers have achieved is the fact that, in the U.S. alone, a total

number of 180,000 implantable pacemakers have been registered for the year

2005 (source: American Heart Association [35]). The implantable pacemaker,

apart from saving lives, has acted as a catalyst on the general public closed-

mindedness against biomedical implants.

These devices are principally the same today as the first pacemaker that was

implanted 50 or so years ago. Since then, they have come a long way and

now - in their fourth generation - encompass a multitude of features and

have a battery-life expectancy of almost 10 years. In this study, 3 such sys-

2.6. SURVEY RESULTS 29

tems have been included: Berkman and Prak [15] present work onto which

the Cordis Sequicor II and Gemini commercial pacemakers have been based.

Stotts et al. [131] improve that work, while Harrigal and Walters [56] present

results on another commercial pacemaker, the Kelvin II. All 3 of them are rate-

responsive, dual-chamber (atrial-ventricular) pacemakers with the one from

Stotts et al. also making provisions for monitoring of ECG and temperature5 .

The implantable pacemakers and defibrillators have paved the way for further

therapeutic uses of electrical stimulation in biomedical applications. One large

family of applications, as the study also indicates, is the restoration of various

body functions through functional electrical stimulation (FES). Muscle stim-

ulation has been attempted for restoration of paralyzed-limb movement, hand

grasp [127], micturition and bladder control [119], eyesight [120], vocal [57],

hearing [161] and other pathoses. Muscle stimulation is achieved directly

(through stimulation of denervated, degenerated muscles, DDM’s) or - more

commonly - indirectly (through stimulation of nerves, i.e. functional neuro-

muscular stimulation, FNS). An important and relatively fresh field of research

which has largely benefited from implant technology is chronic Deep-Brain

Stimulation (DBS). This kind of stimulation has yielded phenomenal results

for patients suffering from Parkinson’s Disease (PD) and is most promising for

treating epilepsy and psychiatric diseases [51]. Stimulation has also been em-

ployed by chronic-pain patients for interrupting nerve (pain) signals from the

spinal cord to the brain (e.g. Spinal-Cord Stimulation, SCS [97]). Moreover,

it has found use as a method to regenerate damaged nerve tissue [49].

Indicative of the impact of electrical stimulation is the large number of such

devices present in the study. As Figure 2.8a illustrates, in total 26 out of

60 (∼43%) studied systems implement some sort of electrical stimulation.

The Figure also reveals that, together with monitoring implants, they are the

two most commonly encountered implant functionalities. As stated before,

this makes perfect sense given the microelectronic nature of the studied de-

vices: It constitutes an excellent vehicle for applications where measurement

of (bio)electrical signals or tissue stimulation through electrical pulses occurs.

Figure 2.8b illustrates the data from a different angle. It plots the relative

frequencies of each one of the different ’Functionality’ categories over time.

The available data has been grouped into 3 consecutive time periods. It should

be noted that, in this as well as similar trend plots to follow, trends over the

5The above mentioned pacemakers do not reflect the plethora of existing implantable pace-

makers and defibrillators. Yet, they were the only ones providing some useable information

regarding their design specifics, their power consumption and so on.

30 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

32

53%19

32%

7

11%

1

2%
1

2%

measurement stimulation
stimulation / measurement generic function

(a) Overall functionality distribution.

11

10
10

5

9 4

0 1

2

0 0 1

0%

20%

40%

60%

80%

100%

1994-1997 1998-2001 2002-2005

measurement stimulation

stimulation / measurement drug delivery

(b) Functionality trends over the years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

measurement 0.69 0.116 0.50 0.112 0.59 0.119

stimulation 0.31 0.116 0.45 0.111 0.24 0.103

stim./meas. 0.00 0.000 0.05 0.049 0.12 0.078

drug delivery 0.00 0.000 0.00 0.000 0.06 0.057

#N 16 20 17

(c) Probability estimates (pi) and their standard errors

SE (σpi).

Figure 2.8: Implant functionality.

time period 1974–1993 have been omitted due to the prohibitively low sample

size, as discussed in the introduction. A table accompanying the trend plot

with corresponding descriptive statistics6 per each time period is also plotted

in Figure 2.8c.

In Figure 2.8b, trends over the years indicate that measurement (i.e. monitor-

ing) systems to be the most popular over time, as also seen in Figure 2.8a7.

One can also discern the appearance of more complex systems over the more

recent years. Namely, implants have appeared which combine both stimula-

6The ’functionality’ variable is categorical with data following a multinomial distribution;

each category appears (or not) a number of times in each time period. The probability estimate

of appearance pi is reported in the table along with its standard error σpi .
7In the time period 1998–2001, a relative increase of stimulating implants can also be ob-

served which causes monitoring implants to somewhat recede. As will be discussed in the

following sections, this shift is a small sampling ”artifact” introduced due to a relatively large

number of reported ocular-restoration (i.e. stimulating) implants by a single or related research

groups in the particular time period.

2.6. SURVEY RESULTS 31

tion and measurement capabilities. That is, they offer closed-loop functional-

ity by automatically adjusting one property based on another. To exemplify,

implants by Harrigal et al. [57] and Au-Yeung et al. [7] induce so-called rate-

responsive cardiac pacing by utilizing in-vivo ECG measurements. Besides,

the implant designed by Smith et al. [127] implemented restoration of hand

function (through muscle stimulation) for persons with tetraplegia at the C6

level (of the spinal column). It offers automatic control and sensing of a

joint angle-transducer implanted in the radio-carpal joint of the wrist, with

the wrist position used as the command control source. Another type of so-

phisticated implants that has appeared in the most recent study time-period is

drug-delivery implants. Such implants also operate in a closed-loop fashion

by releasing regulated amounts of stored drugs into the body based on real-

time, in-vivo measurements they perform. The single such case encountered

in this study is an implant by Cross et al. [25] which allows for automated

oestrus-cycle control and data telemetry in dairy cows.

Question 2.1 Do the relative percentages of implant-functionality categories change signifi-

cantly over time?

Figure 2.8b has revealed a noticeable shift in implant functionalities over the years. Yet, it

is interesting to also know how “statistically certain” this observation of ours is. The above

question translates to the equivalent question whether there is a strong correlation between the

two categorical variables ‘functionality’ and ‘publication year’ (grouped per time period). We

test this hypothesis through a chi-square test (as introduced in Section 2.5.4.2). The value of

chi-squared is small (X 2
= 5.990) and the chi-square test is not significant (p = 0.4240),

meaning that the null hypothesis (implant functionality does not change over time) cannot be

rejected. Weak as the correlation is, we would still like to get a feeling of what it looks like.

We have plotted a CA plot, as shown in Figure 2.9. The plot does indicate there is a relation

between the two variables: Measurement implants are more proximal to the first time period,

stimulation implants are closer to the second period while the more sophisticated, drug-delivery

implants are right on top of the most recent time period; thus, the CA plot hints in favor of our

initial observations. Last, based on the displayed distances, implants combining stimulation and

measurement capabilities are becoming more popular over time.

Increasingly more systems with impressive functionalities are appearing every

day, such as bioassay chips, DNA-diagnosis chips or the micropump (men-

tioned above), which is also used for controlled, in-vivo drug delivery. Yet,

the functionality and focus in such systems heavily relies on the design of suit-

able microstructures which are based on MEMS – more commonly known as

BioMEMS. Thus, these devices depart from the definition of “system” as given

previously – Section 2.4 – and invite different disciplines such as chemical and

material sciences. As such, they are out of the scope of this survey.

32 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

-1.5 -1.0 -0.5 0.0

-1
.5

-1
.0

-0
.5

0
.0

A
B

C

D

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0
.0

0
.2

1

2

3

A

B

C

D

1

2

3

drug delivery

measurement

stimulation

stimulation / measurement

1994--1997

1998--2001

2002--2005

Figure 2.9: CA plot of functionality vs. publication year.

As a last remark, we should note that – with the exception of the pacemaker

and few other systems – most of the above discussed families of implantable

systems have not widely penetrated the biomedical market. Even devices that

are fully miniaturized and properly packaged for implantation seem to have

remained simple prototypes in a lab bench. The reasons for this situation are

varied – for instance, the unsatisfactory chronic in-vivo behavior of packaging

materials in the commercialized BIONTMimplants [138]) – but are, too, outside

the scope of the current survey.

2.6.2 Electromechanical features

The survey reveals that implantable devices are most commonly built around

some sort of central-processing and/or -controlling unit – the above mentioned

PCC. As will be explained shortly, implemented PCCs most often are full-

custom (ASIC) designs incorporating mixed-signal circuitry. The dominance

of full-custom design can be readily justified by the fact that most stringent

design constraints need to be squeezed in as little circuit area as possible, thus,

not allowing the luxury of a design based on discrete components. Power and

area are attributes that readily benefit from full-custom design since imple-

mentations tend to display lower power requirements and take up less space

compared to ones based on COTS components.

Figure 2.10a indeed shows that, in an overall, 42 out of 59 (70%, one unspec-

ified) studied implants include some kind of PCC. The ’PCC design’ attribute

2.6. SURVEY RESULTS 33

17

29%

13

22%

1

2%

4

7%

24

40%

no commercial semi-custom

structured-custom full-custom

(a) Overall PCC-design distribution.

5 7
4

1

4 7
0

0

1

0

2

2
10

7

3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994-1997 1998-2001 2002-2005

no commercial semi-custom

structured-custom full-custom

(b) PCC-design trends over the years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

no 0.31 0.116 0.35 0.107 0.24 0.103

commercial 0.06 0.061 0.20 0.089 0.41 0.119

semi-custom 0.00 0.000 0.00 0.000 0.06 0.057

struct.-custom 0.00 0.000 0.10 0.067 0.12 0.078

full-custom 0.63 0.121 0.35 0.107 0.18 0.092

#N 16 20 17

(c) Probability estimates (pi) and their standard errors

SE (σpi).

Figure 2.10: Implant PCC design.

captures the PCC design practice employed for these 42 implants. As can

be seen from the pie chart, of the 42 devices: 13 are commercial (22%), 1 is

semi-custom (2%), 4 are structured-custom (7%) and 24 are full-custom (40%)

designs. Full-custom devices clearly dominate the field. However, should we

study the design styles used over different time periods, an interesting trend

emerges. Figure 2.10b provides a distribution over the last 12 years. It reveals

an initial domination of full-custom designs which gradually makes way for

PCCs based on commercial components. This phenomenon is counterintuitive

since custom design in a field usually follows rapid prototyping (through use of

COTS components) as knowledge of the field grows. The primary reasons for

this inverse process in the case of implants are anticipated to be the following:

1. Development costs: Early implants had to be as small as possible to fit

inside the body. However, current technology miniaturization (CMOS, in

34 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

particular) has led to such small form factors that modern implants can be

built more economically with discrete components, and still retain a size

suitable for implantation.

2. Development times: A large fraction of the studied implants is built as

prototypes, for proof-of-concept purposes or for initial in-vivo tests in ani-

mals. Thus, for the sake of rapid prototyping, COTS components have been

increasingly favored in many a case.

3. Testing/approval times: By using COTS components to build PCCs, there

exists the added benefit of working with pretested, pre-verified, proven

cores. System integration is faster and more relaxed in terms of medical

approval8 and testing.

4. Enhanced functionality: Implants built around commercial PCCs are –

generally speaking – more flexible designs than full-custom ones, allowing

for extra functionality (than the originally intended one). This allows more

trial and error, especially in experimental setups. The flexibility issue will

be further discussed in Section 2.6.6.

While systems with a COTS core have been expanding at the expense of those

with a full-custom core or with no core whatsoever, nonetheless, the careful

observer can anticipate an increase in coreless systems in the middle period

1998–2001. As discussed in the previous section, this is a sort of biasing ”arti-

fact” in the data: By closely studying the collected data for the particular time

period, we notice a lot of highly application-specific implants. Namely, a num-

ber of intracranial (e.g. ICP monitoring [45]) and intraocular (blurred-cornea

treatment [113]) devices with extremely stringent power and size constraints

have been reported. As a result, extremely stripped-down implants have been

built, with hardwired control and, thus, lacking a PCC. A total of 8 such de-

vices are included in a sample size of 20 device cases for the given time period,

which affects statistical analysis significantly. Even so, it is interesting to note

that the bias (henceforth called ”coreless bias”) disappears in the third time

period 2002–2005. This supports our initial analysis on the dominance of sys-

tems with commercial PCCs. It is also indicative of a potential shift in the

targeted implant applications.

8Unlike the general case, we are aware that, in this survey, implant medical approval may

have been a secondary goal since most studied systems are research prototypes rather than fully

commercialized products.

2.6. SURVEY RESULTS 35

-0.4 -0.2 0.0 0.2 0.4 0.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

A

B

C

D

-0.5 0.0 0.5 1.0

-0
.5

0
.0

0
.5

1
.0

1

2

3

A

B

C

D

1

2

3

no

commercial

semi-/structured-custom

full-custom

1994--1997

1998--2001

2002--2005

Figure 2.11: CA plot of PCC design vs. publication year.

Question 2.2 Do the relative percentages of implant-PCC-design categories change signifi-

cantly over time?

This question translates to the equivalent question whether there is a significant relation be-

tween the two categorical variables ‘PCC design’ and ‘publication year’. The statistical test to

employ is chi-square. The value of chi-squared is X 2
= 12.1385 and the test is not signifi-

cant (p = 0.0590), meaning that the null hypothesis is marginally not rejected. In order to

qualitatively explore the relation between the variables further, a CA plot has been plotted again

in this case, as shown in Figure 2.11. The plot does indicate there is a relation between the

two variables: Full-custom designs clearly dominate the earlier years 1994–1997 while COTS-

based designs are the most popular choice over the latest period 2002–2005. Coreless designs

dominate the middle period 1997–2001 but this is partly due to the coreless (sampling) bias in

the same period. What is also interesting is the appearance of semi-/structured-custom designs

over the last two periods. This observation further supports the arguments that: i) rapid pro-

totyping in (experimental) implants is becoming a serious driving factor for designers, and ii)

(re)design flexibility is at least as important a design parameter as ASIC miniature size and low

power consumption. It appears, thus, designers are willing to sacrifice some resources in order

to get results faster and to be able to modify a design multiple times for refinement, in-vivo

fine-tuning and other purposes.

For all (PCC-enabled) non-COTS-based implants shown in Figure 2.10a, the

’fabrication technology’ used is almost with no exception either CMOS (27

out of 55, 49%, 5 unspecified) or BiCMOS (11%). The reason is rather obvi-

ous: CMOS-technology features that are highly suited for biomedical-implant

applications; namely, very high integration, low power consumption and large

noise margins. Bipolar CMOS (BiCMOS) has been mostly used by researchers

to construct mixed-signal devices. In addition to the standard CMOS attributes,

BiCMOS technology further offers large current-driving capabilities (very im-

portant, for instance, for implantable stimulators) as well as intrinsic protection

36 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

-0.5 0.0 0.5 1.0

-0
.5

0
.0

0
.5

1
.0

A

B
C

-0.5 0.0 0.5

-0
.5

0
.0

0
.5

1

2

3
4

A

B

C

1

2

3

4

generic function

measurement

stimulation

no

commercial

semi-/structured-custom

full-custom

Figure 2.12: CA plot of PCC design vs. functionality.

Question 2.3 Does implant functionality have an effect on the PCC design employed?

The relation between the categorical variables ‘PCCdesign’ and ‘functionality’ is investigated

through a chi-square test (as introduced in Section 2.5.4.1). The relation is significant at the

.05 level (X 2
= 14.6091, p = 0.0235), meaning that the intended implant functionality

does indeed affect the design of its PCC. To explore this relation further, a CA plot is plot-

ted, as shown in Figure 2.12. The plot reveals that measurement implants are mostly based

on semi-/structured-custom PCC designs or completely coreless designs whereas stimulation

implant are most often based on full-custom PCCs and less often on commercial components.

Measurement implants are, generally speaking, more passive devices than stimulation ones,

meaning that some hardwired (thus, coreless) solution for collecting physiological data will in

many cases be sufficient. Stimulation implants, on the other hand, usually require more ac-

tive involvement such as decoding of externally received stimulation commands, generation or

reproduction of stimulation patterns etc.; thus the core-enabled solutions. Also, modern stimu-

lation implants include some measurement capabilities for performing closed-loop stimulation,

e.g. rate-responsive pacemakers. This need for more sophisticated control can further explain

the stimulation-implants’ affinity to high-performance (core-based) designs. However, given

the aforementioned trends of implant functionality over time (Research Question 2.1) and PCC

design over time (Research Question 2.2), we cannot rule out the chance that the currently

observed correlation is coincidental, with both variables only dependent on time.

(e.g. integrated Zener diodes) of the implant electronics against high voltage

and current surges.

While the dynamic power consumption of CMOS IC’s is excellent, their static

power component starts dominating the overall power budget the further fabri-

cation technology (i.e. λ factor) shrinks. This is, admittedly, a potential prob-

lem for future implant designs operating in low-power modes over prolonged

periods of time (thus, impacting static power). Nevertheless, it is expected to

2.6. SURVEY RESULTS 37

1
2

3
4

5

Quadratic regression fit and 95% CI's

Publication year (-)

F
a

b
.-

te
c
h

.
m

in
ia

tu
ri

z
a

ti
o

n
 (

u
m

)

1989 1991 1993 1995 1997 1999 2001 2003 2005

Fitted regression line

Confidence-interval (upper/lower) line

Figure 2.13: Implant and mainstream microelectronics fabrication-

technology trends over the years.

manifest more slowly as implantable systems follow mainstream market trends

(e.g. high-performance computers, portables etc.) with some delay, as the next

Research Question reveals.

Question 2.4 How does implant fabrication technology change over time?

We wish to explore how the scale variable ‘fabrication-technology miniaturization’ changes

over time. Time is represented by the scale variable ‘publication year’ and the question can

be answered by simple regression analysis, as introduced in Section 2.5.4.3. Given (i) the

observation that the smoother line generally resembles a quadratic curve and (ii) the known fact

that transistor sizes are monotonously shrinking over time, a least-squares, quadratic regression

line has finally been fitted on the data, as shown in Figure 2.13. Confidence-Interval (CI) bands

of 95% have also been plotted. Also plotted, as a reference line, are the fabrication-technology

trends of the mainstream-market. This line has been calculated based on a typical 13% annual

drop, as extracted from the ITRS’04 [66].

Figure 2.13 verifies our expectation that employed fabrication technologies for

implants are lagging behind mainstream ones. We anticipate this lag to be

primarily due to three reasons:

1. Technology availability: The lack of access of the academic and research

community to the most recent fabrication processes at the time of design.

2. Robust designs: The need to develop reliable and safe devices targeted for

medical use while at the same time limiting implementation costs. Design-

ers have often preferred a stable (at the time) process technology, i.e. a

technology node one or more steps behind the then top node. Especially,

38 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

these days that process variation is becoming a serious problem for transis-

tor devices, reliability is expected to play an even more important role.

3. Analog-design limitations: The limited usefulness of small-feature-size

fabrication processes in analog design may have been an inhibiting factor

for implant designers.

The above reasons are common phenomena in most academic/research envi-

ronments, yet we have no full-proof way of verifying any of them: Research-

group internal policies as well as their particular financial status and design

mentalities are involved. However, this technology delay appears to be nar-

rowing over time, as implant trends are converging fast towards mainstream

ones. The convergence is anticipated to be (partly) due to the following rea-

sons:

1. The previously observed shift from full-custom to COTS-based designs,

as shown in Section 2.6.1; effectively, from systems designed from

scratch (thus, riskier) to ones designed from pre-verified components.

2. The gradual maturing and streamlining of design tools and processes in

the general microelectronics field which has significantly shrank design

and development times in all engineering fields, including implantable

systems.

Continuing on the issue of implant physical properties, it would also be in-

teresting to investigate the implant physical dimensions; that is chip(set) sur-

face area, packaging volume and weight. Reported data are even sparser in

this case, thus conclusions will be drawn very carefully. First off, the ’total

chip(set) area’ attribute has been divided in two subsets one including overall

chip-area figures and the other overall chipset-area figures. Overall median9

chip size is 20.75 mm 2 and chipset size is 5.38 cm 2. Chip-, chipset-size and

package-volume trends have been estimated in Research Question 2.5 and are

displayed in Figure 2.14. In all three plots, the sample size is too small to draw

robust conclusions. Yet, from the first plot we can deduce that, while chip size

has shrank considerably over the early years, it has reached a plateau and even

somewhat increased over the more recent years.

At first glance, this observation might be unexpected given the miniaturization

trends of fabrication technology, as illustrated in Figure 2.13. However, this

9To limit the influence of data skewness as well as outliers, median values are generally

reported as measures of central tendency.

2.6. SURVEY RESULTS 39

Question 2.5 How does implant chip area, chipset area and package volume change over time?

The relation of each of the scale variables ‘total chip area’, ‘total chipset area’ and ‘package

volume’ with time (scale variable ‘publication year’) is being explored. In a fashion similar to

‘fabrication-technology miniaturization’, a least-squares, quadratic curve has been fitted for the

first dependent variable and is plotted along with 95% CI’s in Figure 2.14a. From the scarcity

of points in the scatterplot, the low availability of chip-area data (20 cases) is apparent. The

sample size of ‘total chipset area’ is even smaller (14 cases). Analysis indicates the best fit to be

the line illustrated in Figure 2.14b. Chipset-area samples are scarce but appear to have smaller

dispersion in this case, as can be seen in the same figure.

‘Package-volume’ data (28 cases) has been fitted with a least-squares, quadratic regression line

too, as shown in Figure 2.14c. However, a Log-Likelihood-Ratio (G) test (G = 3.3464,

p = 0.1876) reveals that the fitted quadratic curve (in fact, all 1st-, 2nd- and 3rd-degree

curves) is not statistically different from the intercept-only line. This implies that the passage

of time has no (detected) appreciable effect on the implant package volume. This result can

actually be also visually verified from Figure 2.14c: The green, dashed line representing an

intercept-only model (equal to the mean of package sizes) never goes out of the CI band.

increase in chip size can be explained by the rise of COTS-based implants, as

shown in Research Question 2.2. If this is indeed a strong driving factor10 for

the observed increase in chip size, one would not expect it to manifest also on

the general implant dimensions, that is, on the chipset size and on the pack-

age size. Surely enough, Figure 2.14b reveals a monotonically dropping trend

over time. Even through sample size prohibits drawing definite conclusions,

the primary technical reason behind this trend is thought to be the ability to

integrate increasingly more discrete components (digital and analog) on single

chip dies. As a result, chipset real estate is shrinking with every improvement

in microelectronics and MEMS technologies.

A lot of previously bulky discrete components such as current drivers, ADCs/-

DACs, even hybrid capacitors and coils can these days be fully co-integrated

on chip and sensor/actuator structures can be fully micromachined on the same

die where the PCC lies, effectively building whole so-called Systems-on-Chip

(SoC’s). This signifies another driving factor of increasing chip sizes and a

relation with decreasing chipset sizes. Unfortunately, we can not explore this

quantitatively due the lack of sufficient information (i.e. cases where both fi-

gures are known).

Implant ‘package volume’ displays an overall median of 10.20 cm 3 and trends

over time are also depicted in Figure 2.14c11. The volume appears to be shrink-

10There are more suspected driving factors for this trend and will be discussed in the follow-

ing sections, as more survey data is analyzed.
11By reflecting on the average implant package size (and the chipset size, above), one can

realize that these dimensions are very close.

40 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

1
0

2
0

3
0

4
0

Quadratic regression fit and 95% CI's

Publication year (-)

T
o

ta
l
c
h

ip
 a

re
a

 (
m

m
^
2

)

1989 1994 1996 1998 2000 2004

Fitted regression line

Confidence-interval (upper/lower) line

(a) Chip-area (mm 2).

0
5

0
0

1
0

0
0

1
5

0
0

Linear regression fit and 95% CI's

Publication year (-)

T
o

ta
l
c
h

ip
s
e

t
a

re
a

 (
m

m
^
2

)

1994 1996 1997 1998 2000 2001 2004 2005

Fitted regression line

Confidence-interval (upper/lower) line

(b) Chipset-area (mm 2).

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

Quadratic regression fit and 95% CI's

Publication year (-)

T
o

ta
l
p

a
c
k
a

g
e

 v
o

lu
m

e
 (

m
m

^
3

)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Fitted regression line

Confidence-interval (upper/lower) line

Horizontal (reference) line

(c) Package volume (mm 3).

Figure 2.14: Implant physical-dimensions trends over the years.

ing over the years but, as Research Question 2.5 has revealed, the change is

not significant. In effect, implant package size has not shrank appreciably

over time. Given the fact that these are research-level implantable devices and

given the small average size of roughly 10 cm 3 they exhibit, even for non-

commercial devices, this stagnancy in packaging sizes is understandable.

2.6. SURVEY RESULTS 41

external

host
implant

in-vivoex-vivo

Figure 2.15: Schematic representation of RF-induction principle.

2.6.3 Power features

Power consumption is cardinal for the design of implantable systems and has,

therefore, been studied separately. The implant ‘power source’ comes in one

of two flavors: it is either an included miniature battery cell (55% of all cases)

or an RF inductive link (45% of all cases) established by an external host trans-

mitter which transfers (induces) electromagnetic power wirelessly, in the form

of an RF carrier signal, to the implant (see Figure 2.15). As roughly sketched in

the figure, a fraction (typically 10-20%) of this signal is captured and AC/DC-

converted (rectified and smoothened) by the implant for generating a stable

DC supply.

Rapid improvements in chemical technology have resulted in smaller form-

factor, larger-capacity batteries with none of the problems of older systems,

like the high-rate self-discharge or the hydrogen-gas emission of Mercury-Zinc

power cells. Lithium-Iodine power cells, the latest addition in a long list of

Lithium-based batteries, achieve nowadays high chemical stability, very long

shelf-life, high energy density and gradual (as opposed to abrupt) depletion

[118]. What is more, the absence of gas emissions has seriously eased the task

of hermetic sealing of implants.

42 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

Compared with induced power, cell-generated power has the extra benefits of

providing very stable output and requires no patient intervention. Conversely,

RF induction requires some (careful) intervention on the part of the patient.

More importantly, it is highly dependent on the material as well as the distance

and alignment between the coupled coils, with minor variations in any one of

the three seriously affecting the link quality and, thus, the delivered power. The

exposure of living tissue to RF waves is an additional consideration for power

induction, which places upper safety bounds to the amplitude and frequency

of allowable electromagnetic radiation.

For such reasons, most prominent commercial implantable systems, such as

pacemakers and ICDs, have exclusively utilized battery cells as their power

source. Further, the advances in battery technology in conjunction with a given

power budget for these systems has resulted nowadays in, for instance, pace-

makers with a lifetime of more than 7 or 8 years.

The limited power rate sustained by RF induction as well as the finite capacity

of battery cells makes employing techniques for low-power implant operation

crucial. The use of low-power commercial components in off-the-shelf-built

implants or the careful IC design for reducing power in custom-built ones are

the rule in almost all studied cases. Also, the use of low duty-cycle digital

signals moving around a device is a common practice for many a researcher

(e.g. McCreesh et al. [89, 90]). For this reason, such provisions have not been

explicitly reported. Instead, the focus has been placed mainly on architecture-

level and even system-level techniques. Low-power mechanisms encountered

in this study appear mainly in the following flavors:

i. interrupt-triggered power-save modes (e.g. sleep, standby, off);

ii. controllable pulse-powering of implant subsystems depending on their

functionality; and

iii. firmware implementations of adjustable operational settings (e.g. sam-

pling rate) when there is no need for maximum performance.

In the crosstabs of Figure 2.16a, low-power provisions have been grouped into

four major categories for analysis: (a) system-wide power-save modes, (b)

controllable subsystem powering, (c) both provisions, and (d) no provision

whatsoever. As expected, the bulk of such techniques has been encountered

in battery-powered systems where prolongation of operational lifetime is of

primary concern. Namely, out of 29 battery-powered devices (3 unspecified),

2.6. SURVEY RESULTS 43

no power-save subsystem both TOTAL

prov. modes powering

battery 9 15 3 2 29

RF induc. 20 4 1 0 25

TOTAL 29 19 4 2 54

(a) Type of power source used and associated low-power

provisions.

8

14

6

6
3

7

0 3
11

0 0

0%

20%

40%

60%

80%

100%

1994-1997 1998-2001 2002-2005

no system-wide power-save modes
controllable subsystem powering both

(b) Low-power-provisions trends over

the years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

no 0.533 0.129 0.700 0.102 0.429 0.132

system-wide power-save modes 0.400 0.126 0.150 0.080 0.500 0.134

controllable subsystem powering 0.000 0.000 0.150 0.080 0.071 0.069

both 0.067 0.064 0.000 0.000 0.000 0.000

#N 15 20 14

(c) Probability estimates (pi) and their standard errors SE (σpi).

Figure 2.16: Implant low-power provisions.

21 present some kind of low-power provisions, while only 5 out of 25 RF-

powered devices (3 unspecified) take some similar action. It is interesting

to notice also that, generally speaking, the most commonly encountered low-

power technique has been power-save modes for battery-based and RF-based

systems alike.

Figure 2.16b illustrates the percentage of implants equipped with such provi-

sions over the years. We have accounted for the coreless bias manifesting in

44 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

A BC D

-0.5 0.0 0.5 1.0

-0
.5

0
.0

0
.5

1
.0

12

A

B

C

D

1

2

no

system-wide power-save modes

controllable subsystem powering

both

battery

RF induction

(a) Low-power provisions vs. power

source.

-0.2 -0.1 0.0 0.1 0.2

-0
.2

-0
.1

0
.0

0
.1

0
.2

A B

-0.2 -0.1 0.0 0.1 0.2 0.3

-0
.2

-0
.1

0
.0

0
.1

0
.2

0
.3

12 3

A

B

1

2

3

no

lowpower

1994--1997

1998--2001

2002--2005

(b) Low-power provisions vs. publica-

tion year.

Figure 2.17: CA plots of low-power provisions vs. power source and publica-

tion year.

Question 2.6 Do implant low-power provisions depend on the power source employed?

The strong correlation between implant low-power provisions and employed power source is

verified by a chi-square test which is significant at the .01 level (X 2
= 13.3176, p = 0.0034)

as well as a CA plot (Figure 2.17a).

the period 1998–2001 as a small rise in devices with no provisions. However,

the ratio of implants displaying low-power techniques does not appear to have

changed significantly albeit for a slow change in the type of provision em-

ployed (from power-save to both power-save and subsystem-powering). This

is also verified through Research Question 2.7. Given that battery-powered

implants do not appear to be increasing over the years12, this would cause no

reason for concern. However, we will see, next, that overall implant power

consumption appears to be increasing over time, which may entail a potential,

future hazard for implant design.

Question 2.7 Does the percentage of implants with low-power provisions change over time?

We have run a chi-square test investigating the trends of implants with low-power provisions

over time. The test is not significant (X 2
= 2.6056, p = 0.2718); thus, there is no supporting

evidence that the number of implants with low-power techniques has changed over the years.

12Refer to the technical report [133] for more details.

2.6. SURVEY RESULTS 45

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

A B

C

D

-0.5 0.0 0.5 1.0

-0
.5

0
.0

0
.5

1
.0

1 2

3

4

A

B

C

D

1

2

3

4

no

commercial

semi-/structured-custom

full-custom

no

system-wide power-save modes

controllable subsystem powering

both

Figure 2.18: CA plot of implant low-power provisions vs. PCC design.

Question 2.8 Does implant PCC design have an effect on the low-power provisions employed?

We perform a chi-square test which shows significance at the .05 level (X 2
= 18.0109,

p = 0.0351). To explore this relation further, in Figure 2.18 we have drawn a CA plot.

We can see a strong affinity of subsystem-powering techniques for semi- or structured-custom

PCCs but since this relation is based on a single case, we do not analyze it further. We can also

observe a strong relation between power-save techniques and commercial PCCs. As will be

shown in Section 2.6.5, this is largely due to the increasing use of commercial µCs/µPs which

typically come with one or more low-power states built in. Lastly, custom-built PCCs are the

ones most obviously lacking any sort of low-power technique. This agrees with common sense:

custom designs are usually optimized ones with less needs for explicit power saving.

Having discussed power-source types and low-power techniques for implants,

it is now time to see what the actual power consumption of the studied devices

is. An attempt has been made to distinguish between the power consumption

of the digital and that of the analog part of each presented implant. However,

this has not been possible in most of the cases since researchers do not ex-

plicitly mention separate figures for those. Another sort of partitioning of the

power figures has also been attempted based on the functional state of the de-

vice, namely: standby, average and (peak active) power consumption. Even

though the sample size for the first two groups has been prohibitively low for

extracting robust trends over the years, the last group, peak active power con-

sumption has yielded some interesting results. Along with operating voltage,

analysis of power consumption is handled in Research Question 2.9.

46 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

0
2

0
4

0
6

0
8

0
1

0
0

Quadratic regression fit and 95% CI's

Publication year (-)

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 -

 p
e

a
k
 a

c
ti
v
e

 (
m

W
)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Fitted regression line

Confidence-interval (upper/lower) line

(a) Power consumption – peak active

(mW).

2
3

4
5

6
7

Linear regression fit and 95% CI's

Publication year (-)

O
p

e
ra

ti
o

n
a

l
v
o

lt
a

g
e

 (
V

)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Fitted regression line

Confidence-interval (upper/lower) line

(b) Operating voltage (V).

Figure 2.19: Implant power-consumption and operating-voltage trends over

the years.

Question 2.9 How does implant power consumption (peak active) and operating voltage change

over time?

We wish to explore the relation of each of the scale variables ‘power consumption (peak ac-

tive)’ and ‘operating voltage’ with time (variable ‘publication year’). A least-squares, quadratic

curve has been fitted for the first dependent variable and is plotted along with 95% CI’s in Fi-

gure 2.19a. While dropping in the middle period of the study, probably due to the coreless bias,

the curve rises in the latest period – an unexpected trend. For the variable ‘operating voltage’,

a linear regression model has been deemed most suitable and is plotted in Figure 2.19b. This

trend is in agreement with shrinking fabrication technologies (see discussion in Section 2.6.2).

The Research Question, above, has produced an unexpected finding: As Fi-

gure 2.19a illustrates, peak power consumption is actually increasing over the

years. The observed trend is counter-intuitive since implant designs are ex-

pected to display shrinking power profiles as technology matures. By closely

studying the survey study cases, we anticipate this upward power trend to be

the combined result of two opposing drivers. The first one, pulling power con-

sumption up, is thought to be caused by the following phenomena:

i. There is a tendency (common in other fields of microelectronics) to add

as many features to new implantable systems as possible, rendering them

multifunctional devices (to be revisited later). More features means more

transistors and, thus, more power. In favor of this argument consent the

2.6. SURVEY RESULTS 47

previous findings on ‘total transistor count’ and ‘chip area’.

ii. As will be explained in Section 2.6.5, implant designs are increasingly

using µC- and µP-based PCCs over FSM-based ones. While µCs and µPs

provide multiple benefits such as high flexibility to implantable systems,

they also come with a somewhat higher power requirement than ASIC

designs, in the general case.

iii. The advances in chemical technology have led to higher-capacity, smaller-

volume batteries. As a result, designers have increasingly indulged to the

temptation of building newer systems with power needs exceeding those

of older ones since new battery technologies allow it.

The other driver, relaxing power consumption, is thought to originate from the

following phenomena:

i. The lowering of the operating voltage (following technology miniaturiza-

tion) has led to reductions in power consumption.

ii. The gradual refinement over the years of low-power techniques in all as-

pects of implantable devices (PCC, communication module, analog front-

ends, interfaces etc.) has contributed heavily in keeping power consump-

tion in check. To exemplify, the monitoring system designed by Wouters

et al. [152] consumes about 72 µW while monitoring and a mere 13.85 µW
in standby mode. This constitutes an impressive 5-fold reduction in power

consumption.

Except for peak active power consumption, we also attempted to investigate

standby and average power figures but the collected data is prohibitively little.

Nevertheless, we have calculated cumulative power-consumption figures for

each different power state in order to appreciate the impact the previously dis-

cussed low-power modes of operation have on power expenditure. Peak active

power has a median value of 13.600, average power of 0.325 and standby

power of 0.045. It can be concluded that standby power is about an order of

magnitude lower than average and as much as three orders of magnitude lower

than peak power. Obviously, average power consumption in a device depends

largely on its duty cycle (i.e. standby-active ratio) which, in turn, depends

heavily on the application at hand.

48 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

0
2

0
4

0
6

0
8

0
1

0
0

Power cons. vs. pub. year over funct.

Publication year (-)

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 -

 p
e

a
k
 a

c
ti
v
e

 (
m

W
)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Smoother line for: measurement

Smoother line for: stimulation

(a) Smoother lines.

0
2

0
4

0
6

0
8

0
1

0
0

Quadratic regression fits over funct.

Publication year (-)

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 -

 p
e

a
k
 a

c
ti
v
e

 (
m

W
)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Fitted line for: measurement

Fitted line for: stimulation

(b) Fitted quadratic lines.

Figure 2.20: Power-consumption trends over the years for different implant

functionalities.

Question 2.10 How does power consumption (peak active) change over time for different im-

plant functionalities?

At this point in our analysis it would be interesting to investigate whether implants from the

two major functionalities (measurement and stimulation) exhibit different power-consumption

trends over time. The question can be addressed through use of a dummy-variable regression

model (as discussed in Section 2.5.4.4). ‘functionality’ has been used as the dummy (indepen-

dent) variable for this model and the scale independent variable ‘publication year’.

We revisit Figure 2.19a and highlight with different colors the two categories of the dummy

variable. A new scatterplot is, thus, created; see Figure 2.20a. On the scatterplot, smoother

lines have been drawn to assist exploration. Quadratic lines have been fitted separately on

stimulation and measurement points and the result is illustrated in Figure 2.20b. The figure

reveals that – contrary to stimulation implants – measurement implants do not have a noticeable

dip in power consumption in the middle period 1998–2001. This supports our initial claim that

the coreless bias is mostly caused by a certain number of ocular stimulation implants in the

particular time period.

Visual inspection reveals that both implant types exhibit an eventual increase in their power

needs over the years. However, the rise of the two fitted curves is not identical and we wish to

test whether the difference between them is statistically significant. Therefore, we perform a

Log-Likelihood ratio test which yields non-significance (G = 1.0080, p = 0.7993). This

outcome means that the two implant functionalities do not differ significantly in their power-

consumption trends over time. This, in turn, implies that we have correctly selected the unified

regression line in Figure 2.19a to cumulatively describe the implant power trends.

2.6. SURVEY RESULTS 49

Question 2.11 Does the chosen implant functionality, PCC design, PCC type and power source

have an impact on its power consumption (peak active)?

Having acquired detailed power figures from our analysis, it is also interesting to see whether

power consumption is generally affected by implant functionality (generally speaking, not over

time), PCC design as well as PCC type. Based on the discussion of Section 2.5.4.5, exploration

has been performed visually, through boxplots; see Figure 2.21.

Figure 2.21a reveals that stimulation implants exhibit slightly higher power profiles when active.

However, the difference is insignificant, as has been verified by a Kruskal-Wallis (KW) rank

sums test (X 2
= 0.7964, p = 0.3722). This means that – in the absence of opposing data

– measurement and stimulation implants could be treated singularly in terms of their power

requirements at design time.

As far as PCC design is concerned, the boxplots in Figure 2.21b follow common sense: the

further we depart from full-custom design towards COTS-based PCCs, the higher the power

consumption (at least, the peak active) is. Of course, implants with no PCC at all consume the

lowest power overall. PCCs originating from commercial components not only have the higher

power budget but also exhibit the wider dispersion of power profiles, making implant design

with such components not only power costly but also difficult to predict. Even though these

differences are easily visible in the figure, a KW test returns non-significance (X 2
= 3.9675,

p = 0.2650).

The last comparison to make here for power consumption is between the two possible power

sources for implants: batteries or RF induction (Figure 2.21c). It can be observed that battery-

powered devices consume, on average, more than RF-based ones. Based on a KW test, this

difference does also not appear to be statistically significant (X 2
= 1.7432, p = 0.1867).

Given the fact that all four boxplot-based observations tend to agree with common sense, we

are inclined to consider the large survey-data “noise” as the main culprit for the non-significant

test outcomes.

2.6.4 General implant features

Information about subsystems commonly met in all implantable devices is pre-

sented in this section. The first studied attribute is the I/O peripherals, that is,

any biosensors, bioactuators, stimulating/measurement electrodes or other in-

terface to the living tissue. Information on the number and specifics of the var-

ious peripherals has not been always available, therefore, some assumptions

have been made for allowing statistical analysis13.

Question 2.12 How does the number of peripherals per implant change over time?

We wish to fit proper regression curves on the number of implant peripherals over the years

but we wish to do so separately for both primary categories (measurement, stimulation) of the

‘functionality’ variable. LS quadratic curves have been fitted for each category and results

have been plotted in Figure 2.22. Stimulation peripherals per implant exhibit a monotonously

dropping trend over time. On the other hand, measurement peripherals appear to roughly remain

unchanged in number. This has been verified by a G test (G = 0.7693, p = 0.6807) and

visually illustrated through an intercept-only (green dashed) line in Figure 2.22b.

13See Technical Report [133] for more details on the subject.

50 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

meas. stim.

0
2

0
4

0
6

0
8

0
1

0
0

Functionality

(a) Power cons. vs. Functionality

no comm. semi/struct full

0
2
0

4
0

6
0

8
0

1
0
0

PCCdesign

(b) Power cons. vs. PCC design

battery RF induction

0
2

0
4

0
6

0
8

0
1

0
0

Power source

(c) Power cons. vs. Power source

Figure 2.21: Boxplots of implant power consumption (peak active) with re-

spect to different device characteristics.

As Research Question 2.12 reveals, implants have maintained a more or less

constant number of measurement peripherals over the surveyed time period.

On the other hand, the number of stimulation peripherals is slowly decreasing.

The reasons behind this drop are not clear, though they could be attributed to

the observations that more recent implants tend to focus on stimulating isolated

nerves or muscle bundles. In so doing, perhaps they can be placed in “tighter”

locations inside the body and stimulate at a finer granularity and accuracy.

There is another potential reason behind these trends: More recent implants

2.6. SURVEY RESULTS 51

2
4

6
8

Quadratic regression fit and 95% CI's

Publication year (-)

P
e

ri
p

h
e

ra
ls

 -
 s

ti
m

.
(-

)

1995 1996 1998 1999 2000 2001 2004

Fitted regression line

Confidence-interval (upper/lower) line

(a) Stimulation-peripheral count.

1
2

3
4

5
6

7
8

Quadratic regression fit and 95% CI's

Publication year (-)

P
e

ri
p

h
e

ra
ls

 -
 m

e
a

s
.

(-
)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Fitted regression line

Confidence-interval (upper/lower) line

Horizontal (reference) line

(b) Measurement-peripheral count.

Figure 2.22: Number of peripherals per implant over the years.

opt to include both sensory and actuating peripherals in them to achieve ap-

plications with autonomous, closed-loop control. This approach imposes more

stringent design constraints, and since the average number of measurement pe-

ripherals was already low to begin with – 2 to 3 per implant –, the resource that

could be limited is the number of stimulation peripherals – from about 8 down

to 2 per implant.

Besides, if we also take into account the previous analysis revealing rising

power-consumption trends, implant designers may have found themselves

(consciously or not) struggling not only for smaller implant sizes and more

complex processing but also for a tighter power budget. Reducing the num-

ber of actuating elements on the implant may have been a (partial) solution to

the latter problem, as well. The phenomenon on combined peripheral types in

recent implants is investigated in Research Question 2.13, below.

Question 2.13 Do the relative percentages of implants with both sensory and actuating periph-

erals change significantly over time?

A chi-square test is run between the categorical variables ‘peripheralsboth’ and ‘publication

year’ (grouped). The test does not reveal a strong correlation (X 2
= 2.4352, p = 0.2959)

between the variables, which is understandable given the estimated sample standard errors (Fi-

gure 2.23b). However, Figure 2.23a shows a slow but sure rising trend for implants combining

both types of peripherals. Therefore, we have also plotted a CA (Figure 2.23c) plot which vi-

sually confirms that such implants are more related to the latest survey period 2001–2005 than

the earlier periods.

52 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

15 18
13

1 2
4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994-1997 1998-2001 2002-2005

yes no

(a) Trends over the years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

yes 0,063 0,061 0,100 0,067 0,235 0,103

no 0,938 0,061 0,900 0,067 0,765 0,103

#N 16 20 17

(b) Probability estimates (pi) and their standard

errors SE (σpi).

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

A B

0.0 0.5 1.0

0
.0

0
.5

1
.0

1 2 3

A

B

1

2

3

no

yes

1994--1997

1998--2001

2002--2005

(c) CA plot of number of implants with

both types of peripherals vs. publi-

cation year.

Figure 2.23: Implants including both actuating and sensory elements over the

years.

2.6. SURVEY RESULTS 53

It is telling of this shift towards implants with more sophisticated control also

that many monitoring or stimulating implants support independent sampling

or driving – respectively – of their peripherals as well as calibration, compen-

sation and power control. Along the same lines, our analysis of the data shows

that a large number of implantable systems is built with some degree of mod-

ularity for being able to accommodate a number of different peripherals over

the same sensing or actuating channels. Thus, to a limited extent, reusability

of designs has been pursued by various researchers like, for instance, Lerch et

al. [83] and Valdastri et al. [140]. Adjustability, modularity and other advanced

implant features will be revisited in detail in Section 2.6.6.

We, next, move to study the internal-processing capabilities of implants. The

attribute ‘internal processing’ refers to those implants that actually perform

some kind of non-standard processing in their PCC (if present). As initially

defined, under the term “processing” we do not include signal-manipulation

tasks commonly encountered in implants such as data sampling, filtering, A/D-

conversion, multiplexing and the like. Rather, we wish to isolate any extra

processing tasks an implant core might bear like, for instance, the 2-D motion

detection algorithm based on readouts from two accelerometers, implemented

by Wouters et al. [152].

The survey reveals data-related and control-related tasks. Data-related tasks

mainly comprise sensor-data manipulation, namely data compression, reduc-

tion and encoding as well as implementation of various algorithms such as the

motion-detection scheme, mentioned above. Also, data-integrity operations

such as CRC-checksum calculation and parity checks. The latter category en-

tails in-system, on- or off-line control such as self-diagnostics, power-supply

monitoring and closed-loop control of peripherals. This observation seems to

support our previous analysis on reducing implant peripherals. Such an in-

stance is the case of a drug-delivery implant developed by Cross et al. [25]

to adjust the oestrus cycle of cows. Another, popular instance of closed-loop

control actively performed by PCCs is the rate-responsive stimulation of the

cardiac or various skeletal muscles, i.e. stimulation dynamically adapted to

the heart or respiration rate, respectively. Heart-rate-responsive pacemakers

have been present in the market for more than two decades now. A third case

of encountered closed-loop control is the dynamic adjustment of the sensor

sampling rate, based on the monitored levels of biological quantities (e.g. sig-

nificant fluctuations in blood pressure trigger an increase in sampling rate).

Statistics show that, in an overall, only 20% (12 out of 59 devices, one un-

known) of all studied systems features some kind of non-standard processing.

54 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

The obvious reason for this poor percentage is the extra power expenditure

that extra processing entails. So, even if an application could make good use

of some sort of data manipulation inside the implant, designers have generally

preferred to telemeter the data to an external host system and have it process

the data. At times, they have even transmitted results back to the implant for

closed-loop control, as in the case of Smith et al. [127].

However, studying the number of processing-enabled implants over the years

reveals an interesting trend (see Figure 2.24). Implants equipped with internal-

processing capabilities display a slow albeit steady increase. The figure also

indicates control-related tasks to be increasing faster than data-related ones.

Question 2.14 Do the relative percentages of implants supporting internal-processing tasks

change significantly over time?

Over the total number of studied systems, the ratio of implants performing processing tasks in-

vivo is small, as can also be seen from Figure 2.24a. Statistical analysis reveals practically no

correlation (X 2
= 3.5585, p = 0.4690) between this ratio and the passage of time (see also

CA plot in Figure 2.24c). Perhaps the change is not significant enough to register, yet the fact

remains that from a single processing-enabled implant in the period 1994–1997, the number has

increased to 5 in the period 2001–2005.

As far as implant memory circuitry is concerned, results from the ‘internal

data-storage capability’ variable reveal that 27 out of 59 devices (46%) fea-

ture some kind of memory module either as a discrete chip or as part of the

PCC chip. Of these 27 devices, 15 are measurement while 12 are stimulation

implants (see crosstabs in Figure 2.25a).

Question 2.15 Does the chosen implant functionality have an impact on its internal-data-

memory size?

The boxplots in Figure 2.25b reveal a twofold difference between the – otherwise small – data-

memory sizes of measurement (312 Bytes) and stimulation (176 Bytes) implants. They also

reveal a larger dispersion of memory sizes for measurement implants. We do not expect the

difference in size to be statistically significant and this is supported by a Kruskal-Wallis rank

sums test (X 2
= 0.0722, p = 0.7881) which strongly rejects the null hypothesis. Therefore,

in the absence of further data, implant design should not be differentiated in its memory require-

ments based solely on its functional purpose. There is no opposing data to the fact that both

measurement and stimulation implants require similar amounts of memory, albeit for different

purposes.

2.6. SURVEY RESULTS 55

15
16

12

0

2
3

1 2 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994-1997 1998-2001 2002-2005

no control data

(a) Internal-processing trends over the

years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

no 0.938 0.061 0.800 0.089 0.706 0.111

control 0.000 0.000 0.100 0.067 0.176 0.092

data 0.063 0.061 0.100 0.067 0.118 0.078

#N 16 20 17

(b) Probability estimates (pi) and their standard er-

rors SE (σpi).

-0.6 -0.4 -0.2 0.0

-0
.6

-0
.4

-0
.2

0
.0 A

B
C

-2.0 -1.5 -1.0 -0.5 0.0

-2
.0

-1
.5

-1
.0

-0
.5

0
.0123

A

B

C

1

2

3

control

data

no

1994--1997

1998--2001

2002--2005

(c) CA plot of number of implants sup-

porting internal-processing tasks

vs. publication year.

Figure 2.24: Internal-processing-enabled implants over the years.

56 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

internal mem. no internal mem. TOTAL

present present

meas. 19 15 34

stim. 13 12 25

TOTAL 32 27 59

(a) Type of implants incorporating in-system data-

memory blocks.

measurement stimulation

0
5

0
0

1
0

0
0

1
5

0
0

Functionality

In
te

rn
a
l-
d
a
ta

-m
e
m

.
s
iz

e
 (

B
)

(b) Boxplots of data-memory sizes for

stimulation and measurement im-

plants.

4

8

10

12

12

7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994-1997 1998-2001 2002-2005

yes no

(c) Data-memory-availability trends

over the years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

yes 0.250 0.108 0.400 0.110 0.588 0.119

no 0.750 0.108 0.600 0.110 0.412 0.119

#N 16 20 17

(d) Probability estimates (pi) and their standard

errors SE (σpi).

Figure 2.25: Implant internal-data-memory availability and size.

2.6. SURVEY RESULTS 57

0
5

0
0

1
0

0
0

1
5

0
0

Linear regression fits over funct.

Publication year (-)

In
te

rn
a

l-
d

a
ta

-m
e

m
.

s
iz

e
 (

B
)

1981 1989 1993 1996 1999 2004

Fitted line for: measurement

Fitted line for: stimulation

(a) Fitted lines per functionality.

0
5

0
0

1
0

0
0

1
5

0
0

Linear regression fit and 95% CI's

Publication year (-)

In
te

rn
a

l-
d

a
ta

-m
e

m
.

s
iz

e
 (

B
)

1996 1997 1999 2001 2004 2005

Fitted regression line

Confidence-interval (upper/lower) line

(b) Fitted aggregate line.

Figure 2.26: Internal-data-memory trends over the years.

Question 2.16 How does internal-data-memory size change over time for different implant func-

tionalities?

Research Question 2.15 has shown that implant data-memory sizes are, in an overall, similar for

both measurement and stimulation implants. However, we would further like to investigate how

these memory sizes change for each functionality category over time. Once more, a dummy-

variable regression model has been fitted to the data. Linear models have been fitted on both

stimulation and measurement data and are illustrated in Figure 2.26a. We can immediately

make two observations: (a) both implant categories show increasing data-memory sizes with

time, and (b) measurement-implant memory sizes exhibit a bigger slope than stimulation ones,

which is expected given the formers’ strong data-collecting nature.

Besides, we wish to test whether the difference between them is statistically significant. Keep-

ing in mind that data is, as usual, scarce, we perform a G test which yields non-significance

(G = 1.8384, p = 0.6066). Therefore, a regression line (Figure 2.26b) for both implant

categories should suffice to describe data-memory trends over the years.

Although data-memory sizes are increasing over time, they are markedly low

compared to the mainstream-market size, even after accounting for the highly

constrained nature of implantable systems. The reluctance of researchers to

pack more data memory with their designs may be attributed to the rising

power and chip-area issues. Still, the latest achievements in high-density, low-

power memories [66] can lead to diminished penalties and, thus, implant im-

plementations with larger capacities in the future. This expectation is backed

by survey findings which indicate a steady increase of memory-enabled de-

vices every 4 years (see Figure 2.25c).

58 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

An increase in storage capacity shall allow implanted devices to become actual

in-vivo data-loggers with the ability to store and even process large quantities

of gathered biological data. It shall also untie the hands of ADC- and DAC-

unit designers, allowing them to implement higher-resolution converters that

run little risk of overflowing the larger implant memories. In short, memory-

capacity increase is anticipated to favor not only the autonomy but also the

processing capabilities of future implantable devices. This has already been

observed in commercial pacemakers which incorporate ever larger memories

to accommodate for increased functionality [118].

Let us now discuss the supported sampling rates of implantable systems.

Most biologically-generated, electrical signals display low frequencies (up to

1 kHz), e.g. ECG and EEG signals range from 0.05 Hz to 100 Hz . Thus, im-

plants with sampling frequencies of 2 kHz (according to the Nyquist theorem)

are sufficient. This is the case in this survey, too, as captured in the attribute

‘sampling rate’. There are few exceptions in the range of tens of kHz and even

fewer ones in the range of hundreds of kHz. Most of these are maximal settings

of specific systems rather than nominal settings.

High sampling frequencies are also justified by the designers’ wish to extract

not only peaks in a physiological signal but also further, detailed values within

the spectrum, for high-fidelity visualization purposes. This is particularly the

case nowadays with EEG neural signals like, for instance, the neural-activity

recording implant proposed by Mohseni and Najafi [96] which supports sam-

pling rates of up to 8 kHz . As previously mentioned, such high sampling

frequencies can be adjustable either at design time or at run time. In the lat-

ter case, fast sampling intervals are triggered when activity above a specific

threshold is detected in the monitored biological quantity(-ies).

Question 2.17 How do supported measurement-implant sampling rates change over time?

Based on analysis of the collected data, a LS quadratic curve has been fitted (see Figure 2.27).

Supported sampling frequencies appear to grow over time, however, they seem to be reaching

a plateau over the more recent years. The figure shows some exceptionally high frequencies

(250−300 kHz) achieved recently, yet the bulk of devices lies at lower frequencies (< 10 kHz).

Still, these frequencies should be sufficiently high for most biomedical applications which might

explain the approaching plateau.

Lastly, the discussion in this section focuses on ADC and DAC units, both

commonly found inside implantable devices. In case an implant contains a

PCC, these components are usually built or chosen with a resolution equal

to the data-word size of the PCC, since the ADC output (or DAC input) is

typically fed to (or supplied by) the PCC. The designers’ wish to acquire (or

2.6. SURVEY RESULTS 59

0
5

0
0

0
0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

Quadratic regression fit and 95% CI's

Publication year (-)

S
a

m
p

lin
g

 r
a

te
 (

H
z
)

1994 1996 1997 1998 2000 2003 2004 2005

Fitted regression line

Confidence-interval (upper/lower) line

Figure 2.27: Implant sampling-frequency trends over the years.

generate) as high-resolution signals as possible is limited by the processing

power and memory size they can fit in a single implant.

Reported figures on ADC/DAC resolution are very erratic with ADCs in the

range from 6 to 22 bits and DACs in the range from 3 to 8 bits . Respec-

tive median values are 10 bits and 5 bits . This large dispersion of values

once more underlines the largely customized design of many implants and

their PCCs which support various precision ranges depending on the medical

application at hand.

Question 2.18 How does ADC and DAC resolution change over time?

Quadratic curves have been fitted to the ADC- and DAC-resolution data points, over time.

Figure 2.28a depicts a monotonously increasing trend in the number of implemented ADC bits.

On the contrary, Figure 2.28b depicts a trend which – after conducting a G test – turns out to

be not significantly different from the intercept-only line (G = 2.4117, p = 0.2994); that is,

DAC resolution exhibits no notable change over the years of the study.

Having discussed ADC/DAC-resolution trends, it would be interesting to as-

sociate them with the trends we have discovered so far on the number of pe-

ripherals per implant (cf. Figure 2.26a) and on the data-memory sizes (cf. Fi-

gure 2.22b and Figure 2.22a). We have combined these trends in a single table

(Table 2.28c) where we have used the following illustrative notation: ‘ր’ de-

notes an upward trend in time, ‘ց’ denotes a downward trend in time and ‘0’

denotes no appreciable change in time. According to the table, it appears that

current measurement implants have reached a sufficient range of monitored

physiological quantities and the designers’ primary goal these days is to pro-

60 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

1
0

1
5

2
0

Quadratic regression fit and 95% CI's

Publication year (-)

A
D

C
 r

e
s
o

lu
ti
o

n
 (

b
it
s
)

1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Fitted regression line

Confidence-interval (upper/lower) line

(a) ADC resolution.

3
4

5
6

7
8

Quadratic regression fit and 95% CI's

Publication year (-)

D
A

C
 r

e
s
o

lu
ti
o

n
 (

b
it
s
)

1995 1996 1999 2000 2001 2004

Fitted regression line

Confidence-interval (upper/lower) line

Horizontal (reference) line

(b) DAC resolution.

implant peripheral data-mem ADC/DAC

type count size resolution

measurement 0 րր ր
stimulation ցց ց 0

(c) Qualitative comparison of the implant-

peripherals’ trends over time.

Figure 2.28: ADC and DAC resolution trends over the years.

vide higher-quality readouts. Such readouts will require considerable amounts

of memory to handle and store. Stimulation implants appear to follow a dif-

ferent trend. Stimulation-signal resolution is high enough these days but the

effort is placed on achieving more focused and fine-tuned stimulation (perhaps

of isolated nerves or muscle bundles). A concurrent increase in memory sizes

would help increase device autonomy and available stimulation patterns.

2.6.5 PCC features

Since the implant PCCs are of special interest in this study, the current section

is concerned with the PCC specifics. The ‘PCC architecture’ attribute queries

implants with respect to the style and complexity of the PCC architecture used;

that is, µController, µProcessor or FSM. As discussed in Section 2.6.2, 42 out

of 58 (2 unknown) (70%) devices in this study feature some type of PCC. The

2.6. SURVEY RESULTS 61

16

28%

21

36%

21

36%

no mP/mC FSM

(a) Overall PCC-architecture distribu-

tion.

5 6
4

3
5 8

8
8

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994-1997 1998-2001 2002-2005

no mP/mC FSM

(b) PCC-architecture trends over the

years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

no 0.313 0.116 0.316 0.107 0.235 0.103

mP/mC 0.188 0.098 0.263 0.101 0.471 0.121

FSM 0.500 0.125 0.421 0.113 0.294 0.111

#N 16 19 17

(c) Probability estimates (pi) and their standard errors

SE (σpi).

Figure 2.29: Implant PCC architecture.

remaining 30% contain no PCC of any sort and their functionality is hardwired.

Some of these cases include implants which need to be extremely miniature in

size and are designed for a very specific task, e.g. ICP measurement with the

implant placed in the space between the cranium and the brain.

Going back to the PCC-enabled cases, half of them (35%) utilize FSMs as

cores. This fact alone further propagates our thesis that implants are highly

dedicated designs. The remaining half consists of custom-designed or com-

mercially available µC/µP-based PCCs14. Overall distribution of PCC archi-

tectures is depicted in Figure 2.29a.

Another observation is revealed through Figure 2.29b, illustrating the relative

percentage of encountered PCC architectures per time period of the study. The

bar chart reveals an increasing number for µC/µP-based implants at the cost

of a receding number of FSM-based ones. Although Research Question 2.19

14Although not exactly the same, in this analysis, we have grouped µC and µP cases in a

single category due to the small number of µP cases in the survey.

62 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

-0
.2

-0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

A

B
C

-0.2 0.0 0.2 0.4

-0
.2

0
.0

0
.2

0
.4

1

2
3

A

B

C

1

2

3

no

FSM

mC/mP

1994--1997

1998--2001

2002--2005

(a) Publication year.

-1.5 -1.0 -0.5 0.0 0.5

-1
.5

-1
.0

-0
.5

0
.0

0
.5

A

B

C

D

-1.5 -1.0 -0.5 0.0 0.5

-1
.5

-1
.0

-0
.5

0
.0

0
.5

1

2

3

A

B

C

D

1

2

3

no

commercial

semi-/structured-custom

full-custom

no

FSM

mP/mC

(b) PCC design.

Figure 2.30: CA plots of PCC architecture vs. PCC design and publication

year.

Question 2.19 Do the relative percentages of implant PCC-architecture categories change sig-

nificantly over time?

We perform a chi-square test to verify the change of PCC-architecture trends over the years.

The test returns a non-significant p-value (X 2
= 3.4746, p = 0.4817) suggesting that the

observed shift in Figure 2.29b may be coincidental. Based on our analysis to this point, we do

not think this is the case. Unfortunately, the standard error is too high to draw solid conclusions.

Still, to further explore the evolution of PCC-architecture trends, we have also generated a

CA plot of the two variables (Figure 2.30a). The plot does indeed support, if visually, our

observations: µC/µP-based solutions are more akin to the latest time period 2001–2005 while

FSM-based ones to the earlier time periods.

has not proven a statistically significant shift in implant PCC architectures over

the years, our previous findings (e.g. increasing peak power consumption) and

some upcoming ones (e.g. high correlation between certain PCC architectures

and low-power provisions (Research Question 2.22)) hint otherwise.

In view of the above, the primary reason for the observed trend in Figure 2.29b

is anticipated to be the following: As many researchers clearly state in their

published work, their preference towards µP or µCs stems from their desire

to build flexible, adaptable systems which allow online – that is, in-vivo –

adjustment or fine-tuning of their operation. Reasons for doing so typically are

post-operative, patient-specific implant adaptations, re-calibration of drifting

sensory/actuating peripherals after chronic implantation and so on. Leveraging

2.6. SURVEY RESULTS 63

such implant flexibility is considered important enough that drawbacks like

increased device size and reduced testability are gladly traded over it [117].

The flexibility issue will be revisited in more detail in Section 2.6.6.

By combining the last observation with the trends on PCC designs observed in

Figure 2.10b, it is further suspected that these µC/µP-based PCCs are mostly

commercial, off-the-shelf ICs (by Microchip, Atmel, Motorola, Philips etc.).

The following Research Question 2.20 verifies this claim.

Question 2.20 Does the implemented implant PCC architecture have an effect on the PCC

design selected?

To answer these questions, a chi-square test is run between the ‘PCC architecture’ variable and

‘PCC design’. The test returns a high X 2 and significance at the .001 level (X 2
= 84.1921,

p = 4.853e−16). To investigate the exact nature of the correlation, a CA plot has been drawn

in Figure 2.30b. As the plot reveals, all used FSMs are semi-custom- or structured-custom –

and, to a smaller extent, full-custom – implementations. Employed µC/µPs, on the other hand,

are mostly commercial components.

The above relation between the PCC architecture and the PCC design could be

explained by the fact that recent microelectronics-technology advances in tran-

sistor sizes and performance have gradually allowed for “coarser” than custom

(ASIC) approaches to be viable in implant design. This correlation may, in

fact, be signaling a general shift in the implant design paradigm altogether.

Implant designers appear nowadays more and more willing to trade some ex-

tra implant area, performance and/or power for introducing (a) higher device

properties, (b) simplifications in the design cycle, and (c) increased safety –

all provided through use of commercial ICs with established, mature design

cycles and preverified, pretested cores.

Besides, by carefully employing low-power techniques such as low-power

states and selective powering of subsystems (as discussed in Section 2.6.3),

µC/µP-based PCCs can narrow the power gap from the more economic FSM-

based PCCs further. This has been rigorously exemplified in the work by

Salmons et al. [117] whereby two functionally equivalent instances of a single

stimulation implant have been built and compared, one as an FSM-based and

the other as a µC-based device.

We, next, wish to explore whether a connection exists between the implant

functionality and the PCC architecture implementing it. In effect, Table 2.31a

has been generated. From the table it can be seen that µC/µP-based im-

plants have been employed equally for both kinds of functionalities, which

underlines their suitability for the whole range of (surveyed) implant appli-

cations. Conversely, implants incorporating no PCC have been almost exclu-

64 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

meas. stim. TOTAL

µC/µP 10 10 20

FSM 8 13 21

no PCC(s) 14 2 16

TOTAL 32 25 57

(a) Crosstabs. -0.2 0.0 0.2 0.4

-0
.2

0
.0

0
.2

0
.4

A B

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1 23

A

B

1

2

3

measurement

stimulation

no

FSM

mP/mC

(b) CA plot.

Figure 2.31: Implant PCC architecture vs. functionality

sively employed for measurement purposes. This is justified mainly due to

the large number of minimalistic implementations designed to simply monitor

and telemeter one or two physiological parameters such as temperature and

glucose levels. More complex functionality than this is seldom implemented

in pure hardware.

On the other hand, FSM-based devices have been slightly more often preferred

for stimulation purposes, as the table reveals. There are two main reasons sus-

pected for this. First, their reduced size – compared to µC/µP-type PCCs –

is more suitable for the class of applications where the microstimulator needs

to occupy as little space as possible, e.g. inside the ocular cavity, interwoven

in the body of a muscle and so on. In short, custom design (shown to primar-

ily be used for FSMs) is favored in cases where size is the highest concern.

The second reason is related to the electrical properties of the system at hand.

FSM-based stimulators can be built with special process technologies to in-

herently support specific electrical properties e.g. high-voltage tolerance or

large-current generation, like BiCMOS. In measurement systems where sen-

sors typically operate at small voltages and currents, such special processes

are unnecessary. However, that does not exclude µC/µP-based systems from

being realized in special process technologies.

To explore the relation between different PCC-architecture types and power

consumption, Figure 2.32 has been put together. In Table 2.32a is shown

the preference of designers towards a battery-based or an RF-induction-based

2.6. SURVEY RESULTS 65

Question 2.21 Does implant functionality have an effect on the PCC architecture implemented?

To back the discussion above and to also complement Research Question 2.3, we wish to in-

vestigate implant ‘functionality’ with respect to ‘PCC architecture’. We run a chi-square test

which shows significance at the .05 level (X 2
= 11.4179, p = 0.0223). A CA plot (Fi-

gure 2.31b) confirms the test and our observations that stimulation implants mostly contain

FSM-based cores while measurement implants are either coreless designs (which agrees with

our earlier findings on PCC types) or contain µC/µP-based cores.

power source depending on the type of PCC architecture they are using for

their design. Given that batteries can usually provide more energy (per time

unit) than RF-induction methods, it is clearly seen that they are the common

choice for the more power-hungry µC/µP-based PCCs. For the more conser-

vative FSM-based PCCs, RF induction is a highly viable option resulting in

smaller-sized devices.

Question 2.22 Does implant PCC architecture have an effect on the power source and low-

power provisions employed?

We wish to find out whether the relation between the PCC architecture and the power source

as well as the low-power provisions chosen is significant. A relation between FSMs and RF-

induction as well as µCs/µPs and batteries has been established in Table 2.32a and is also

manifested in Figure 2.32b. Yet, the chi-square test returns a marginally non-significant p-value

(X 2
= 5.6411, p = 0.0596).

Conversely, when low-power provisions are concerned (see reported schemes in Table 2.16a),

the test is strongly significant at the .001 level (X 2
= 32.1188, p = 1.548e − 05). The

associated CA plot in Figure 2.32c reveals that FSMs are most often encountered implementing

either subsystem-powering schemes or no schemes at all, whereas µCs/µPs usually implement

only power-save or both reported schemes. It should be noted that this affinity to the power-save

scheme stems chiefly from the fact that most utilized µCs/µPs are commercial components with

various low-power operational modes already built-in.

While on the power-consumption topic, we also explore the effect the various

PCC-architecture types have on the reported power consumption (peak active)

of the surveyed implants. To illustrate, we have drawn Figure 2.32d. The

boxplots reveal a visible difference in median values across coreless, FSM-

based and µCs/µP-based implants.

Question 2.23 Does the chosen implant PCC architecture have an impact on its power con-

sumption (peak active)?

Although the various PCC types rank as expected in their power requirements (i.e. µC/µP

> FSM > no PCC), the difference in medians is, once more, not supported by statistics – a

Kruskal-Wallis test returns a non-significant p-value (X 2
= 3.2052, p = 0.2014).

66 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

battery RF ind. TOTAL

µC/µP 14 6 20

FSM 7 14 21

no PCC(s) 9 7 16

TOTAL 30 27 57

(a) Implant PCC architecture vs.

power source.

-0.2 0.0 0.2 0.4

-0
.2

0
.0

0
.2

0
.4

A BC

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.3

-0
.2

-0
.1

0
.0

0
.1

0
.2

0
.3

1 2

A

B

C

1

2

no

FSM

mP/mC

battery

RF induction

(b) CA plot of PCC architecture vs.

power source.

-0.5 0.0 0.5

-0
.5

0
.0

0
.5

A

B

C

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

1 2

3

4

A

B

C

1

2

3

4

no

FSM

mP/mC

no

system-wide power-save modes

controllable subsystem powering

both

(c) CA plot of PCC architecture vs.

low-power provisions.

no FSM mC/mP

0
2

0
4

0
6

0
8

0
1

0
0

PCC architecture

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 -

 p
e
a
k
 a

c
ti
v
e
 (

m
W

)

(d) Boxplot of implant power con-

sumption with respect to different

PCC architectures.

Figure 2.32: Implant PCC architecture vs. power features.

Basic clock frequencies for the PCCs (attribute ‘PCC frequency’), commonly

range from 1 to 10 MHz with an overall median of 4 MHz . If a PCC is not

present in a design (e.g. the design is analog in nature), then overall-system

frequencies have been collected where available (‘non-PCC timing’). They

generally appear to be one order of magnitude lower than their digital counter-

parts with an overall median of 600 kHz . This is somewhat expected for analog

2.6. SURVEY RESULTS 67

or mixed-signal designs where timing is used only for driving sampling-related

sub-systems such as switched-capacitors, analog MUXes and simple counters.

Analog circuits are, after all, more susceptible to clock skews as frequencies

grow. PCC-enabled (thus, mainly digital) designs are - on the other hand -

more tolerant to noise and voltage drifts and allow easily higher clock rates.

There is, though, an additional, more subtle reason anticipated for this gap. In-

terestingly, designers are “forced” to go to higher clock rates due to the above

discussed tendency towards commercial ICs which typically run at a minimum

of a few MHz , e.g. the Atmel AVR datasheets indicate a 4− MHz µC clock.

Question 2.24 How does implant PCC frequency change with different PCC architectures and

over time?

Except for median values, it would also be interesting to investigate whether PCC clock fre-

quencies exhibit any appreciable shift in values over the survey studied years. Please note that

the sample size of non-PCC-timing data is not large enough to allow analysis.

In Figure 2.33a we have fitted a LS line through the PCC-frequency data points. The standard

error of the available data is high, thus, reducing the certainty of our conclusions. With this in

mind, the observation can be made that PCC frequencies are – in fact – not picking up over the

years. This has been verified by a G test which shows no significant difference (G = 0.0951,

p = 0.9536) from an intercept-only line. It could be explained by the fact that operating fre-

quencies are already high enough for present implant applications to be served. Irrespectively

– or, perhaps, because – of this, designers may have chosen to hold operating frequencies more

or less stable in an effort to cut down on consumed power. In either case, frequencies do not ap-

pear to be changing appreciably with time which implies that provided processing throughputs

(and sampling rates) are sufficient for current applications. This conclusion is also supported

by Research Question 2.17 on stabilizing sampling frequencies over the years.

In order to appreciate also the range of operating frequencies across different PCC-architecture

types, we have plotted Figure 2.33b. The boxplots reveal a higher median value but also a wider

dispersion of values for µCs/µP-based PCCs compared with FSM-based ones. The difference

in medians (approx. 2 MHz) does not appear to be significant (X 2
= 0.1471, p = 0.7014).

PCC instruction-set statistics have also been collected and presented in this

section; namely, the actually used and the total number of instructions as well

as the instruction-word and data-word sizes. Reported instruction sets vary

greatly and may consist of 1 up to 130 different instructions, with the median

around 25.5. Outstanding cases with 100 or more instructions are commercial

PCCs of which the implant utilizes a rather small subset for performing its

functions. However, in a few cases, designers have also reported the actual

subset of total instructions available that they have used in their design. This

subset has a median value of 2.5 instructions. In effect, an overall ratio of

used to total instructions can be calculated, roughly equal to 11%. In Research

Question 2.25, instruction-count trends over the years are also investigated.

The low instruction-utilization ratio (overall and across the years) underlines

68 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

0
2

4
6

8
1

0

Linear regression fit and 95% CI's

Publication year (-)

P
C

C
 f

re
q

u
e

n
c
y
 (

M
H

z
)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004

Fitted regression line

Confidence-interval (upper/lower) line

Horizontal (reference) line

(a) PCC-frequency trends over the

years.

FSM mC/mP

0
2

4
6

8
1

0

PCC architecture

P
C

C
 f
re

q
u

e
n

c
y
 (

M
H

z
)

(b) PCC-frequency vs. PCC architec-

ture.

Figure 2.33: PCC-operating-frequency characteristics with respect to PCC

architecture and trends over the years.

Question 2.25 How does the number of total and used instructions of implant PCCs change

over time?

Except for overall median values, we have attempted to visualize how total and actually used

instruction-set sizes have evolved over the surveyed years. In Figure 2.34, linear regression

models have been fitted on the available data. The reader can observe that sample sizes for used

instructions over the two latest time periods are very small; thus, we should be very careful

when extracting conclusions.

Trends of the total number of instructions appear to be climbing over the years (Figure 2.34a),

reflecting the introduction as PCCs of commercial, µCs/µPs PCCs featuring increasing

instruction-set sizes. Trends of the number of used instructions, on the other hand, appear

to be static (Figure 2.34b). We have performed a G test which returns an insignificant p-value

of almost one (X 2
= 1.0632e − 05, p = 0.9999). There is, therefore, no evidence that

the number of used instructions is changing over the years. By combining information from the

two trend lines – i.e. a linearly increasing number of total instructions and a stagnating number

of used instructions –, we can conclude that the instruction utilization ratio is dropping linearly

over the studied period.

the price paid for employing commercial PCCs instead of custom-built ones.

It, further, suggests that introducing (off-the-shelf) implant PCCs with smaller

instruction sets could help to maintain, in the future, all the benefits of com-

mercial ICs while limiting unnecessary hardware complexity and, thus, power,

area and delay.

The last attributes discussed in this section are instruction-word and data-word

2.6. SURVEY RESULTS 69

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Linear regression fit and 95% CI's

Publication year (-)

N
u

m
b

e
r

o
f

in
s
tr

u
c
ti
o

n
s
 -

 t
o

ta
l
(-

)

1994 1995 1996 1997 1998 1999 2000 2001 2003 2004 2005

Fitted regression line

Confidence-interval (upper/lower) line

(a) Total PCC instructions over the

years.

5
1

0
1

5

Linear regression fit and 95% CI's

Publication year (-)

N
u

m
b

e
r

o
f

in
s
tr

u
c
ti
o

n
s
 -

 u
s
e

d
 (

-)

1994 1995 1996 1997 1998 2000 2001 2003 2004

Fitted regression line

Confidence-interval (upper/lower) line

Horizontal (reference) line

(b) Used PCC instructions over the

years.

Figure 2.34: Number of used and total instructions per implant PCC over the

years.

sizes. For the former, a median count of 14 bits and for the latter of 8 bits

has been found. Instruction words are relatively erratic in their sizes ranging

from as few as 4 bits to as many as 45 bits , being heavily dependent on the

application at hand as well as on the communication protocol implemented be-

tween the implant and the external host. This is because usually an instruction

word is a subset of one (or more) command frame(s) transmitted to the implant.

Data words are in most cases equal to 8 bits , which is nothing more than the

adherence to the “standardized”, popular memory-word sizes of 8 bits . This

is becoming more apparent by the fact that most implants make heavy use of

the on-chip data memory of their commercial PCCs (being mostly 8 − bit

architectures so far).

2.6.6 Miscellaneous implant features

Having reviewed general implant characteristics and the specifics of PCCs, a

discussion on more “qualitative” attributes of implantable systems is in order.

These attributes – adjustability, versatility, programmability, modularity and

reliability – are more difficult to detect in the description of the various designs,

let alone quantify their effects. This makes statistical analysis (so far limited

by low sample populations and large noise margins) even more difficult to

70 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

perform. Even so, the present taxonomy and analysis would be incomplete

were such attributes to be disconsidered.

The first trait, termed ‘adjustability’, is related to the ability of an implant to

support diverse operational settings for its included peripherals. That is, mon-

itoring devices can poll their attached sensor(s) at different sampling rates for

data acquisition, stimulating devices can generate different current-amplitude

ranges for their stimulation channels and so on. The benefits of building ad-

justable systems are many:

1. Various instances of the same system can be produced with (slightly) dif-

ferent operational settings and at no extra development costs.

2. System operational settings can be altered after implantation for carefully

adapting the device functions to the special needs and comfort of each pa-

tient, e.g. the stimulating patterns of a microstimulator can be fine-tuned,

depending on the responses by the specific patient.

3. In many a case, physicians do not know a-priori what the “correct” settings

to a medical problem are and, thus, need to first implant the device and

then adjust its functionality by trial and error. Furthermore, dynamic, in-

system adjustment of functional parameters gives in-vivo medical studies

a great boost by allowing researchers and physicians to easily test various

parameter combinations (e.g. stimulation trains) in test subjects without

the need for repeated implantation and explantation surgeries which are

tedious, expensive, unpleasant and often dangerous ordeals.

4. Further, adjustability of peripherals allows for newer, more sophisticated

versions of implemented algorithms – which make use of these peripher-

als – to be seamlessly accommodated in a system. The result is enhanced

functionality, e.g. in the case of ICDs, for sensing and classifying arrhyth-

mias [147].

5. Lastly, adjustable systems can compensate for readout-circuitry non-

linearities (due to transistor mismatches etc.), sensor drifts, biological-

tissue reactions and other phenomena which manifest only after device fab-

rication and packaging or, worse, after chronic implantation inside the body.

It has been shown that digital compensation can improve sensor accuracy

by at least an order of magnitude over the uncompensated device. Com-

pensation can be achieved algorithmically, in the PCC of an implant, e.g.

polynomial-coefficient generation can be set up and run automatically with

negligible delays during a testing phase [149].

2.6. SURVEY RESULTS 71

4

9

4

12

11

13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994-1997 1998-2001 2002-2005

no yes

(a) Trends over the years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

no 0.250 0.108 0.450 0.111 0.235 0.103

yes 0.750 0.108 0.550 0.111 0.765 0.103

#N 16 20 17

(b) Probability estimates (pi) and their standard

errors SE (σpi).

Figure 2.35: Relative distribution of implants featuring adjustable peripherals

over the years.

In effect, adjustable systems feature increased useful lifetimes, higher flexibil-

ity and sharper operation. It is stressed that most of the above benefits hold

for systems that provide dynamic, i.e. in-system, in-vivo tweaking of their

parameters rather than static, i.e. assembly- or packaging-time adjustments.

Analysis of the survey data reveals that researchers have indeed identified early

on the need to build adjustable devices and have, thus, incorporated various

features to support it. Overall, 42 out of the 60 surveyed implants have been

found to offer some kind of adjustability. This makes up for as high as 70%

of all cases and is indicative of the unfailing attention researchers have placed

on building adjustable systems. In many cases, these are second- or third-

generation systems, augmented with dynamic settings, instead of preset ones.

Figure 2.35a shows adjustability-enabled implant trends over the years. The

small drop in adjustable systems observed over the period 1998–2001 may be

attributed to the previously discussed coreless bias. Generally speaking, we

see a stable inclusion of features for adjustability over the years.

72 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

-0.3 -0.2 -0.1 0.0 0.1

-0
.3

-0
.2

-0
.1

0
.0

0
.1

A B

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

-0
.4

-0
.3

-0
.2

-0
.1

0
.0

0
.1

0
.2

12 3

A

B

1

2

3

no

yes

1994--1997

1998--2001

2002--2005

Figure 2.36: CA plot of implant adjustability vs. publication year.

Question 2.26 Do the relative percentages of adjustable implants change significantly over

time?

Given the more or less constant presence of implants with adjustability features over the years,

we do not expect any noticeable change in the already high percentage of such systems over

the years. Indeed, we perform a chi-square test which gives no evidence of a changing trend

(X 2
= 2.4709, p = 0.2907). A CA plot of the same data is equally inconclusive, as seen in

Figure 2.36.

A small percentage of the studied implants (17%) goes a bit further and fea-

tures designs that accept a limited gamut of interchangeable peripherals; we

have termed this property ‘versatility’. More specifically, these implants fea-

ture interfaces (channels) with adjustable characteristics, to which a number of

different sensor (or other) modules can be plugged in (at design, fabrication or

packaging time). They can, therefore, configure their readout electronics to the

sensitivity, the speed and, less commonly, the resolution of the ported sensors.

Of course, limitations exist in this approach since the ‘versatility’ feature de-

pends on various aspects such as the physical interface, the data encoding and

the powering scheme of a plugged-in peripheral. For example, if a sensor out-

puts PWM-modulated data but the implant “understands” only PCM signals,

direct interfacing between the two is not possible unless extra glue-circuitry is

included. It is stressed here that the versatility attribute refers to implants de-

signed to support interchangeable (pluggable) peripherals and not to support,

simultaneously, a number of statically connected peripherals, as was discussed

in Section 2.6.4.

The gathered data shows that in the vast majority of cases, the interchangeable

2.6. SURVEY RESULTS 73

13 17 14

3 3 3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994-1997 1998-2001 2002-2005

no yes

(a) Trends over the years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

no 0.813 0.098 0.850 0.080 0.824 0.092

yes 0.188 0.098 0.150 0.080 0.176 0.092

#N 16 20 17

(b) Probability estimates (pi) and their standard

errors SE (σpi).

Figure 2.37: Relative distribution of implants featuring versatile (inter-

changeable) peripherals over the years.

peripherals are sensory units since they are the most easy to accommodate.

Actuators usually come with more diverse control and powering requirements,

making it more difficult to cover different types of them. An interesting case

has been presented by Fernald et al. [41]: the implant is designed with a serial-

bus architecture able to interface to an arbitrarily large number of different

peripherals (sensors, actuators, memory blocks, transceiver units etc.), all in-

terconnected in a daisy-chain fashion.

Oddly enough, the “versatile” implant cases are not a proper subset of the ”ad-

justable” ones. Indeed, as the study indicates, there are three instances whereby

different peripherals are supported but their functionality does not appear to be

adjustable. The overall percentage of versatile implants is rather low (17%)

and this is also manifested in the percentage of implants with such provisions

over the years; see Figure 2.37a. This is to be expected for one main rea-

son: Designing for various peripherals increases the complexity of a system

and introduces a certain amount of overhead due to the support circuitry re-

quired. What is more, there are – as of yet – no widespread industry standards

on sensor/actuator interfaces which can guarantee to researchers portability of

74 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

their implant designs through a comprehensive, established pool of standard-

conforming peripherals to routinely select from.

However, this is not to say that work on standardizing sensor (and actuator)

interfaces for other technological niches has not been attempted in the past.

Industry-related bus standards focusing on reliable, high-performance com-

munication have been described and commercialized in the past ranging, for

instance, from the popular analog 4 − 20 mA current-loop interface to the

Profibus-DP, the CANbus (+, 2.0B etc.), the busWorldFIP Fieldbus and the less

exotic Ethernet IEEE802.3. Interesting comparisons between various such in-

terfaces can be found, for instance, in [98] and [44]. In the field of low-power,

wireless sensor networks (WSNs), agreeing on a specific bus interface has

been the topic of long discussions lately, as well. A prominent case is the work

done by Najafi, Wise et al. [87,99,149] who have come up with various flavors

of standard bus interfaces. A full-duplex, parallel bus known as the Michigan

Parallel Standard (MPS) is implemented with 16 lines whereas a more sparing,

half-duplex serial bus, the Michigan Serial Standard (MSS) is implemented

with just 4 lines. Another featured “intramodule sensor bus” for environmen-

tal monitoring comes with 9 signal lines [155–157] and is based on the MSS. It

is also very similar to the transducer-independent interface (TII), based on the

recently developed IEEE1451 standard for sensor systems [34,81,151]. Zhang

et al. [159, 160] have come up with a general-purpose, low-noise, low-power

bus standard which is hardware-compatible with the TII standard but expands

on it supporting multi-node systems and plug-n-play capabilities.

While not all attributes of standardized interfaces such as the above can be

exploited for implantable systems, various items such as high reliability and

high accuracy can intuitively migrate to biomedical implants. In this context,

the versatility percentage, discussed previously, is rather encouraging and is

anticipated to increase in the years to come. Besides, the exact figure may in

fact be somewhat higher since for some study cases it was rather difficult to

discern whether the system was designed to support more peripherals or not.

Question 2.27 Do the relative percentages of versatile implants change significantly over time?

Contrary to adjustability, the available data does not support that versatility has not been

strongly pursued over the years. Percentages remain low throughout the surveyed years of

the study. This is verified by a chi-square test which returns a strongly non-significant p-value

(X 2
= 0.0965, p = 0.9529). A CA plot (Figure 2.38) does not offer more information.

The ‘programmability’ field includes all those devices that realize their func-

tionality by executing source code stored in a program memory, i.e. (part of)

their control is software-based rather than hardwired or hard-coded. This is

2.6. SURVEY RESULTS 75

-0.02 0.00 0.02 0.04 0.06 0.08

-0
.0

2
0

.0
0

0
.0

2
0

.0
4

0
.0

6
0

.0
8

A B

-0.05 0.00 0.05 0.10 0.15 0.20 0.25

-0
.0

5
0

.0
0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5

12 3

A

B

1

2

3

no

yes

1994--1997

1998--2001

2002--2005

Figure 2.38: CA plot of implant versatility vs. publication year.

an interesting-to-know feature since it reveals implantable systems that can

potentially adapt their functionality to more than one application by (off-line)

reprogramming their control and processing behavior (and by plugging in the

proper peripherals).

Data analysis reveals 15% of all cases (14 unspecified) to be programmable,

which is exactly the same subset of those implants based on µC/µP PCCs (see

Figure 2.29a). This translates to the conclusion that in cases where researchers

have wanted to design an implant with programmable functionality, they have

almost always opted for a (commercial) µC or µP as the implant PCC.

A prominent instance of a programmable system adapted to two completely

different applications is presented in literature by Lanmüller et al. [77]. The

first system is designed for cardiomyoplasty, aortomyoplasty, skeletal-muscle

ventricle (SMV) and other cardiac-assistance purposes and features ECG-

triggered, multichannel stimulation of maximally two skeletal muscles with

the goal of increasing muscle output. The second system is a nerve micros-

timulator developed for use in electrophrenic respiration (EPR) - applied in

diaphragm pacing - and for graciloplasty - applied for fecal continence - and

allows for activation of maximally two muscles, too. In this case, the ECG-

measurement hardware is not required and has, thus, been omitted while the

software running in the µC of the implant (as well as the software in the exter-

nal host computer) has been modified accordingly. Other than that, the system

setup remains principally the same. A Motorola µC has served as the PCC in

both applications.

76 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

0.0 0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

A B

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

12 3

A

B

1

2

3

no

yes

1994--1997

1998--2001

2002--2005

Figure 2.39: CA plot of implant programmability vs. publication year.

Over-the-years trends of implants with programmability capabilities are plot-

ted in Figure 2.40a. The trends are not clear but, assuming the dip in the

middle period 1998–2001 is due to the coreless bias, programmability-enabled

implants appear to be increasing slowly.

Question 2.28 Do the relative percentages of programmability-enabled implants change sig-

nificantly over time?

We wish to investigate whether there is any appreciable change in the number of

programmability-enabled implants over the years. A chi-square test reveals no significance

(X 2
= 3.0923, p = 0.2131) which indeed indicates a slow (or totally absent) increase in

such devices. A CA plot provides similar visual cues (see Figure 2.39) showing a weak relation

between programmability-enabled implants and the latest study period 2002–2005.

Of the programmability-enabled cases, program-memory sizes range from

512 B to 256 KB with a median of 7.3 KB . Besides, to investigate program-

memory sizes with respect to different implant functionalities, boxplots for

stimulation and measurement implants have been plotted in Figure 2.40c.

Question 2.29 Does the implemented implant functionality have an impact on its program-

memory size?

The boxplots reveal that, as was also the case for data memories (see Figure 2.25b), measure-

ment implants display a wider range of values for program memories than stimulation implants,

nonetheless with a slightly smaller median value. This underlines the data-intensive operation

of the former as opposed to the control-intensive behavior of the latter systems. A Kruskal-

Wallis test verifies that the difference in central tendencies is not significant by returning a large

p-value (X 2
= 0.0067, p = 0.9347). This is an interesting finding: existing data does not

suggest that either type of implant has significantly larger needs in program-memory size.

2.6. SURVEY RESULTS 77

15
10

12

1
0

3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994-1997 1998-2001 2002-2005

no yes

(a) Trends of programmability-enabled

implants over the years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

no 0.938 0.061 1.000 0.000 0.800 0.103

yes 0.063 0.061 0.000 0.000 0.200 0.103

#N 16 10 15

(b) Probability estimates (pi) and their standard

errors SE (σpi).

measurement stimulation

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

Functionality

In
te

rn
a

l-
p

ro
g

-m
e

m
.
s
iz

e
 (

B
)

(c) Boxplot of program-memory sizes

for stimulation and measurement

implants.

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0
3

0
0

0
0

Quadratic regression fit and 95% CI's

Publication year (-)

N
u

m
b

e
r

o
f

in
s
tr

u
c
ti
o

n
s
 -

 u
s
e

d
 (

-)

1981 1989 1993 1997 2001 2004

Fitted regression line

Confidence-interval (upper/lower) line

(d) Program-memory size trends over

the years.

Figure 2.40: Implant programmability capabilities and trends over the years.

78 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

Question 2.30 How does implant program-memory size change over time?

A LS quadratic regression line has been considered the best fit for the available program-

memory-size data points; see Figure 2.40d. The regression model reveals a genuine increase of

program-memory sizes over the years.

It is interesting to observe that these trends agree with the data-memory-size

trends found in Figure 2.26a. From the two figures we can conclude that (a)

memory sizes appear to be generally increasing over the years and (b) program

memories feature large sizes than data memories. Both these conclusions agree

with mainstream memory trends, which supports the current analysis.

Another interesting property of implants is design ‘modularity’, i.e. it charac-

terizes devices that have been designed generically enough so that their core

can be reused in very diverse applications. By the term ‘modularity’ we don’t

simply imply those devices that can support a specific set of different peripher-

als – this was covered by the previously seen ‘versatility’. Instead, we consider

implants which are based on an architecture capable of supporting a (theoreti-

cally) infinite number of application setups, i.e. a general-purpose core which

can be used in various biomedical scenarios with no modifications whatsoever.

Only one of the studied implants has been consciously based on a generic (as

opposed to highly dedicated) design for the PCC part, introduced by Fernald

et al. [41]. As previously mentioned, the implant is designed with a flexible

architecture, communication protocol and bus interface for closure over a wide

range of peripherals and corresponding applications. The system proposed by

Smith et al. [127], which has been also discussed in Section 2.6.1, though not

truly generic, comes closer than most other systems with provisions for a large

range of measurement and stimulation applications.

If we relax our initial definition of ‘modularity’ somewhat by including also

systems that have been built with sub-blocks intended to be reusable in other

scenarios, we come up with 5 more devices (bringing the total to 10% of all

studied cases). In these systems, specific circuit modules have been designed

to be suitable for a range of different applications. A typical instance is the mi-

crostimulator put together by Arabi and Sawan [5] which comprises a voltage

regulator, a data/clock separator, a FEC-circuitry and stimulation channels all

designed to be reused for implementing other neuromuscular prostheses. Mod-

ularity comes also in the flavor of external data/address busses and CS (Chip-

Select) lines that allow for expanding a basic system with more, peripheral-to-

the-core subsystems if the application demands it. Such a case is presented by

Stotts et al. [131]. Over-the-years modularity trends are plotted in Figure 2.41a

which indeed illustrates the altogether small number of modular devices.

2.6. SURVEY RESULTS 79

15
19

15

1
1

2

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

1994-1997 1998-2001 2002-2005

no yes

(a) Trends over the years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

no 0.938 0.061 0.950 0.049 0.882 0.078

yes 0.063 0.061 0.050 0.049 0.118 0.078

#N 16 20 17

(b) Probability estimates (pi) and their standard

errors SE (σpi).

Figure 2.41: Relative distribution of implants based on a modular design over

the years.

Question 2.31 Do the relative percentages of modularity-enabled implants change significantly

over time?

We, again, perform a chi-square which returns a non-significant p-value (X 2
= 0.6579,

p = 0.7197). This is expected given the scarcity of the available modular devices. A CA

plot (Figure 2.42), however, reveals a similar picture to the programmability attribute before:

modular implants are more prominent, if weakly, to the latest study period 2002–2005.

While the design approach sanctioning IP reusability has been tried and proven

in other, non-biomedical fields, the low percentage of modular implants re-

vealed by our study indicates that, until now, it has not been truly adopted

in microelectronic-implant design. However, we consider this to be an excel-

lent design recipe and well-suited for this field, too. It can potentially offer a

tremendous boost to implantable systems by allowing researchers to develop,

exchange and utilize IP cores which are guaranteed to work and are already

proven in some other implant design. Such reusable and modular designs will

reduce effort for clinical approval, will shorten development times and will

minimize testing and verification costs, which are non-trivial altogether es-

pecially in the biomedical domain where (inter)national regulations are most

stringent. Few generic implant designs have been proposed over the last 30

80 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

0.0 0.1 0.2 0.3 0.4

0
.0

0
.1

0
.2

0
.3

0
.4

A B

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

12 3

A

B

1

2

3

no

yes

1994--1997

1998--2001

2002--2005

Figure 2.42: CA plot of implant modularity vs. publication year.

years or so and, while their significance is not larger now than it was before,

recent advances in CMOS microtechnology make generic design more plausi-

ble now and allow for new approaches to the subject, previously turned away

as unrealistic.

The last parameter studied in this section is ‘reliability’. Under this term are

included all provisions and techniques employed for increasing the safety and

dependability of implantable devices. Design-, implementation-, fabrication-

and run-time techniques are considered, intentionally excluding mechanical

schemes and focusing on the electrical ones. The reliability parameter is a

crucial feature of implantable systems – perhaps the most crucial – given the

delicate nature of the biomedical field. Survey findings have revealed various

flavors of it which have been grouped in 7 distinct classes, as follows:

1. Duplication of circuits and structures (multiple threads of supply wiring,

backup circuitry etc.);

2. Self-test/diagnostic circuitry: battery voltage/temperature, output curren-

t/voltage, SW failure, system clock, RF-signal strength, HW breakpoints

and debugging etc. implemented through the use of Watch-Dog Timers

(WDT) etc.;

3. Safety circuitry: unintentional-stimulation prevention, reset on error etc.;

4. Test/interrogation modes (SW-based or HW-based, autonomous or

externally-controlled);

2.6. SURVEY RESULTS 81

9
11

11

6
4

1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994-1997 1998-2001 2002-2005

no yes

(a) Trends over the years.

1994-1997 1998-2001 2002-2005

Pi ±σ Pi ±σ Pi ±σ

no 0.600 0.126 0.733 0.114 0.917 0.080

yes 0.400 0.126 0.267 0.114 0.083 0.080

#N 15 15 12

(b) Probability estimates (pi) and their standard

errors SE (σpi).

Figure 2.43: Relative distribution of implants with reliability provisions over

the years.

5. Error-detecting/correcting instruction decode: parity-check, Hamming

codes, CRC etc.;

6. Design for structural testability (scan-based testing); and

7. Humidity detection in hermetically sealed implant packaging.

For such a mission-critical field as biomedical implants are, the overall per-

centage of devices incorporating reliability-enhancing schemes is surprisingly

low, only 35% (17 out of 49 cases, 11 unspecified). Even more surprisingly,

trends over the years in fact reveal a dropping ratio of implant devices explic-

itly designed with some kind of reliability provisions; see Figure 2.43a.

For gaining further perspective on the reliability issue, figures 2.45a and 2.45b

have been generated, associating reliability provisions with the PCC type and

PCC architecture of implants, respectively. Figure 2.45a indicates that systems

with full-custom and commercial PCCs are the most probable to appear with

reliability provisions. In both cases, roughly half of the designs are “reliable”.

By cross-correlating the figure results with data from the ‘reliability’ variable,

82 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

0.0 0.1 0.2 0.3 0.4

0
.0

0
.1

0
.2

0
.3

0
.4

A B

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

12 3

A

B

1

2

3

no

yes

1994--1997

1998--2001

2002--2005

Figure 2.44: CA plot of implant reliability vs. publication year.

Question 2.32 Do the relative percentages of reliability-enabled implants change significantly

over time?

Statistical analysis, once more, does not verify (X 2
= 3.461, p = 0.1772) the visual

observations made from Figure 2.43a. Although scoring a lower p-value than for the previous

attributes, p is still not significant. Still, a CA plot (Figure 2.44) tells the same story as the bar

chart; i.e. implants with “no” reliability provisions are to be found in the locus of the more

recent years of the study.

Question 2.33 Does the chosen implant PCC design and PCC architecture have an impact on

its reliability provisions?

It is very interesting to see how reliability-enabled devices are distributed among the various

PCC-design and PCC-architecture types encountered so far. To do so, we first need to establish

that there is indeed a correlation between ‘reliability’ and each of these variables. We perform

chi-square tests and they both return significant p-values at the .05 level (X 2
= 8.1867 and

p = 0.08497 for PCC design; X 2
= 9.1477 and p = 0.0103 for PCC architecture).

These correlations have been visually illustrated in the bar-charts of Figures 2.45a and 2.45b.

Respective CA plots are also provided in Figure 2.45c and 2.45d to explore these correlations

also visually.

it is further extracted that more radical reliability provisions are assumed by

full-custom designs as compared to commercial ones. For the former, design-

ers have actively gone out of their way to incorporate testable devices (class 6),

with various diagnostic and testing circuits (classes 2 and 4) as well as safety

and duplicate circuits (classes 1 and 3). For the latter, designers have appeared

to rely mostly on built-in capabilities of the commercial PCCs they are using.

For instance, the otherwise unutilized on-chip ADC of a commercial µC is

employed as a feedback element which monitors the implant battery level and

temperature and informs the user or takes some other course of action.

2.6. SURVEY RESULTS 83

10
4

1

0
1

12
3

3

1
13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

full-

custom

commercial structured-

custom

semi-

custom

no PCC

with reliability without reliability

(a) Reliability w.r.t. PCC design.

6

9

1

13

6

13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FSM C/ P no PCC

with reliability without reliability

(b) Reliability w.r.t. PCC architecture.

-0.6 -0.4 -0.2 0.0 0.2 0.4

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

A BCD E

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.8

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

1 2

A

B

C

D

E

1

2

no

commercial

structured-custom

mP/mC

full-custom

no

yes

(c) CA plot with PCC design.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

A B C

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

1 2

A

B

C

1

2

no

FSM

mP/mC

no

yes

(d) CA plot with PCC architecture.

Figure 2.45: Distribution of reliability per PCC design and per PCC architec-

ture.

The general impression formed is that in commercial PCC-based systems, de-

signers have treated reliability more as a secondary design goal and less as a

primary issue and have, thus, supported it only through unutilized resources

of the commercial components at hand. The reason for such an attitude might

be sought in the fact that commercial components have more or less known

MTTF (mean time to failure) and pre-verified, proven functionality. Thus, in

such cases designers seem not to feel further design for reliability is needed.

There could be a more practical aspect to this attitude. Namely, “injecting”

reliability schemes into commercial cores is more difficult than into custom

ones (where one is in full control of the design), which also explains the less

radical approaches taken for the former.

For structured-custom and semi-custom designs, the number of available cases

84 CHAPTER 2. A SURVEY ON MICROELECTRONIC IMPLANTS

is not sufficient to extract safe results; still, in these cases one can anticipate

the low percentage of reliable designs, as well. Devices with the overall lowest

percentage (1 out of 14 cases, 7%) are those not including a PCC. This could be

justified by the fact that such systems are usually hardwired implementations

with highly predictable, straightforward behavior either due to their low design

complexity or due to their static behavior. Thus, their functionality is easier to

test and their failure rate easier to predict.

Figure 2.45b, reveals another aspect of the reliability results. The “no PCC”

column is the same as that in Figure 2.45a. The other columns report on the

percentage of ”reliable” implants based on FSM cores and on µC/µP cores.

µC- and µP-based systems present the highest percentage of reliability provi-

sions (60%) while FSM-based ones follow with roughly half that (32%). This

large gap between the two PCC architecture styles can be explained by the fact

that while FSM-based cores are hardware implementations of the implant con-

trol logic, µC/µP cores constitute software implementations of the control unit.

Contrary to a state machine, code execution offers more flexibility to a system

(see also previous discussion on programmability) but it also bears more com-

plex interactions and, in effect, more unpredictable behavior inside the system

and its sub-blocks. This also explains further the extremely low percentage of

reliability for implants with no PCC: a coreless design is certainly less complex

(thus, more predictable) than a FSM-based or a µC/µP-based one.

There is a second reason why FSM cores score lower than µCs and µPs in

terms of reliability provisions and it has to do with system complexity as well.

µCs and µPs are more complex and, thus, require higher reliability but at the

same time can provide this extra reliability at a lower cost than FSMs. Imagine

the above mentioned ADC which monitors the battery voltage level and tem-

perature and reports it back to the PCC. If the PCC is based on software execu-

tion, the overhead in design time and resources (CPU load and code/memory

size) is negligible. The expansion is as simple as adding a separate (diagnos-

tic) process to the executed code. If, on the other hand, such kind of control

needs to be implemented in a FSM, new (diagnostic) machine states are needed

which probably also need to run in parallel with the main FSM cycle. This in-

curs non-trivial costs in design time but also in system resources, e.g. more

transistors, higher power consumption, additional pins (connections between

the FSM and the battery) and so on.

Conclusively, µC/µP-based PCCs facilitate but also accommodate a higher de-

gree of reliability, in the general case. The vigilant reader will, of course,

realize that the above conclusion is nothing more than the comparison be-

2.7. SUMMARY 85

tween hardware-based and software-based implementations of reliability. It

is rather obvious that if hardware-based reliability is desired also for the cases

of µC/µP-based PCCs, that is, if reliability features are to be supported by

dedicated hardware instead of software modules running inside the core, ex-

tra effort and transistors are needed. Still, results indicate that software-based

techniques have been mostly preferred for µC/µP-based implants, so far. As

a last remark, reliability provisions should be enhanced in future implant de-

signs, firstly, due to the mission-critical (medical) purpose they serve. Sec-

ondly, increasing design complexity under scaling technology makes hardware

components more amenable to faults, thus, demanding design for reliability.

2.7 Summary

In this chapter we have presented a taxonomy and in-depth analysis of a large

number of implantable systems covering mostly the 12-year-long period 1994–

2005. A large number of different device attributes have been investigated, re-

sulting in a rather detailed classification (although some implant aspects have

been consciously omitted or constrained). The data has been concentrated

in tables and, based on them, an involved commentary of the findings has

been presented. The survey has yielded interesting and, at times, counter-

intuitive results. The fact that modern microelectronic implants can be ef-

fectively grouped in only two main categories in terms of functionality, with

similar power and other requirements, the net increase in the dynamic power

consumption of implants and the drop in reliability provisions over the years

are only a few of these results. The lessons learned throughout this survey has

provided us with sufficient background knowledge and insights to confidently

take the next step which is the conceptualization of the SiMS project.

Note. The content of this chapter is based on the the following papers:

C. Strydis, Biomedical microelectronic implants, MSc Thesis, 2005.

C. Strydis, G.N. Gaydadjiev, S. Vassiliadis, Implantable Microelectronic De-

vices: A Comprehensive Review, Technical Report (CE-TR-2006-01), 2006.

3
The SiMS concept & background

T
HE modern world of rapid socioeconomic changes and technologi-

cal leaps has created an opportune environment for implantable sys-

tems to evolve into much more than applications of pure academic

interest. It has been an odd 50-year-long journey from the general-public

scepticism towards implants to their current status as undebatable solutions

against certain pathoses, such as heart arrhythmia, PD, deafness and more.

The fully implantable pacemaker, developed in 1958-59 by Wilson Greatbatch

and William M. Chardack, has been the first device to be implanted success-

fully into the human body and to operate seamlessly for long periods of time.

More importantly, this device has acted as the catalyst on the general public

closed-mindedness against biomedical implants. Indicative of the penetration

and impact pacemakers have achieved is the fact that, in the U.S. alone, a total

number of 180,000 implantable pacemakers have been registered for the year

2005 (source: American Heart Association [35]).

Their becoming commodity products, implants are nowadays doing more than

simply follow societal trends. They are becoming an influential factor in

healthcare and – eventually, we believe – public-policy making. The phe-

nomenon has been witnessed before, with other life-altering technological ad-

vances such as mobile telephony. These complex (direct-inverse) socioeco-

nomic and technical (as discussed in the previous chapter) relations have been

the major incentive for the present thesis work and have led to our proposing of

a new paradigm for implantable devices known as SiMS – Smart implantable

Medical Systems. Building on the technological trends pinpointed in Chap-

ter 2, in the present chapter we will concisely discuss the socioeconomic drifts

necessitating the inception of SiMS. We will, then, describe the SiMS concept

in detail and present the background information needed to realize it.

87

88 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

3.1 Motivating a new generation of implants

The research work included in this thesis work has initially been stimulated

by a number of observations in the socioeconomic as well as in the techno-

logical plane. By performing an in-depth survey of the implant field (seen in

Chapter 2), and through the process of this research, we became increasingly

knowledgeable in the field. Hands-on lessons learned, along with the gener-

ally observed societal trends, have helped in conceiving and refining the SiMS

framework; that is, a new approach in designing microelectronic implants. In

the following section, we briefly review the observations motivating SiMS.

3.1.1 Socioeconomic trends

In the face of ongoing socioeconomic advances, healthcare in the 21st century

is changing rapidly. In advanced countries, in particular, healthcare is moving

from a public to a more personalized nature [3, 26]. In advanced countries the

following cascading trends are currently being observed:

• Population is aging through a net reduction in birth rates combined with

an increase in life expectancy;

• Healthcare costs are growing out of proportion; and

• Higher demands for betterment of quality of life are placed (health, fit-

ness, convenience etc.).

The costs of healthcare worldwide are increasing every year. In the Nether-

lands, in particular, the government is trying to keep the health insurances af-

fordable for all citizens by periodically reorganizing the system. Since health-

care spending always increases at a much faster rate than the average income,

such practices work only for a limited period of time. The rising healthcare

costs, in combination with population aging (i.e. more potential customers for

the healthcare system), form a tough challenge for modern societies.

Presently observed cost overruns and inefficiencies are clear indications of sys-

temic failures in the existent healthcare construct. To cope with such phenom-

ena, many contemporary healthcare systems have set off implementing the

New-Public-Management (NPM) paradigm. This paradigm, in the words of

Kickert, claims that:

3.1. MOTIVATING A NEW GENERATION OF IMPLANTS 89

“Under conditions of heavy public demands but a severely con-

strained public budget, the only feasible alternative to cutting

public services or raising taxes, seems to be to reduce costs, in-

crease effectiveness and efficiency, and deliver ‘more value for

the money’.”

The paradigm has already received strong criticism [22, 74], yet is it a reality

pushing the public sector to become more businesslike, ‘work better and cost

less’, and become more client-oriented. In the legal domain, governmental

parties in many countries are now attempting to preempt the coming change

by revising the standing legislation and passing new one in order to cope with

this new era [102].

Such socioeconomic trends have given birth to the notion of personalized

healthcare. The term introduces a new approach to effective healthcare – as far

as economics go, at least – whereby default hospitalization and generic treat-

ment of patients is discouraged and supplanted by patient-specific prognosis,

diagnosis and, mainly, treatment. It goes without saying that technology will

be the vehicle for enabling personalized healthcare; similar trends have already

been witnessed in the cell-phone and portable-computing revolutions.

Better use of technology – and, in our case, implants – can and should be

used to get control of healthcare costs. For example, continuous monitoring

of physiological parameters can be used instead of occasional meetings with

the doctor. Having an up-to-date and complete picture of the changes in a

patients condition will enable disease prognosis, which by definition is more

effective and less costly than disease treatment. It should be stressed that such

technology will be used not only for high-risk or chronic patients, but also for

general lower-risk patients over periods of normal activity in their home or

work environment.

3.1.2 Technological trends

A number of technological innovations is attempting to carry healthcare sys-

tems to the next level, such as wearable electronics, portable medical monitors,

body-area networks (BANs) and, last but not least, microelectronic implants.

Implants have been around for more than 50 years, yet over the last decade they

have being designed for an expanding range of applications ranging from im-

plantable microstimulators to pervasive, in-vivo monitoring and data-logging

devices, as detailed in Section 2.6.1.

90 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

Implants have clearly benefitted from the astounding recent technology-

miniaturization trends [66], boasting smaller sizes, lower power consumption

and increased performance of the transistor devices. Simply put, while the

human-body dimensions have not changed, microelectronics dimensions have

– by proportion – shrank to such an extent that modern implants are becoming

sufficiently sophisticated and small so as to treat various human pathoses, even

at the most constrained parts of the human body. It is this practical property

along with their wider acceptance in modern societies that is making them a

primary technological driver towards personalized healthcare.

3.1.3 Survey-based implant trends

The previous discussion gives indications that current socioeconomic and tech-

nological trends are in place to favor the wide deployment of microelectronic

implants. Yet, the survey performed in Chapter 2 has revealed a shift in the

implant-design paradigm: implant PCCs are gradually moving from custom-

designed (ASIC), application-specific (e.g. FSM-based) systems [50, 96, 106]

to more off-the-shelf and generic (e.g. µP /µC -based) ones [25, 78, 84]. Fur-

thermore, PCC design is becoming more streamlined and structured than it

used to be and that, in the near future, implant functionality will be based on

executed software (written in some high-level, established language like C)

rather than on hardwired circuits.

Such a transition has been previously witnessed in other computer-engineering

niches (a prominent example being the Personal Computer – PC) and is antic-

ipated to lead to a booming in implant designs and applications. As desirable

as such a turn of events is, alas, it does not come for free. An adverse effect

is that reported implant power budgets are increasing over time, even though

transistor dimensions are shrinking and implemented device functionality is

not overtly complex.

Another revealed pitfall is the serious absence of design for reliability (DFR)

in implants: software-based, ad-hoc reliability techniques have been replacing

inherently reliable implant designs over the years. For a field of highly-mission

critical embedded systems where human lives and high costs are involved, this

poses a significant problem.

Last but not least, even though implant designs are becoming more structured,

product development is still highly application-specific. Already established

product cases such as the family of pacemakers introduced by Medtronic,

Inc. [91], where previous design expertise is (re)used to enhance the next de-

3.2. SMART IMPLANTABLE MEDICAL SYSTEMS (SIMS) 91

vice version, are currently the exception1. Reasons for this long-lasting atti-

tude are thought to be the high-risk and, thus, high-cost characteristics of the

implant market which, understandably, force companies to assume a highly

conservative (and often secretive) stance towards new product development.

Unfortunately, it is this particular attitude that (a) is keeping implant-device

costs prohibitively high for a large part of the population and (b) is limiting the

gamut of potential implant applications.

To sum up, currently witnessed implant-design trends weave a bright picture

for future implants which is only hindered by certain existing issues; namely,

rising power consumption, lack of DFR and recurring (re)design costs.

3.2 Smart implantable Medical Systems (SiMS)

As the previous sections have elucidated, microelectronic implants are one of

the primary vehicles for personalized healthcare in modern societies. Never-

theless, the current status-quo in the field suffers from certain problems which

have to be dealt with, for the first time, in a top-down fashion. Enter SiMS.

3.2.1 The SiMS concept

The main goal of this thesis is to deliver SiMS2; that is, a systematic approach

(thus, a framework) which provides biomedical researchers with a toolbox of

ready-to-use, highly reliable implant sub-systems and models in order to con-

struct (optimal) implants for various medical applications. The SiMS frame-

work has to guarantee the following essential attributes:

• high dependability (reliability, availability, maintainability and safety),

• modular, versatile design for design reuse,

• ultra-low power (ULP) consumption, and

• miniature size.

Devices built on the SiMS framework will be small, fine-tuned implantable

devices to the application at hand, yet built of generic components. Without

1Notice that, even in this case, we have a succession story of incremental pacemaker/defib-

rillator designs which still target a very narrow application field.
2Official SiMS website: http://sims.et.tudelft.nl

http://sims.et.tudelft.nl

92 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

Power

Module

SiMS

processor

Sensor 1

Sensor

Actuator 1

Actuator

Wireless

Transceiver

S
td

 I
/F

S
td

 I/F

Std I/F

Std I/F

SiMS system

… …

Remote system that:

 compiles source code of application,

 downloads it to the chip,

 exchanges data with the chip etc.

Figure 3.1: Block diagram of the SiMS concept.

requiring redesign, they are able to measure and/or regulate one or multiple

biomedical parameters simultaneously and communicate with external (out-

of-body) computing equipment wirelessly. Given that such devices are directly

related to human life, they will be characterized by very high reliability and

some degree of autonomy and self-awareness (within extremely demanding

low power and size constraints). Within the SiMS context, performance does

not need to be particularly high. As the survey in Chapter 2 has revealed, high

PCC frequencies are not needed. Rough frequencies of 4 MHz are deemed more

than enough to execute the implant tasks within real-time deadlines set by the

applications. Of course, we expect slightly higher (maximal) frequencies for

the SiMS devices as a necessary side-effect of the generic nature we impose

on SiMS.

Our long-term goal is silicon, multi-sensor/-actuator, single-chip, wireless

medical systems. Such systems will be produced using fully integrated CMOS

processes. In addition, they will be capable of context-sensitive behavior

(thus, smart), due to their multi-parameter awareness and communication abil-

ities. The combination of the aforementioned issues with the envisioned mod-

3.2. SMART IMPLANTABLE MEDICAL SYSTEMS (SIMS) 93

SiMS

processor

Figure 3.2: Reconfigurable hardware, replicated hardware and microcoded

units in the SiMS processor.

ular system approach, introduces new research challenges. A conceptual dia-

gram of the SiMS framework is depicted in Figure 3.1. In the next sections we

give a short description of the various SiMS subsystems.

3.2.2 SiMS digital processor

The digital processor (the so-called SiMS processor) forms the main process-

ing/controlling unit characterized by extremely low power consumption and

fault tolerance. The SiMS processor (essentially the PCC of a SiMS implant)

is responsible for:

• collecting and processing data from the sensors and/or regulating the

functionality of the actuators,

• forwarding data to the radio transceiver for telemetering information ex-

ternally and for accepting commands received from the external host

(e.g. the treating doctors computer),

• controlling the functionality of the various implant subsystems; for in-

stance, it is able to turn subsystems off when idling for long periods of

time and back on when their operation is required.

Implantable devices are liable to a set of strict (often extreme) specifications

due to the sensitive and demanding nature of their living “environment” and

94 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

SiMS have to conform to them. In this context, the SiMS processor will be

crucial in delivering highly dependable implantable devices. In principle, it

will achieve this by displaying attributes of error detection and error correc-

tion as well as self-testing and self-repairing properties. Such features will

be achieved by redundant hardware structures (e.g. replicated modules) that

will continuously check, correct and/or isolate faulty modules. To this end,

reconfigurable standard cells are also considered, as shown in Figure 3.2. If re-

configurable hardware proves to be to expensive power-wise, incorporation of

microcoded units is also considered as a trade-off between power consumption

and chip size. Since performance is not a primary concern in SiMS, microcode

may turn out to be an interesting (and, perhaps, more reliable) alternative for

implants. In addition to the hardware, all SiMS software modules have to be

error-resistant and self-correcting, as well (e.g. unique checksums shall be as-

signed to the instructions for picking out soft errors). The above features will

give implantable systems the much-desired properties of robustness and safety,

which are rudimentary ones, given the medical nature of the applications.

The SiMS processor will be small (16-bit architecture or less) featuring only

a few thousand transistor devices at a maximum. The obvious reasons for this

choice are the small-size and the ULP constraints (100 − µW order of mag-

nitude or lower) that implantable devices have to adhere to. A slightly larger

size may deem a device unusable in the case of e.g. intra-cortical implanta-

tion whereas high power consumption: a) drains the battery of an implantable

device rapidly, and b) causes potential damage (e.g. burns) to its surrounding

tissue due to heat dissipation. A less obvious but equally important reason for

a small architecture is that it allows achieving and maintaining the reliability

of the system more easily.

Finally, the SiMS processor will define specific interfaces to all peripheral

modules (biosensor(s), bioactuator(s), communication module, power module)

and will, thus, standardize and simplify the way a large (infinite, for practical

applications) number of different modules are selected for different applica-

tions. In this way, SiMS devices will become multi-featured, multi-capable

systems easily built to the specifications of diverse applications by plugging-in

standardized, pre-verified, pretested peripheral cores to the implant PCC (i.e.

SiMS processor).

3.2.3 Typical SiMS workloads

With the exception, perhaps, of the implantable pacemaker and the cochlear

implant – the former expect QRS complexes from the heart, the second human-

3.2. SMART IMPLANTABLE MEDICAL SYSTEMS (SIMS) 95

audible sounds – there has never been a commonly agreed upon list of “typical

implant” workloads (also known as benchmarks3). One reason is the pro-

hibitive diversity of the medical applications serviced by modern implants;

another could be the fact that, before now, there has never been proposed a

generic processor for implants (like the SiMS processor), thus creating the

need for an established list of processor workloads.

Our performed survey and experience so far indicates that there can indeed

be identified such a list of workloads which will be commonly encountered in

future implantable systems. This will serve a two goals: First, a common base

for comparisons among different implant designs can be established, similarly

to the benchmarks driving PC comparisons. Second, the benchmarks are in-

dispensable in drawing the specifications of the SiMS processor. In the next

chapter, we will take a closer look at what we consider a representative mix of

implant workloads, such as compression, encryption and data-integrity algo-

rithms.

3.2.4 SiMS HLL Compiler

The compiler will be responsible for generating the machine code to be exe-

cuted by the SiMS architecture. Application design will be straightforward: a

desired application behavior, defined by e.g. a doctor, will be properly encoded

in a high-level language (HLL) which will, then, be compiled to machine code

and directly mapped to the Instruction-Set Architecture (ISA) defined during

the first work package of this project.

Like all standard compilers, the compiler tied to the SiMS platform will be

able to perform code optimizations (instruction scheduling etc.). In so doing,

the instruction count (and, thus, execution time) of specific applications may be

reduced allowing for lower power consumption and, therefore, for prolonged

implantable device lifetime (i.e. autonomy). Other, advanced compiler issues

like reconfigurable- or replicated-resource allocation at static and/or dynamic

time will also be addressed. This, especially since optimizations have to be

performed not only for performance but also for small memory footprint, low

power consumption and fault tolerance.

The crucial issue of dependability will be indeed treated in the compiler

level, too. The compiler will actively handle this aspect by also accepting

application-specific constraint files along with the main application source

3Following the established computer-engineering jargon, the terms “workload” and “bench-

mark” are equivalent and will be used interchangeably in this thesis without further explanation.

96 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

compiler
optimizations

Application

source code

Library

including predesigned

hardware functions

Machine code:
01010...1100...

(consisting of:
 - application instructions,
 - reconfigurable-architecture commands,
 - power-management commands)

feasible

implementation

infeasible

implementation

Status report:
1. power: ok

2. area: error

3. ...

resource scheduling

Application-specific

constraints on:

power, area, delay

Figure 3.3: Overview of dependability guarantee through SiMS-compiler pro-

visions.

code. Such a file will include application-specific information regarding, for

instance, the nominal and maximal power consumption allowed, the area uti-

lization and the processing speed of the targeted application (see Figure 3.3).

This set of constraints will - per case - reflect general specifications of the

application. For example, similar code transformations may lead to different

results in relation to the context – where, inside the human body, the targeted

system will be implanted. As an example, the same power dissipation that is

prohibitively large for usage inside the brain may be tolerated in some other

cases. Given the source code and the set of constraints, the compiler will then

determine if a realistic solution on the SiMS platform exists. It is an extra

safety precaution that, if such solution does not exist, the compiler will gen-

erate an error report and will not output any machine code for the device. In

case (some of) the constraints are not met, changes in the compilation switches

could also be suggested, e.g. decreasing the level of software-based fault tol-

erance will result in smaller fault coverage but perhaps also less power, less

memory utilization etc..

The interplay between the SiMS compiler and architecture can be the design

spot where ample research and interesting ideas can be generated. Except

for safe compilation and fault tolerance at the software-only or hardware-only

levels, solutions that require both the participation of the compiler and the ar-

chitecture are also considered. An example of such a collaborative approach

3.2. SMART IMPLANTABLE MEDICAL SYSTEMS (SIMS) 97

Application

source code

Applicatio

...

x+=y;

if (x>120)

y=y+5;

else {

z=w[y];

y++;

}

...

SiMS

Compiler

TST ON

XOR R1,R0,R2

CHECKALU R3,R1,R2,(ADD)

LD R4,#ALUADD

CMP R5,R3,R4

TST OFF

D)

Test code

Refining and

rescheduling

Schedule test code,

if possible

(translation, scheduling,

optimizations, testing)

SiMS

Linker

...

MVI R6,0xF1

MVI R7,0x20

ADD R8,R6,R7

TST ON

<...>

TST OFF

LD R9,[0xDA]

...

Application

machine code

Figure 3.4: Compiler scheduling of test instructions.

to fault tolerance can be the following: (a) develop a set of test instructions for

the critical parts of the architecture, and (b) have the compiler schedule such

instructions efficiently (e.g. replace some NOP instructions with test instruc-

tions) for execution while respecting performance, power and program-size

constraints given by the application addressed. This is illustrated in Figure 3.4.

3.2.5 SiMS peripherals

Biosensors and bioactuators attached to and under direct control of the SiMS

implants are considered in this part. Investigation of new sensor and actu-

ator peripheral modules or improving of mature ones, all well-suited for the

biomedical domain, is needed. A typical improvement example is an im-

plantable glucose detector. Such modules have commonly been based on trans-

ducing elements that unfortunately age (i.e. their performance deteriorates

with time). To make matters worse, the body reacts to the exposed sensor/ac-

tuator front-ends dulling their accuracy and sensitivity. Potential work could be

done on a glucose detector based on optical technology, so as to avoid chemical

interaction with the living medium and, in effect, performance degradation.

The endmost goal for SiMS peripherals is proving the modularity benefits of

the SiMS-platform approach through designing new sensing and actuating el-

ements with a standard, common interface to the SiMS processor (see also

discussion below on “SiMS chip interconnects”). Furthermore, much effort

98 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

will be put on the transducing system of those sensory and actuating elements

in an attempt to boost sensitivity and performance. By improving peripheral-

module design, size and power consumption will directly benefit.

To a further extent, limited yet built-in self-tests will be supported (in an au-

tonomous or processor-assisted fashion) by these modules offering increased

reliability and safety. On another level, the micromachining implementation

method to be used will mainly affect size issues (micron and submicron tech-

nology) but also power issues. Lastly, an important topic is that, unlike the

processor which is isolated from the environment, sensors and actuators may

be in direct physical contact with the living tissue. Therefore, additional issues

of biocompatibility of the materials used are raised and are to be resolved in

this part.

3.2.6 SiMS wireless transceiver

The wireless transceiver module is the communication unit of the SiMS device.

It is responsible for: transmitting and receiving various types of information,

viz. (medical) sensory information, control information, status information,

and providing wireless connectivity on demand and with a guaranteed QoS,

even in radio-harsh environments.

The design of the SiMS wireless transceiver module is accompanied by sig-

nificant challenges at the system, circuit and technology level: being part of

an implantable device, the wireless transceiver module, including its antenna,

must have a small form factor. Being part of an implantable device with a small

form factor, reliable wireless connectivity needs to be established and main-

tained with low power consumption to ensure long battery life and/or to allow

the use of alternative power supplies that convert electromagnetic, chemical,

thermal or other type of energy into electrical energy. Reliable wireless con-

nectivity, even in radio-harsh environments, requires the use of multiple fre-

quency bands, multiple standards, possibly including ultra-wideband (UWB)

techniques. Main circuit design challenges for the full integration of multi-

band, multi-standard and UWB devices include on-chip image rejection, car-

rier/pulse detection and generation and provision of sufficient dynamic range.

Whereas the transceiver circuitry determines the instantaneous power con-

sumption of the transceiver module, the average consumption depends on the

power management of the complete SiMS system. This implies that not only

local, but also global (at all layers and at all time) power optimization and

awareness are important for extending the lifetime of the implantable device.

3.2. SMART IMPLANTABLE MEDICAL SYSTEMS (SIMS) 99

Power management for mobile devices has already become one of the fastest

growing segments in wireless IC revenue. Setting the performance by means

of adaptive circuitry is a way to manage power consumption in the RF and

baseband parts of the transceiver, while at the same time satisfying the various

functional requirements outlined above.

The UWB technique4 is one of the prime candidates for implementing into the

wireless transceiver due to its natural robustness to noise and support for high

data transfer rates. For instance, UWB with high-low frequencies of 5 GHz –

400 MHz can sustain a nominal rate of 1 Gbps . Even though a range of kbps

shall be sufficient for SiMS applications, this nominal rate can be reduced,

i.e. traded off for higher communication robustness and/or lower power con-

sumption. To exemplify, through careful use of UWB techniques, data transfer

could be achieved at 5 to 10 mW per Mbit of information.

Designing the wireless transceiver shall also include an extensive study of the

attenuation the information signal undergoes when cross varying medium com-

positions (e.g. soft/hard tissue, body fluids etc.). The idea is to build a module

which is adjustable to different application scenarios by, for instance, changing

its resonant frequencies or the throughput, depending on the setup.

3.2.7 SiMS chip interfaces

In order to deliver the desired SiMS modularity, interoperability and re-

usability of the SiMS components, standard interfaces have to be researched

and developed. All sub-blocks of the SiMS framework have to adhere to the

same interfaces so that donning and doffing of different components at design

time is possible. These standard interfaces have to be compact, low-power

consuming, reliable and – within specific margins – fast. Some work on the

field of interfaces has already been laid out in the field of implants [41] as well

as wireless sensor-networks (WSNs) [149], yet to serve the purposes of SiMS,

account of all above attributes have to be taken into account when designing a

new interface protocol and architecture.

4The UWB approach and all related design and implementation concepts discussed here

originate from interactions with SiMS partner Prof. Wouter A. Serdijn, ELCA Laboratory,

EEMCS Department, TU Delft.

100 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

3.2.8 Miscellaneous SiMS components

In order for a completely functional SiMS device to be produced, there is a

plethora of aspects to be resolved first. So far, we have mentioned the promi-

nent aspects (with respect to our expertise and available time frame). However,

there is a number of other, equally significant issues which need to be dealt

with before a complete, commercial system can be delivered to the market.

We mention these aspects only briefly:

• Antenna: On-chip, miniature-size, high-gain antennas;

• Power source: New chemical batteries with significantly reduced ge-

ometries, longer lifespan and predictable, safe behavior need to be de-

veloped for powering the SiMS systems. Power scavenging is another

explored alternative for SiMS;

• Standardized interfaces between the various subsystems;

• Design for Electro-Magnetic Compliance (EMC);

• Heat dissipation;

• Device packaging;

• Information security.

3.2.9 SiMS relevance

After going through the various SiMS building blocks, one point must be made

clear. Within the SiMS project, it is not our express goal to propose novel

implant applications but, rather, to specify a sound framework upon which

many existent (but certainly not all) and new implant applications can be built.

Outright, envisioned benefits of our approach are mainly threefold:

• radical shrinking of development times and costs;

• clear separation of the expertise for building the various SiMS sub-

systems and the final SiMS implants; and

• drastic increase of overall device reliability.

3.2. SMART IMPLANTABLE MEDICAL SYSTEMS (SIMS) 101

Product ideas

Product 1

Product 2

Product X

. . .

Scenario A

Product ideas

Product 1

Product 2

Product X

. . .

Scenario B

SiMS Platform

RISK

RISK

RISK

RISK

RISK

RISK RISK

Figure 3.5: Involved risk factors with (A) and without (B) a design platform.

(The thickness of the arrows is proportional to the risk weight).

SiMS shall guarantee a reduction of development times by providing a solid

substrate onto which prior art will be brought together, combined and inte-

grated in the final product. Such prior art will be in the form of Intellectual-

Property (IP) hardware and software components, all proven, pre-verified and

pre-tested according to (inter)national medical-safety regulations. This shall,

in turn, guarantee an increase in component- and device-level reliability.

By being fully aware that implantable devices are fruits of a multidisciplinary,

combined effort, we also work within the SiMS framework towards a clear

separation of partner expertices. That is, we aim at a framework where various

types of engineers provide the system architecture, the sensors and actuators,

the power source, the wireless transceiver etc. while medical experts are ac-

tively involved in composing, testing and fine-tuning the final system to the

particular patient needs.

3.2.10 Minimizing risks and costs

The proposed SiMS modular approach will decrease the time between idea

and product and balance the risks involved in the development process. In

addition, due to the multidisciplinary nature of such systems, there are still

102 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

many unresolved integration issues, e.g. not always the combination of the in-

dividual best practices will lead to the best system. By addressing these issues

and proposing pre-tested solutions, we provide the industrial partners with an

operational platform that they can use for subsequent commercial exploitation.

Even though highest priority in medical and, specifically, implantable devices

is not usually attributed to the device cost, it is still a boundary condition that

can make the difference in the market. As graphically depicted in Figure 3.5,

the currently existing approach (A) entails high risks for the development of

every new device family, whereas the proposed approach (B) involves a one-

time high-risk and -effort step during the platform design and considerably

lower risks for the products deployed on it thereafter. The term “risk”, in-

cludes various risk parameters and challenges appearing during the design, the

development and also during the normal operation phase of an implantable

system. A platform-based approach for system synthesis (such as SiMS is)

will allow for dramatically lower development times and costs of implantable

systems. Also importantly, it will provide a more standardized way of building

new medical devices. In so doing, it will further underpin the reliability issue.

3.2.11 Prior art on generic implant designs

In the past, a few attempts have been made to design generic implants with

a certain degree of modularity in order to make them capable of adapting to

different application scenarios. These cases have already been incorporated in

the implant-survey findings presented in Chapter 2. Since they are considered

to the closest cases to the SiMS approach, they are briefly described below.

Fernald et al. [41, 42] have proposed a modular microprocessor architec-

ture which accepts various peripheral modules such as sensors, actuators and

transceivers. Application flexibility is underpinned by a dual ring-bus inter-

connect linking an arbitrary number of modules to the processing core which

is a fully featured 16-bit µP (PERC), based on Hector [93]. Command and

data packets, traveling across each bus, have predefined, consistent structures

and plugged modules are built to interface to them.

Contrary to the additive nature of the above design, Smith et al. [112,127] have

addressed the problem of flexibility from a subtractive angle. An implantable

stimulator device with provisions for a large set of peripherals was designed.

Given a specific application, unutilized components of the initial, baseline de-

sign can be removed, resulting in a reduced system, tailored to the application

needs and with lower power/area requirements than those of the base design.

3.3. TECHNICAL BACKGROUND 103

Valdastri et al. [140] have presented a versatile implantable platform that pro-

vides multi-channel telemetry of measured biosignals. Its versatility resides

in its ability to support different types of sensors and to allow for easy re-

programming so as to fulfill different application requirements. To demon-

strate the correctness of the concept, a specific case study is implemented for

gastric-pressure monitoring which is a PCB-mounted assembly, supporting up

to 3 sensor channels. This implant can transmit digitally modulated data to an

external receiver over a wireless link with robust error control.

Furthermore, Salmons et al. [117] perform a design and comparative study

between an ASIC-based and a microcontroller-based microstimulator device

for restoring functionality to paralyzed muscles. Analysis has shown that, if

carefully designed with low-power modes and checked for software bugs, the

latter version is beneficial to the ASIC with respect to development and testing

costs.

Perhaps the closest work to SiMS is that conducted by Fernald et al. SiMS is

original in that it attempts to specify (among other components) a truly generic,

low-power and fault-tolerant processor architecture while at the same time pro-

viding the performance needed by current and future applications in the field.

The effort in this document henceforth is to detail the steps taken to explore

the specifications of such a processor architecture.

3.3 Technical background

The SiMS concept, as outlined in the previous sections, requires (re)touching

all aspects of implant design – from the application source code all the way

down to the gate level (or even lower for the peripherals). While this pro-

vides a wide scope of potential research themes to pursue, our particular ex-

pertise within the Computer Engineering laboratory as well as our available

time frame forces us to focus on a a few aspects of SiMS, for the purposes of

this thesis work.

We believe that most serious (and original) groundwork needs to be laid in

the PCC of SiMS; that is, in the digital processor (and assorted HLL com-

piler). Since the processor has to be designed before its matching compiler,

the primary focus in this thesis and the topic of discussion henceforth is the

SiMS processor5 . We advocate the design of an ULP and generic processor

5Concurrently, PhD research work on the SiMS compiler is being conducted within the

Computer Engineering Laboratory by Ghazaleh Nazarian, Ir..

104 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

for implants with explicit provisions for fault-tolerant operation and suit-

able for covering a large subset of current and, most importantly, future

implant applications. Although fault tolerance has been one of our primary

goals for this thesis work, it proved to be rather difficult to utilize existing tools

or build our own ones to model and explore it within the SiMS processor; at

least, as a first step. We will revisit this issue in Chapter 6 when we focus on

processor DSE tools.

In order to specify and design such a processor we, first, had to set up a suit-

able evaluation environment along with representative implantworkloads for

conducting our profiling studies. Figuring out what “representative” is in the

context of biomedical implants and selecting the right evaluation environment

has proven to be a significant challenge in itself since prior art (literature and

tools) in the field is seriously absent. We have, therefore, made our choices

based on: (a) availability/accessibility of resources (source code, simulators,

tools etc.), (b) educated hints taken from the implant survey we have already

performed in Chapter 2, and (c) our intuition, running experience with im-

plantable devices and past experience with embedded systems, in general.

3.3.1 Work organization

The first step was picking a suitable simulator for our SiMS processor. We,

then, selected a list of benchmark categories (e.g. compression benchmarks,

encryption benchmarks) that we considered representative of workloads to be

executed in actual, future implants. For each category, we identified the best-

performing candidates under strict performance, power, size and other restric-

tions. The next step was to group these and some additional benchmarks into

a novel benchmark suite for implant processor. With all the above pieces in

place, we were able to explore optimal configurations for some of the mi-

croarchitectural features of the SiMS processor, as allowed by the available

simulation environment. Finally, with all tools in place, lessons learned in the

process and some enhancements to the existing benchmark suite, we expanded

our tools and proceeded in building an automated Design-Space Exploration

(DSE) tool for optimal SiMS processors.

For each of the above outlined steps, the current state of the art – that is, the

technical background – has been studied. Following the above task organiza-

tion, the upcoming sections aggregate and present the existing prior art.

3.3. TECHNICAL BACKGROUND 105

3.3.2 Processor simulators

In order to explore features of the SiMS processor, we have taken the approach

of, first, modeling the processor and profiling its behavior in a suitable simula-

tion environment and, then, transferring this information to a hardware design

tool. We would ideally want a processor simulation environment with the fol-

lowing features:

• a flexible simulation environment where different processor modules

could be tweaked, added or completely removed;

• accurate modeling of various architectural (e.g. cycle-accurate instruc-

tion execution) and microarchitectural (e.g. cache geometries) parame-

ters;

• the ability to run workloads written in some popular HLL language (e.g.

C), meaning the processor simulator should come with compiler sup-

port – and complete binary utilities, for that matter;

• support for error injection and hardware fault models;

• the ability to output – except for the correct program output – additional

metadata for its various subsystems; that is, performance, power, area

and failure-rate figures, to name a few.

Coming up with a processor simulator supporting the above features is a non-

trivial exercise in simulation tools in its own accord and a topic of serious re-

search for many years now. Accurate modeling of power consumption within

a simulation environment is already extremely complex. Modeling of faulty

behavior is even less mature in simulation and EDA environments at the mo-

ment. To make matters worse, some of the features in the above “wish list”

represent conflicting simulator-design requirements: For instance, the more

flexible a simulator is in its parameters, the wider the exploration capabilities

it offers but, also, the less accurate the modeled processor can be. This is easily

observable in the power models of existing simulators. The more generic the

modeled system is, the less precise (and deterministic) the power estimation

can be.

Last but not least, in all the above we should also add the obvious requirement

that the simulator should be modeling devices in the same or similar appli-

cation field as the targeted systems – in this case, implantable devices. For

106 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

instance, simulators of processors with complex features such as wide instruc-

tion issue, out-of-order execution, multithreading, multicore implementations

and so on would be completely overshooting our desired ULP, miniature SiMS

processor concept.

We have investigated suitable and, more importantly, publicly available sim-

ulators and – to verify our previous claims – we have come up with an al-

most empty list. Eventually, through our contacts6 we have come across

XTREM [24], a modified version of SimpleScalar/ARM [8,18]. The XTREM

simulator is a cycle-accurate, microarchitectural, performance- and power-

simulator for the high-performance, low-power Intel XScale core [65]. It

models the effective switching-node capacitance of various functional units

inside the core, following a similar modeling methodology to the one found

in Wattch [17]. XTREM has been selected for its straight-forward functional-

ity but mostly for its high precision in modeling the performance and power

of the Intel XScale core [65]. More precisely, it exhibits an average perfor-

mance error of 6.5% and an even smaller average power error of 4% [23] com-

pared to real hardware. XTREM allows monitoring of 14 different functional

units of the Intel XScale core: Instruction Decoder (DEC), Branch-Target

Buffer (BTB), Fill Buffer (FB), Write Buffer (WB), Pend Buffer (PB), Reg-

ister File (REG), Instruction Cache (I$), Data Cache (D$), Arithmetic-Logic

Unit (ALU), Shift Unit (SHF), Multiplier Accumulator (MAC), Internal Mem-

ory Bus (MEM), Memory Manager (MM) and Clock (CLK).

The known topic on whether we should base our profiling study on a

SimpleScalar-derivative with all its known bugs and modeling inaccuracies

arose also in this case. Except for the obvious issue of availability that we

discussed before, the XTREM authors and we, of our own accord, have veri-

fied that XTREM has been debugged from SimpleScalar issues and has been

largely rewritten to reflect the exact architecture of the XScale processor. Its

accuracy has been validated by directly comparing its behavior to that of an ac-

tual XScale-based development board. Unfortunately, as it turns out, XTREM

suffers from its own bugs and implementation problems – complete errata

given at a later chapter of this thesis. Nevertheless, there is no completely

bug-free tool out there, especially when non-commercial, research-level tools

are considered. Besides, we have tried utilizing – at least partly – a number of

SimpleScalar flavors (e.g., Sim-bpred, Sim-fast) while compensating for the

simulator errors. Eventually, we chose to abandon them altogether for reasons

of modeling accuracy, tool-flow complications and/or simulation accuracy.

6Prof. Stefanos Kaxiras, Uppsala University, has referred us to XTREM, developed by

Gilberto Contreras, PhD, from the group of Prof. Margaret Martonosi, Princeton University.

3.3. TECHNICAL BACKGROUND 107

The only suitable alternative to XTREM we have come across is called

XEEMU [60]. It is, in fact, a largely updated version of XTREM. The authors

have fixed a large number of bugs in XTREM, have updated the performance

and power models and have made all necessary modifications to better match

the XScale pipeline. The reasons we have not replaced XTREM with XEEMU

for our experiments are that: (a) XEEMU was not made available until much

later than XTREM, and (b) in order to more accurately model the targeted

XScale processor, the authors have drastically limited the simulator parame-

ters and their ranges to the ones also encountered in XScale; for instance, no

alternative branch-prediction schemes are supported in XEEMU. Apparently,

using XEEMU would lead to serious limiting of the SiMS-processor design

space under exploration. This conflicts with the first item in our simulator

“wish list”. Since, at this early point, we are more interested in traversing as

broad a design space as possible than achieving maximal simulation accuracy,

we have chosen to keep XTREM for our experiments. In the next chapter, the

specifics of the simulator will be discussed in more detail.

3.3.3 Evaluation of suitable implant benchmarks

For identifying a suitable benchmark collection for the SiMS processor, a study

was, first, required on the best-performing algorithms per category. To this end,

prior comparative studies have been investigated. None of them has been on

the field of biomedical implants. Neighboring fields of resource-constrained

systems such as WSNs have been looked into, however implants present dis-

tinct traits. To exemplify, although various compression algorithms have been

considered, the energy efficiency of data decompression in particular is not our

priority in this work since the largest fraction of wirelessly transmitted data in

implants is outbound traffic, i.e. telemetry of biomedical data to an ex-vivo

monitoring system. Further issues applying to WSNs such as total energy cost

for data hopping through a network of nodes do not apply in our case, too.

The particular related work found so far could not be directly transferred to

the biomedical-implant field. Nevertheless, in the next sections we chose to

summarize the various findings for completeness. We may not have been able

to use most of these findings but they have certainly given us good pointers on,

for instance, which algorithm aspects to pay attention to during our profiling

studies, what metrics to use to evaluate them fairly and so on. In some cases,

we have also been able to find algorithm source code which we have directly

included in our own studies.

108 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

3.3.3.1 Compression algorithms

Barr and Asanovic [11] have worked extensively towards the power trade-off

between compression and Tx/Rx power of data on a testbed functionally simi-

lar to the popular Compaq iPAQ handheld. Their analysis reveals that with sev-

eral typical compression algorithms, there actually is a net increase in energy.

They propose the use of asymmetric compression, that is, use of a low-energy

compression algorithm on the transmit side and a different algorithm for the

receive side to cope with the problem.

In the area of WSNs, Maniezzo et al. [86] have worked on surveillance sensor

networks and sought to define an online energy trade-off mechanism between

compressing image data in a sensor or forwarding (i.e. transmitting) them to

the next sensor closer to the base station.

Ferrigno et al. [43] have attempted to balance between local and central data

processing in an effort to minimize sensor energy consumption. They have

investigated various lossy image-compression algorithms and have made an

educated selection based on its performance and energy needs.

Kimura and Latifi [76] have performed a survey on data compression for

WSNs and have profiled four compression algorithms specifically designed

for WSNs.

3.3.3.2 Encryption algorithms

Much effort has already been spent on the profiling of encryption algorithms in

the field of wireless sensor networks (WSNs). Law et al. [79] have evaluated

various block ciphers on a MSP430F149 core by Texas Instruments. Their fo-

cus has been WSN applications and they have evaluated their included ciphers

in terms of security level, operation mode, computational effort and memory

requirements. Energy figures have been drawn indirectly from the number of

execution cycles needed by each cipher. The authors have proposed best cipher

candidates for different combinations of available system memory and desired

security level.

Luo et al. [85] have evaluated block and stream ciphers for WSN-nodes in

terms of memory requirements and execution time. Chang et al. [20] have

attempted energy measurements on RC5, DES and AES running on both the

Ember and the CrossBow sensor nodes. Testing various plaintext sizes, they

have measured the energy costs of encryption, hashing and wireless transmis-

sion of data and assess the reduction in the lifetime of sensor nodes employing

3.3. TECHNICAL BACKGROUND 109

encryption.

Venugopalan et al. [143] evaluate the computational requirements of various

stream/block ciphers and hash functions across a wide range of platforms.

Based on their findings on the chosen platforms, they attempt to derive a multi-

variant model which allows the interpolation of performance for other, uneval-

uated architectures.

Grossschadl et al. [54] have used Sim-Panalyzer [139] to evaluate lightweight

versions of RC6, RIJNDAEL, SERPENT, TWOFISH and XTEA in terms of

performance, power and memory requirements. Their results indicate that

carefully optimized versions of RC6 and RIJNDAEL can preserve their high

performance while meeting tight code-size constraints. They have also dis-

cussed the impact of key expansion and different modes of operation on the

overall performance and energy consumption.

3.3.4 Investigating benchmark suites for implants

After investigating most suitable benchmarks for the SiMS processor, the log-

ical step has been to put a benchmark suite for implant processors together. As

will be explained in the next chapter, out of this effort the ImpBench bench-

mark suite was created. In order to validate the uniqueness and usefulness

of this new suite, a large number of existing benchmark suites proposed for

various application areas has been investigated.

The SPEC benchmark suite with its latest version, the CPU2006 [128], targets

general-purpose computers by providing programs and data divided into sepa-

rate integer (INT) and floating-point (FP) categories. In particular, the design

of server- and desktop-class microprocessors has been heavily influenced by

the popular SPEC benchmarks as a measure of performance.

MediaBench [80], now in version II, is oriented towards multimedia- and

communications-oriented embedded systems. The authors identify that most

advances in compiler technology for instruction-level parallelism (ILP) have

focused on general-purpose computing, driven by SPEC-characterized work-

loads. With the introduction and establishment of a plethora of multimedia-

targeted embedded processors provisioned for increased ILP, new workloads

needed to be introduced, as well. MediaBench has been put together to address

that need.

The Embedded Microprocessor Benchmark Consortium (EEMBC) [1] is

a non-profit organization aiming at the development of embedded-systems

benchmarks for hardware and software performance evaluation. The con-

110 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

sortium licenses “algorithms” and “applications” organized into benchmark

suites targeting telecommunications, networking, digital entertainment, Java,

automotive/industrial, consumer and office equipment products. It has also

provided a suite capable of energy monitoring in the processor. Of late,

EEMBC has introduced a collection of benchmarks targeting multicore pro-

cessors (MultiBench v1.0). However, subject to the consortium licensing reg-

ulations, only EEMBC members are entitled to publish their benchmark test

results and they can do so by previously submitting these to a certification lab.

MiBench [55] is another proposed collection of benchmarks aimed at the

embedded-processor market. It features six distinct categories of bench-

marks ranging from automotive and industrial control to consumer devices and

telecommunications. According to the authors, MiBench has many similarities

with the EEMBC benchmark suite, however it is composed of freely available

source code. The diversity and usefulness of MiBench has been evaluated

against the SPEC2000 benchmarks.

NetBench [92] has been introduced as a benchmark suite for network proces-

sors. It contains programs representing all levels of packet processing; from

micro-level (close to the link layer), to IP-level (close to the routing layer)

and to application-level programs. The authors show that although they aim

architectures similar to ones MediaBench does, their workloads have signifi-

cantly different characteristics. Hence, a separate benchmark suite for network

processors has been considered a necessity.

Network processors are also targeted by CommBench [150], focused on the

telecommunications aspect. It contains eight, computationally intensive ker-

nels, four oriented towards packet-header processing and four towards data-

stream processing. The suite is evaluated against SPEC95 and its usefulness is

shown in a usage case of designing a single-chip, network multiprocessor.

3.3.5 Processor microarchitecture exploration

Having secured a suitable processor-simulation environment and a working

set of benchmarks, exploring various aspects of the SiMS processor was made

possible. This effort has, nevertheless, been severely limited by the flexibility

allowed by the simulator itself. As it were, a couple of micro-architectural fea-

tures of the processor (cache geometries and branch-prediction schemes) could

be sufficiently explored in a systematic way, as will be discussed in Chapter 5.

Modifying the processor-simulator ISA has proven to be an unsurmountable

task; thus, we have limited our ISA-exploration efforts to a detailed profiling

3.3. TECHNICAL BACKGROUND 111

of the various executed instruction mixes. This has, in fact, been implemented

as part of the aforementioned studies on implant benchmarks. Prior art on the

explored microarchitecture features is reported next.

3.3.5.1 Evaluation of L1 I-/D-cache organizations

A significant body of prior work has been published on cache behavior with

respect to traditional metrics (e.g. cache misses) as well as recent ones (e.g.

power or energy).

Fornaciari et al. [46] have proposed a design framework for fast exploration

of energy and performance constraints (ED metric) at the system level. Their

framework, among others, supports the investigation of I- and D-cache config-

urations of different cache sizes, block sizes and associativity. Its applicability

is limited by the fact that a complete specification of the processor core is

needed, which is not available in our case, yet.

Hicks et al. [61] present an exhaustive analysis of power consumption in caches

when varying all cache configuration parameters. Unfortunately, their working

dataset has been a subset of SPECint92 benchmarks which does not apply in

our case of biomedical implants.

Kamble and Ghose [71], on the other hand, have taken a different approach and

proposed analytical energy models for caches but their work is not applicable

in our case for the same reason as that of Hicks et al..

Givargis et al. [52] have evaluated the power consumption of various cache

and bus architectures with parameterizable characteristics.

Su and Despain [136] have performed a case study on power-performance

trade-offs for various conventional and new cache designs targeted for low

power.

Shiue and Chakrabarti [122] have investigated suitable cache configurations

for low-power, embedded systems. They correct and improve on the Kamble-

Ghose and Hicks analytical models and propose algorithms for finding optimal

configurations.

A problem with the above works is that caches are studied in isolation from

the rest of the system and, thus, no overall performance behavior is attached

to the various power figures, while information about the interplay between

different cache configurations and other components of a processor core cannot

be acquired. Further, most of the above studies fail to report area as well as

energy figures along with the performance results which, as we will see in

112 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

Chapter 5, may fail to give the complete picture.

3.3.5.2 Evaluation of branch-prediction schemes

As in the case of cache geometries, a significant body of work has been previ-

ously published on branch-prediction behavior with respect to traditional met-

rics (e.g. accuracy, performance) as well as recent ones (e.g. power, energy,

delay).

Skadron et al. [124] have presented an exhaustive analysis of the interaction

between branch prediction, instruction-window size and cache size. They have

utilized as workloads the SPECint95 benchmarks. Their main focus was in the

interplay between the three structures in terms of processor performance.

Youssif et al. [158] have compiled a comprehensive list of currently existing

prediction schemes and have evaluated them in terms of performance. Tests

have utilized the SPEC2000 benchmarks and a superscalar-processor simula-

tion environment.

Parikh et al. [105] have investigated power repercussions of three advanced

branch predictors on a Alpha 21264 simulator under SPEC2000-selected

benchmarks. They have, then, proposed three interesting techniques for re-

ducing power consumption in the branch-prediction unit.

Jimenez et al. [69] have approached the branch-prediction issue from the view-

point of delay as well as, typically, of accuracy and area. To this end, they have

proposed three techniques for accommodating delay since they indicate its in-

creasingly dominating impact on performance in future processors with large

prediction structures.

All above works fail in either one of two respects: i) they do not study the

whole processor when different prediction schemes are utilized and particu-

larly their reaction to different I/D-cache sizes, and ii) they are concerned only

with performance as a metric of efficiency. Last but not least, none of these

works reports efficient branch-prediction techniques for the particular field of

implant processors.

3.3.6 Automated, multiobjective DSE for implant processors

The design space for a processor is huge, and while we would like to cover as

much of it as possible, evaluating the space for every single processor config-

uration possible is virtually impossible. Many general techniques have been

3.3. TECHNICAL BACKGROUND 113

proposed in literature that explore the design space and search for optimal

points. Dave [28] provides a concise review of the possible generic optimiza-

tion techniques and the reasons for selecting a multi-objective genetic algo-

rithm (as has been the case in this work). For an more general, in-depth anal-

ysis of designing processors from DSE to synthesis, the interested reader can

also refer to Gries [53]. In this section, we shall briefly list some tools and

techniques developed specifically for DSE of processors.

Hekstra et al. [58] explored the TriMedia CPU64 design using pruning – they

first probe the design space in order to identify the architectural parameters that

affect overall performance the most. The extreme values of these parameters

provide “corner cases” and help in bounding the space to be explored in detail.

DESERT [10] (DEsign-Space ExploRation Tool) is a meta-programmable tool

for pruning large design spaces using constraints. It represents the design space

as a generic structure based on alternatives and parameters and, therefore, can

be used for diverse applications. Mohanty et all [95] have used the MILAN

(Model-based Integrated simuLAtioN) tool, based on DESERT, for pruning

design spaces of heterogeneous multi-core systems. Pimentel et al. [110], who

have come up with Artemis (Architectures and Methods for Embedded Media

Systems), also work on exploration of heterogenous multi-core environments,

but focus more on modeling and simulation than techniques for DSE.

Cho et. al [21] contend that microarchitecture design is better done by con-

sidering dynamic behavior of workloads rather than designing for worst-case

workload behavior. They use wavelet-based multi-resolution decomposition

and neural network based non-linear regression modeling to reason about

workload dynamics (in terms of performance, power, and reliability) across

the microarchitecture design space.

The PICO [72] framework designed at HP Labs, given C code, outputs

application-specific, embedded computer systems optimized for cost vs. per-

formance, where the ‘computer system’ consists of an EPIC/VLIW and an

NPA. It uses a space walker – which may be a heuristic, or brute-force algo-

rithm, depending on the search space – to search the design space. A ‘com-

ponent assembler’ outputs HDL code for the processors specified by the space

walker by assembling low-level components from their component library.

Xie et. al [154] provide an in-depth discussion on DSE for 3D-Integrated

circuits, including CAD and design tools and simulators. They use simulated

annealing to automatically find floorplans for the ICs.

Stijn et. al [40] evaluate various automated, single- and multi-objective opti-

mizations for exploring high-performance, embedded, out-of-order processor

114 CHAPTER 3. THE SIMS CONCEPT & BACKGROUND

designs. They found that a genetic local search algorithm outperforms all other

techniques for their application.

Ascia, Catania and Palesi [6] propose using genetic algorithms to perform DSE

in processors. They apply a genetic algorithm to optimize the memory hier-

archy in terms of area, power and mean access time. However, they use a

single-objective genetic algorithm and model the fitness function as a product

of the three objectives. Unfortunately, such techniques face drawbacks that

reduce their suitability for use with design spaces whose shapes are not known

in advance7, as in our case.

Thiele et. al. [137] present domain-specific DSE for network-processor ar-

chitectures. They specify models for packet-specific tasks and network traffic

(“encoding”), methods to estimate delays and queuing memory (“simulation”)

and use an evolutionary algorithm to perform multi-objective DSE (“optimiza-

tion”).

This last work is perhaps the closest to our work, as it targets domain-specific

processors – they focus on networking, we focus on implants – and employs

true multi-objective optimizations for the DSE. For this reason, the proposed

evolutionary algorithm by Thiele et. al. has indeed been used as the base for

designing our own DSE tool, as will be discussed in Chapter 6. However, to

the best of our knowledge, DSE with respect to implantable systems has – in

the general case – not been previously studied.

3.4 Summary

In this chapter we have primarily introduced the novel SiMS concept. We have

outlined, to some extent, the various aspects of the SiMS framework and of-

fered some interesting ideas worth investigating under the SiMS umbrella. We

have, then, moved on presenting the organization of the work on the SiMS pro-

cessor, as performed through the course of this research. We have concluded

the chapter with a rather extensive list of related works on each of the topics

dealt with in our work. Through the sheer number and diversity of these works,

one can readily observe the wide range of topics needed to cover in order to

have a first take on the envisioned SiMS processor.

7For instance, the design space may well be non-convex, in which case this method does not

work.

3.4. SUMMARY 115

Note. The content of this chapter is based on the the following papers:

C. Strydis, G. N. Gaydadjiev, S. Vassiliadis, A New Digital Architecture for

Reliable, Ultra-Low-Power Systems, ProRISC 2006, pp. 350-355, Veld-

hoven, The Netherlands, November 2006.

C. Strydis, G. N. Gaydadjiev, S. Vassiliadis, A Generic Digital Architecture

& Compiler for Implantable Devices, Architectures and Compilers for Em-

bedded Systems (ACES 2005), Ter Elst, Edegem, Belgium, September 2005.

4
SiMS-processor simulation environment

B
EFORE any processor specification and design phase can com-

mence, a proper simulation and evaluation environment needs to be

established, first. The environment may consist of one or more suit-

able simulators which need to be fed realistic workloads to execute, if any

meaningful results are to be obtained. The effort is considered successful if

the profiling results lead to the design of a processor which – when fed the

same workloads as the simulator(s) – will produce identical or similar results.

This, however, is a typical chicken-and-egg problem: we wish to design a new

processor and require an accurate simulation environment to do so, however,

we cannot a priori know the accuracy of the environment before we actually

build the envisioned processor, and so on.

Selecting (and designing, for that matter) accurate simulation tools is, on its

own, a considerable problem. Experience in a particular design field is in-

valuable for making better selections. Unfortunately, in the field of biomedical

implants – as seen from the standpoint of SiMS – there is no such experience or

prior art available or, at least, documented. The only insights to be drawn upon

have come from the implant survey we have performed in Chapter 2 and from

our standing experience on the broader fields of computer architectures and

embedded systems. As will be revealed in this and following chapters, setting

up a consistent simulation/evaluation environment has taken up a considerable

amount of our time which is comparable to the actual exploration process of

the SiMS processor. We have consciously made this choice so as to lay a solid

groundwork upon which our own, limited by necessity, as well as other, more

extended, future SiMS-processor, exploration efforts can be based.

In line with these considerations, this chapter is occupied with defining the sim-

ulation environment – simulator, benchmarks, input datasets – for our further

experiments. The simulator employed (as introduced in the previous chapter)

117

118 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

is detailed and practical issues are discussed. Since no reference work exists

for an established benchmark base, original benchmark programs (able to run

in the simulator) are being investigated and the most suitable ones (in terms

of multiple metrics) are grouped in a novel benchmark suite for implant pro-

cessors, called ImpBench. Proper input datasets to these benchmarks are also

discussed. With all pieces of the simulation environment finally in place, we

conclude the chapter with the case study of an instance SiMS-processor appli-

cation.

4.1 XTREM processor simulator

4.1.1 Hardware-modeling details

As mentioned in the previous chapter, for our experiments we have used

XTREM [24], a modified version of SimpleScalar/ARM [8,18]. The XTREM

simulator is a cycle-accurate, microarchitectural, performance- and power-

simulator for the high-performance, low-power Intel XScale core [65]. It

models the effective switching-node capacitance of various functional units

inside the core, following a similar modeling methodology to the one found in

Wattch [17]. XTREM boasts high precision in performance and power mod-

eling; more precisely, it exhibits an average performance error of 6.5% and an

even smaller average power error of 4% [23] compared to real hardware.

The main XScale (and XTREM) characteristics are summarized in Table 4.1.

Many of its (micro)architectural features have been integrated into XTREM.

Thumb instructions and special memory-page attributes are not supported but

they do not affect simulation results since they are not used by our bench-

marked applications. XTREM allows monitoring of 14 different functional

units of the Intel XScale core: Instruction Decoder (DEC), Branch-Target

Buffer (BTB), Fill Buffer (FB), Write Buffer (WB), Pend Buffer (PB), Reg-

ister File (REG), Instruction Cache (I$), Data Cache (D$), Arithmetic-Logic

Unit (ALU), Shift Unit (SHF), Multiplier Accumulator (MAC), Internal Mem-

ory Bus (MEM), Memory Manager (MM) and Clock (CLK).

Since XScale (and, thus, XTREM) is a low-power processor with aggressive

power-management features, we are well-aware that it is not perfectly suit-

able for biomedical implants in terms of power consumption. However, our

selection has been based on availability and on the crucial fact that XTREM

models actual hardware with very high accuracy using hardware performance

counters (HPCs). Particularly for the cache(-like) structures incorporated in

4.1. XTREM PROCESSOR SIMULATOR 119

feature value

ISA 32-bit ARMv5TE-compatibility, 8 DSP instructions

Pipeline depth 7/8-stage (depending on instruction), super-pipelined
Datapath width 32-bit

RF size 16 registers

Issue policy in-order

Instruction window single-instruction

I-Cache 32KB 32-way set-associative (1-cc hit/170-cc miss lat.)

D-Cache 32KB 32-way set-associative (1-cc hit/170-cc miss lat.)

TLB 32-entry fully-associative

BTB 128-entry direct-mapped
Branch Prediction 2-bit Bimodal

Write Buffer 8-entry

Fill Buffer 8-entry

Memory bus width 4-byte

INT/FP ALUs 4/4

DSP co-processor 40-bit, low-power, variable-lat. MAC

Clock frequency 2 MHz (typically 200 MHz)

Operating voltage 1.5 Volt
Implementation technology 0.18 µm

Sampling period 10,000 cc’s (typically 200,000 cc’s)

Table 4.1: XScale architecture details.

the simulator, analytic power models have been developed and their accuracy

has been verified [23]. In order to match our application field better, we have

– through the process of our research – limited or disabled many of XTREM’s

architectural parameters. As can be seen in Table 4.1, clock frequency has

readily been reduced from 200 MHz which is the preset frequency in XTREM,

to 2 MHz to closer resemble realistic implantable systems. Throughout our

analysis, we have iteratively tuned the XTREM parameters to optimal set-

tings, subject to our ongoing findings. We will take the time to mention the

exact settings used in every phase of our exploration study. Even with such

adjustments, power and performance results should not be taken as absolute

figures but as relative measures of processor behavior across different input

datasets, workloads and microarchitectural configurations.

4.1.2 Program-execution details

Since XScale supports the ARM ISA and XTREM has, subsequently, been

based on a modified version of SimpleScalar/ARM, XTREM (ELF) binaries

should be built with a version of the GNU ARM-GCC (or any other ARM

cross-compiler, for that matter). We found out that a tweaked version of the

ARM cross-compiler is needed as XTREM does not accept standard ARM

120 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

W
)

-
[S

a
m

p
li

n
g

 @
 1

0
,0

0
0

 c
c]

Simulated execution time (msec)

Figure 4.1: XTREM-generated power profile for single program execution.

binaries. Setting up a cross-compiler for this purpose has proven somewhat of

a challenge and, eventually, a modified version of GNU ARM-GCC v2.95.2

has been used, as provided in the SimpleScalar/ARM webpage1. Through this

setup, a working (if old) C compiler and a full complement of binary utilities

(assembler, disassembler, linker, object dump etc.) has been established.

4.1.3 Sampling details

XTREM bases its performance- and power-modeling capabilities on HPCs.

Over a certain sampling period, HPCs are being updated and when this period

has expired, the counters’ contents are fed into the performance and power

models and are, then, reset for the next period. This period has been hard-

coded in XTREM and initially set at 200,000 clock cycles (cc’s), as can be

seen in Table 4.1. Early in our experiments – and at the cost of significantly

increased simulation times – we have lowered that period to 10,000 cc’s in

order to achieve more accurate performance and power profiles over program

execution time. To illustrate, XTREM provides power (and, in a similar fash-

ion, performance) results as the ones shown in Figure 4.1. Each vertical, black

bar represents an XTREM sample which is power consumption averaged over

1Available online: http://www.simplescalar.com/v4test.html

http://www.simplescalar.com/v4test.html

4.1. XTREM PROCESSOR SIMULATOR 121

10,000 cc’s.

As we shall see in the rest of the chapter, the necessary dimensions of our

experiments – multiple benchmark runs, multiple input datasets – and the sheer

volume of sampled data forces us to aggregate hundreds of thousands of these

samples into a single, average value (red line in Figure 4.1) characterizing the

execution of a single benchmark. Then, the following question arises: How

do we calculate this aggregate average power consumption from the XTREM-

generated power samples?

Let us assume f(t) is a function limited in the interval [a, b] and generally

continuous or monotone.

Property 4.1

∫ b

a

f(t)dt =

∫ c

a

f(t)dt +

∫ b

c

f(t)dt

with a, b, c any internal points of the interval of integration.

Property 4.2
∫ b

a

kf(t)dt = k

∫ b

a

f(t)dt

if k is a constant 6= 0.

Property 4.3

∫ b

a

[f1(t)+f2(t)+...+fn(t)]dt =

∫ b

a

f1(t)dt +...+

∫ b

a

fn(t)dt

if f1(t), f2(t), ..., fn(t) are integrable functions. A constant function

is an integrable function.

Let us consider the interval [0, Ex] and let 0 = t0 < t1 < ... < tn = Ex

be a partitioning of [0, Ex] with ti+1 − ti = α ∈ R
+ ∀i . Let P(t) be the

function defined as follows:

P(t) = {

k1 ∀t ∈ [t0, t1]

k2 ∀t ∈ [t1, t2]

... ...

kn ∀t ∈ [tn−1, tn]

(4.1)

We have the following:

122 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

Theorem 4.4
∫ Ex

0

P(t)dt = Ex · PAverage. (4.2)

Proof.
∫ Ex

0

P(t)dt =∗

∫ t1

t0=0

k1(t)dt + ... +

∫ tn=Ex

tn−1

kn(t)dt =

(* = Properties (4.1) and (4.3). But ki(t) is constant on its interval of defini-

tion.)

Therefore:

= k1

∫ t1

t0=0

dt + ... + kn

∫ tn=Ex

tn−1

dt =

We have ti+1 − ti = α ∈ R
+ ∀i , therefore:

= k1α + ... + knα = α
n
∑

i=1

ki.

We have:

Ex = nα ⇒ α =
Ex

n
(4.3)

Moreover, we have:

PAverage =

∑n
i=1 ki

n
(4.4)

Therefore, by combining equations (4.3) and (4.4), we finally have:

∫ Ex

0

P(t)dt = α
n
∑

i=1

ki =
Ex

n

n
∑

i=1

ki = ExPAverage,

with PAverage the arithmetic mean of the XTREM-generated power samples.

4.2 Implant workloads

Although, in the widest sense, biomedical implants are embedded systems,

they adhere to a unique set of design and operation requirements which dictate

their own design space and workloads. Some of the most prominent implant-

workload characteristics are discussed next.

4.2. IMPLANT WORKLOADS 123

4.2.1 Workload characteristics

First off, as illustrated in Section 2.6.1, a large class of biomedical implants

performs periodic, in-vivo measurements of physiological data (blood pres-

sure, blood temperature, intracranial pressure, blood-glucose concentration,

muscle or nerve activity etc.) through appropriate sensors. The collected data

need either be stored inside the implant for later telemetry to an external mon-

itoring device, e.g. a treating physician’s office computer, or to be periodically

transmitted to an external data-logging system such as a PDA, laptop com-

puter etc.. This pattern of behavior indicates that outbound biological-data

traffic almost always dominates inbound traffic. Besides, data must be trans-

mitted securely and reliably, meaning that information eavesdropping or loss

is not tolerated.

Secondly, depending on the application, implant processors may need to per-

form computation-, control- or I/O-intensive tasks in the human body, for in-

stance, collection of sensory readouts, processing, storage and open- or closed-

loop control of bio-actuators. In all cases, throughput should be no higher than

that required by the underlying application for maintaining a low as possible

energy profile and a highly reliable operation. Autonomous operation and de-

pendability are primary concerns in implantable systems given the health and

economical implications at stake.

Thirdly, biological or other data manipulation in implants can in most cases

be coped with through integer arithmetic. Expensive, floating-point opera-

tions can be avoided by smart manipulation of the data or postponed until such

time when data are telemetered to an external logging station with infinite (in

our context) computational resources, thus saving the implant the trouble of

processing them. There are, however, distinct cases where in-vivo, run-time

decisions have to be made depending on the results of floating-point math op-

erations.

4.2.2 Identifying generic workloads

On proposing a new, generic approach to implantable systems – and their

PCCs, in particular –, it becomes necessary to define a representative number

of workloads that such PCCs will be executing. As with most other aspects

of the SiMS project, we had to start from scratch and build this workload (or

benchmark) suite based on hints from the surveyed implantable systems and

our own intuitions on the matter.

124 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

Check/Protect data

Encrypt/Secure
data

Reduce/Compress
data

Collect application
data &

control the implant

Figure 4.2: Envisioned standard tasks of implant processors.

4.2.2.1 Real implant applications

In Figure 4.2, we illustrate the general composition of implant workloads, as

anticipated to be in the coming years. In the center of these workloads lies

the per-instance, real implant application comprising some sensing/actuating

functionality in open- or closed-loop fashion. This functionality generally con-

sists of:

a) reading in-vivo physiological data from the body and/or commands from

an external host;

b) assessing their meaning, processing them and/or responding with suitable

actions such as stimulation of muscles or nerves, release of drug in the

blood stream, and so on;

c) storing collected data locally (i.e. data-logging) and/or transmitting them

to external monitoring stations; and

d) properly coordinating the implant peripherals to achieve all the above.

The precise functionality varies largely with the medical condition being

treated and is analogous to the wide diversity of applications targeted by im-

plantable systems. We, thus, have systems performing any part or the whole of

the above tasks. We have to support all the above tasks to a satisfactory degree

in order to design generic SiMS systems. Although difficult to capture in full

detail, we have attempted to collect implant applications that encompass the

full range of activities (a) to (d).

4.2. IMPLANT WORKLOADS 125

4.2.2.2 Data reduction & compression

As the survey has revealed (see Section 2.6.4), the number of attached periph-

erals, the resolution (in bits) of employed ADC units as well as the amount of

processing performed in implants appears to be increasing steadily over time.

However, the highly constrained nature of implantable systems poses serious

size and power limitations on the amount of data that can be stored inside the

implant or wirelessly transmitted to an external host.

Based on this observation, we are inclined to consider data compression and/or

reduction as a significant task of future implants, as shown in Figure 4.2, even

though only a couple of surveyed systems with such workloads have been en-

countered (Wang L. et al. [145], Eggers et al. [37]). While data reduction can

probably be performed locally – at the point of data acquisition (i.e. at the

sensor output) at very low cost –, efficient data compression (and expansion)

would require large stored datasets to operate on and more extended process-

ing. What is more, data reduction is highly application-dependent and general

techniques cannot be selected for use as typical workloads. For these reasons,

we have chosen to focus more on compression algorithms.

4.2.2.3 Data & command encryption

The personal, sensitive nature of collected (and transmitted) physiological

data calls for some way of securing them against any unauthorized individual.

Eavesdropping on the data may not only cause personal and social problems

to the implant user but, more crucially, may allow loss of implant control to

a malevolent interloper. Accordingly, another task we think will become a

necessary and, thus, frequently executed workload in future implants is infor-

mation encryption, as illustrated in Figure 4.2.

Up till now, no existing implantable system has been provisioned with encryp-

tion capabilities and we consider our work the first to study encryption algo-

rithms for this purpose. Although this might sound as utter science fiction, in-

dications from more mature application fields, such as mobile telephony, teach

otherwise: It is a simple matter of time until implants become so advanced and

wide-spread that they will be plagued with frequent security attacks.

126 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

4.2.2.4 Data & command integrity

Incoming command frames to the implant and outgoing data frames to exter-

nal hosts are usually taking place in a rather hostile environment. Wireless

transmissions have to be robust enough to withstand command/data sending

through layers of bodily fluids as well as soft and hard tissue and, finally, air

and any other natural obstacles. All this is occurring in the presence of vari-

ous EMI sources and under low information-signal SNR-levels, mainly due to

low available power budgets. These unfavorable conditions require some sort

of command- and data-frame protection mechanisms operating on the frames

after encryption has taken place. This is illustrated in Figure 4.2. Most promi-

nent information-redundancy mechanisms are techniques such as CRC- and

checksum-calculating algorithms.

Contrary to the previously discussed workloads, maintaining information

integrity has occupied various surveyed implantable systems. Namely,

Lanmüller et al. [77, 78], Wang W.X. et al. [146], Fernald et al. [41] and

D’Lima et al. [32] have been found to employ CRC schemes for robust, error-

free implant communications. Such schemes have been shown in, at least,

two cases (Lerch et al. [83], Stangel et al. [130]) to have been implemented

as internal-processing tasks of implants. Since such schemes are so important

for maintaining information integrity, especially in a field where information

loss is almost always unacceptable, we have included suitable workloads as

the final step after data-collection, compression and encryption tasks.

4.2.3 Workload acquisition

Since we selected XTREM, a cycle-accurate simulator which executes real

ARM code written (and compiled) in C, the selected implant workloads have

to be encoded as appropriate programs in order to be fed to it. These programs

must be written in C (ANSI C, actually) and must be driven by realistic input

datasets.

This task has proven more difficult than initially perceived. The reason is that

– as real implant functionality goes – the survey performed in Chapter 2 was

mostly unable to tap into C source code (or any other language, for that matter)

that could be used for feeding XTREM. Executed code was either not reported

or, simply, not applicable; for instance, naive assembly code of limited use-

fulness (triggering various external or internal interrupts) was provided which

cannot be accurately modeled in a processor simulator such as XTREM. As

far as compression and encryption algorithms are concerned, since we are the

4.3. INPUT DATASETS 127

dataset type BSL dataset BIN ASCII samples duration samp. rate samp. rate
test name size (B) size (B) (#) (sec) (sml/sec) (KB/sec)

Electromyogram II (EMG) John-L02 EMGII 01 1152 1778 144 0,288 500 3,89
Electromyogram II (EMG) John-L02 EMGII 10 9608 14095 1201 2,402 500 3,91

Electroencephalogram I (EEG) John-L03 EEGI 01 984 1332 123 0,615 200 1,56

Electroencephalogram I (EEG) John-L03 EEGI 10 9616 13005 1202 6,01 200 1,56

Electrocardiogram I (ECG) John-L05 ECGI 01 912 1406 114 0,114 1000 7,81
Electrocardiogram I (ECG) John-L05 ECGI 10 9616 14824 1202 1,202 1000 7,81

Respiratory Cycle I (RC) John-L08 RCI 01 1192 1770 149 1,49 100 0,78
Respiratory Cycle I (RC) John-L08 RCI 10 9520 14581 1191 11,91 100 0,78

Pulmonary Function I (PF) John-L12 PFI 01 1184 1617 148 1,48 100 0,78
Pulmonary Function I (PF) John-L12 PFI 10 9240 12863 1155 11,55 100 0,78

Skin Temperature (AEP) John-L15 AEP 01 1120 1397 140 0,7 200 1,56
Skin Temperature (AEP) John-L15 AEP 10 9736 11739 1217 6,085 200 1,56

Blood Pressure (BP) John-L16 BP 01 1128 1404 141 0,282 500 3,91
Blood Pressure (BP) John-L16 BP 10 9584 12798 1198 2,396 500 3,89

Table 4.2: 1-KB and 10-KB physiological datasets. Double-precision (8-Byte)

data samples are used.

first to consider them as standard implant workloads, we also had no refer-

ence codes to use and had to write our own or modify ones found from other

sources. Last, information-integrity algorithms considered (CRC and simple

checksum) have rather straightforward implementations and were also bor-

rowed from other sources. In the next section, we discuss our selection of real-

istic input datasets and, afterwards, we delve into the evaluation and selection

of suitable implant workloads and we present ImpBench, the first benchmark

suite for characterizing generic, biomedical-implant processors.

4.3 Input datasets

Typical biological signals are often highly periodic signals (e.g. heart beat)

or stable signals (e.g. blood temperature) which can, under specific circum-

stances, display gradual or abrupt changes in value (e.g. a sudden muscle

contortion). We have collected and used various representative input datasets

capturing both stable as well as rapidly changing patterns.

Existing literature in the field does not offer any solid pointers or even hints to-

wards a ”standard”, representative dataset. Of course, a lot of biological-signal

databases exist and are even available online. However, since there are no solid

hints for favoring one dataset source over another, the datasets selected have

been extracted from the BIOPAC (R) Student Lab PRO v3.7 (BSL) software

for reasons of availability and simplicity. They have the technical specifica-

128 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

tions shown in Table 4.2. Our performed implant survey has revealed typical

data-memory sizes inside the implants to be less than but approaching 1 KB

in size, for both measurement or stimulation applications. However, as Fi-

gure 2.26 has revealed, memories are increasing at a steady pace over time. To

accommodate for current as well as future implant designs, we have chosen to

use datasets of 1− KB as well as of 10− KB size throughout our experiments.

From the previous table, we can see that typical signals of muscle activity

(EMG), heart activity (ECG) and brain neural activity (EEG) as well as breath

oxygen volume (RC), lung volume (PF), skin surface temperature (AEP) and

blood pressure (BP) have been collected. All considered datasets are rep-

resenting one-dimensional physiological-signal measurements of varied sam-

pling rates, depending on the particular application. These datasets are actually

double-precision, floating-point numbers and have been stored in both ASCII-

and binary-encoded files:

• 8-bit ASCII representation: Each readout is a text string terminated (on

each line) with CR (carriage-return) and LF (line-feed) characters. Each

string consists of as many Bytes as the number of digits plus two extra

Bytes for the decimal point and the sign characters; thus, about 8 to 10

Bytes are used per entry, in the general case.

• Binary representation: Each readout is a packed, double-precision, FP

number (IEEE-754) of 64 bits; thus precisely 8 Bytes are used per entry.

Most of the input datasets come with a sufficiently extensive description of the

experimental setup and the acquisition parameters, as shown in Table 4.3. In

the plots of Figure 4.3, the various datasets for 1-KB data are plotted (ampli-

tude vs. time) along with their first-order derivatives, to give a feeling of the

morphology of the various datasets as well as to illustrate the rate of change of

their values:

From these plots and the preceding tables, it becomes apparent that all datasets

are distinctly different in terms of morphology; i.e. amplitude, duration and

rate of change, as well as sampling rate. This has been our original intention

in defining a diverse yet self-contained set of input vectors and, subsequently,

application scenarios.

4.4. PROFILING OF ENCRYPTION ALGORITHMS 129

dataset type description

Electromyogram II (EMG) - 1KB First procedure, Forearm 1 (dominant): Increased clenches in increments of 5 Kg until maximum clench

force is obtained.
Electromyogram II (EMG) - 10KB Second procedure, Forearm 1 (dominant): Continued maximal clench until fatigue causes 50% reduction

in measured force.

Electroencephalogram I (EEG) - 1KB This recording shows the Subject in a relaxed state, with eyes closed for about 10 seconds. The eyes were
then opened for approx. 12 seconds, closed approx. 12 seconds, then opened for the remainder of the
recording time.

Electroencephalogram I (EEG) - 10KB N/A

Electrocardiogram I (ECG) - 1KB First procedure: Relaxed, lying down. Second procedure: Relaxed, sitting up. Third procedure: Relaxed,
sitting up state, taking prolonged breaths. Markers at the start of inhales and exhales. Fourth procedure:
Relaxed, sitting up state, recovering from exercise.

Electrocardiogram I (ECG) - 10KB N/A

Respiratory Cycle I (RC) - 1KB First procedure: Seated in a chair and breathing normally. Second procedure: hyperventilation for 30
seconds, then recovery. Third procedure: hypoventilation, then recovery. Fourth procedure: coughing,
then reading aloud.

Respiratory Cycle I (RC) - 10KB N/A

Pulmonary Function I (PF) - 1KB This recording shows normal breathing for 3 breaths, full inhale, return to normal breathing, full exhale,
then a return to normal breathing. Note that a Residual Volume of 1.0 Liters was used.

Pulmonary Function I (PF) - 10KB N/A

Skin Temperature (AEP) - 1KB Aerobic Exercise Physiology
Skin Temperature (AEP) - 10KB N/A

Blood Pressure (BP) - 1KB First procedure: Subject has cuff on LEFT arm, and is sitting up at rest. Second procedure: Repeat of
the first procedure. Third procedure: Subject has pressure cuff on RIGHT arm, and is sitting up at rest.
Fourth procedure: Repeat of the third procedure. Fifth procedure: Subject is lying down at rest, with
pressure cuff on RIGHT arm. Sixth procedure: Repeat of the fifth procedure. Seventh procedure: After
mild exercise, Subject should sit up to recover with the pressure cuff on the RIGHT arm.

Blood Pressure (BP) - 10KB N/A

Table 4.3: Experimental setup and acquisition parameters of input datasets.

4.4 Profiling of encryption algorithms

As previously discussed, encryption is expected to become a typical implant

workload in the coming years. In the current section, we profile – through de-

tailed simulations – a large set of popular encryption algorithms (also known

as ciphers) in terms of power consumption, energy expenditure, encryption

rate and program-code size. We, then, select the ones with the best character-

istics for the implant domain and investigate their respective instruction mixes

in order to gain insight on the most suitable instructions for inclusion in our

targeted SiMS-processor architecture.

In this profiling study, we are attempting to present a detailed comparison of

various encryption algorithms in terms of performance, power etc.. As a sec-

ond step, we analyze the instruction mix and frequency of the best ciphers and

draw directions for the architectural design of the SiMS processor.

130 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

 ! ! ! ! !! !" !"
 !"!#

 !"!#

 !"!#

 !"#

 !"#$

!
"
#$
%&
'
(

 !"#$%&#'(

)*+,-./0!1

 ! ! ! ! !! !" !"
 !"!#

 !"!!#

 ! "

 ! "

!
"#
$
%
&'
(
)
"'
(
%

(a) AEP 01

 !

 ! !! !"

 !

 !

 !

 !

 !!

 !"

 !"

 !"

 !"

!
"
#$
%&
'
(

 !"#$%&#'(

)*+,-./!0

 ! !! !"
 !"

 !

 !

 !

 !

 !

 !

 !

!
"#
$
%
&'
(
)
"'
(
%

(b) BP 01

!

 ! !! !"
 !"#

 !

 !"#

!
"
#$
%&
'
(

 !"#$%&#'(

)*+,-./0!1

 ! !! !"

 ! "

 ! "

 ! "

!
"#
$
%
&'
(
)
"'
(
%

(c) RCI 01

 ! ! ! ! !! !"
 !"#

 !"!#

 ! "

 !"

 !"#

!
"
#$
%&
'
(

 !"#$%&#'(

)*+,-./01!2

 ! ! ! ! !! !"
 !

 !

 !

!"#$

 !

!
"#
$
%
&'
(
)
"'
(
%

(d) ECGI 01

 !

 ! ! ! ! !! !" !"
 !"

 !"

!
"
#$
%&
'
(

 !"#$%&#'(

))*+,-./0!1

 ! ! ! ! !! !" !"
 !

!
"#
$
%
&'
(
)
"'
(
%

(e) EEGI 01

 !

 ! !! !"
 !"#

 !"#

 !"

 !"

!
"
#$
%&
'
(

 !"#$%&#'(

)*+,,-./01!2

 ! !! !"
 !"#

 !"#

 !"

 !"

!
"#
$
%
&'
(
)
"'
(
%

(f) EMGII 01

!

 ! !! !"
 !

!
"
#$
%&
'
(

 !"#$%&#'(

)*+,-./0!1

 ! !! !"
 !"!#

 ! "

 !"

!
"#
$
%
&'
(
)
"'
(
%

(g) PFI 01

Figure 4.3: Dataset amplitude vs. time (blue, solid line) and first-order

derivative of amplitude vs. time (red, dashed line).

4.4. PROFILING OF ENCRYPTION ALGORITHMS 131

4.4.1 Selection criteria of ciphers

We have chosen to profile only symmetric-encryption algorithms for two main

reasons. First, asymmetric schemes have been extensively investigated in the

past and, due to their complexity, have been found to have computational and

memory requirements that are prohibitively high for low-power, embedded

devices [33, 68]. Lately, there has been considerable work in the field, espe-

cially in WSNs, showing that carefully optimized software or hardware im-

plementations of existing asymmetric algorithms may be viable for resource-

constrained devices [47, 144].

Second, our choice has also been based on communication patterns of typ-

ical, battery-powered implant applications: Data and, especially, command

exchange with the implant does not happen particularly often (e.g. a few times

a day or less). This low interaction is desired for reasons of autonomous, unat-

tended operation as well as for reasons of prohibitive energy costs incurred

when wirelessly transmitting information in-vivo.

Asymmetric algorithms are slower and generally less secure than symmetric

ones, yet they have the benefit of not sharing (thus, not jeopardizing) a common

secret key. Even if a combination of asymmetric and symmetric-key encryp-

tion is assumed for achieving more secure authentication and data exchange,

respectively, authentication is not expected to occur so often during normal

implant operation. It is, thus, not our primary concern for this profiling study

which is focused on the most commonly executed task, i.e. the symmetrically-

encrypted data exchange.

Another characteristic of typical implant applications is that (outbound) data

telemetry takes place a lot more often than (inbound) command reception in

implants. In effect, we are focused here only on the encryption part of the

profiled algorithms. Furthermore, due to their symmetric nature, most of these

algorithms have the same computational requirements for both encryption and

decryption.

Operation mode is the way for encrypting a message longer than the block

size of an algorithm. In this work we only consider the Electronic CodeBook

(ECB) mode. It has been shown that different operation modes (e.g. CBC,

CFB, OFB) incur different fault-tolerance levels with regard to information

loss due to transmitted-packet loss but incur the same energy penalty [79].

Since in this work we are not investigating the efficiency of different modes in

terms of information integrity but, rather, profile ciphers based on their power

signatures, ECB is sufficient.

132 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

feature value

ISA 32-bit ARMv5TE-compatibility,

8 DSP instructions
Pipeline depth 7/8-stage (depending on instruction), super-pipelined

Datapath width 32-bit

RF size 16 registers

Issue policy in-order

Instr. window single-instruction

I-Cache 32KB 32-way set-assoc. (1-cc hit/170-cc miss lat.)

D-Cache 32KB 32-way set-assoc. (1-cc hit/170-cc miss lat.)

TLB 32-entry fully-assoc.
BTB 128-entry direct-mapped

Branch Pred. 2-bit Bimodal

Write Buffer 8-entry

Fill Buffer 8-entry

Mem. bus width 4-byte

INT/FP ALUs 4/4

DSP co-proc. 40-bit, low-power, variable-lat. MAC

Clock freq. 2 MHz (typ. 200 MHz)
Oper. voltage 1.5 Volt

Implem. tech. 0.18 µm

Table 4.4: XTREM configuration for the encryption profiling study.

4.4.2 Experimental setup

4.4.2.1 Simulator configuration

The main XTREM characteristics, as configured for the encryption profiling

study, are summarized in Table 4.4. As the table reveals, clock frequency

has been lowered to better resemble realistic implantable systems. Yet, other

parameters have not been tampered with since, at the point in time of this first

profiling study, it had not been certain whether the simulator will scale properly

in terms of performance and power. For instance, instruction and data TLBs

have not been disabled, the operating voltage or the memory latencies have not

been altered.

4.4.2.2 Encryption datasets

The nature of the input datasets (also known in the encryption field as plain-

texts) does not affect the behavior of the studied encryption algorithms except

for their size. For other algorithms, such as data compression, the dataset na-

ture does impact performance, as will be discussed later, in a compression

profiling study. However, for completeness we have evaluated the encryp-

4.4. PROFILING OF ENCRYPTION ALGORITHMS 133

encryption block size key size Rounds
algorithm (bits) (bits) (#)

3WAY [2] 96 96 11
BLOWFISH [2] 128 128 16

DES [2] 64 56 16

GOST [2] 64 256 32

IDEA [2] 64 128 8.5

LOKI91 [125] 64 64 16

RC5 [2] 64 128 12

SKIPJACK [125] 64 80 32

XXTEA [148] 64 128 32
MISTY1 [79] 64 128 8

RC6 [79] 128 128 20

TWOFISH [79] 128 128 16

RIJNDAEL [79] 128 128 12

Table 4.5: Collection of profiled symmetric ciphers.

tion algorithms using the two BP biological datasets (sizes 1 KB and 10 KB ,

roughly) from Table 4.2, representing continuous blood-pressure readouts.

4.4.2.3 Encryption algorithms

When putting together our collection of ciphers, we have made an effort to

include sources adhering to the following characteristics:

i. large range of symmetric-encryption techniques and styles, from high-

performing to compact flavors;

ii. mature, optimized, well-documented implementation code base;

iii. various algorithmic complexities;

iv. suitability: the XTREM simulator can only handle C and Java sources.

Furthermore, in its current version it does not support simulating an OS

on top of the simulated hardware, thus prohibiting the use of encryption

sources - such as the excellent bzip2 algorithm - that require multithread-

ing support or other high-level features; and

v. availability: all collected ciphers comprise utterly free, published or free

under the GNU General Public License sources, readily available to the

research community.

134 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

0

20

40

60

80

100

120

140

ID
E

A

L
O

K
I9

1

D
E

S

S
K

IP
J

A
C

K

M
IS

T
Y

1

R
IJ

N
D

A
E

L

T
W

O
F

IS
H

R
C

5

R
C

6

B
L

O
W

F
IS

H

G
O

S
T

X
X

T
E

A

3
W

A
Y

A
V

G

ID
E

A

L
O

K
I9

1

D
E

S

S
K

IP
J

A
C

K

M
IS

T
Y

1

R
IJ

N
D

A
E

L

T
W

O
F

IS
H

R
C

5

R
C

6

B
L

O
W

F
IS

H

G
O

S
T

3
W

A
Y

X
X

T
E

A

A
V

G

O
v

e
ra

ll
 a

v
e

ra
g

e
 p

o
w

e
r

c
o

n
s

u
m

p
ti

o
n

 (
m

W
)

OTHER

I$

CLK

ALU

MM

BF_1KB BF_10KB

Figure 4.4: Per-component, average power consumption (in mW) for two

plaintext sizes.

The implementation of a given cipher plays as crucial a role for the perfor-

mance and behavior of the cipher as its underlying structure. While adhering

to the above characteristics, in order to offer the best possible fairness in our

selection process, we have attempted to include algorithms built with the same

implementation philosophy (e.g. algorithm suite implemented by the same au-

thor(s)) and/or algorithms being top representatives in their category. Table 4.5

summarizes our selected cipher collection2 . The DES algorithm, although not

considered secure any longer, has been included in our study as a reference

algorithm for the rest of the considered ciphers.

4.4.3 Profiling analysis

4.4.3.1 Power consumption

We start our profiling study by, first, examining how the selected ciphers per-

form in terms of power consumption since this is a crucial attribute of energy-

constrained devices like implants. Overall and per-component average power

consumption is depicted in Figure 4.4 for all 13 ciphers and for the two BP

plaintext sizes 1 KB and 10 KB.

We can readily see in the figure that, across all ciphers, the memory-manager

unit (MM) is the most power-hungry component of the processor with a rough

69% fraction of overall power consumed. The MM unit is activated each

time the core is stalled because of a main-memory instruction or data access.

Through the course of our profiling studies, we have found out that XTREM

2Available online, on the SiMS website: http://sims.et.tudelft.nl

http://sims.et.tudelft.nl

4.4. PROFILING OF ENCRYPTION ALGORITHMS 135

uses plain lookup tables with fixed power-consumption figures for some of its

subsystems that were difficult to model analytically. One such subsystem is the

MM which does not scale properly with operating frequency. This leads to the

dominating MM power profiles displayed in this and following sections. We

have tolerated this problem throughout since we are interested in the relative

power profiles of the various investigated algorithms. However, this means

that the high exhibited percentage for the MM power consumption is, in fact,

lower.

Next, follow the ALU consuming roughly 18%, the clock structure (CLK) con-

suming 5% and the instruction-cache (I$) consuming 3.5% of the overall power,

on average. Compared with other types of workloads, e.g. data compression,

encryption is more computationally intensive (i.e. many arithmetic and logic

operations), thus the high consumption of the ALU is not surprising. Fur-

thermore, encryption is typically data- rather than control-intensive, with few

instruction branches, placing high demands on linear instruction fetch. That is

why the instruction-cache consumes on average more power than other mem-

ory units, e.g. the data-cache or the BTB. Last, the clock structure is known

throughout digital systems to be a significant component of power consump-

tion, which is also the case here. If we operated the processor at a higher

frequency, power consumption would increase considerably. In terms of plain-

text sizes, overall average power consumption increases insignificantly (about

3%) with input size. Essentially, in the range from 1KB to 10KB of plaintext

size which is of interest for our case, power consumption does not seem to be

affected. This agrees also with the findings of Law et al. [79]. In accordance

to the same work as well as our own measurements, a significant difference

in consumed power would be observed in plaintext sizes comparable to the

block size of the ciphers, i.e. 10 to 30 Bytes. In this range, key-initialization

tasks place a computational overhead comparable to the actual encryption pro-

cess. This indicates that encryption becomes more power-efficient with larger

plaintext sizes.

A final observation from Figure 4.4 is that the power-behavior of the ciphers

does not change with increasing plaintext size, at least in the range of interest.

There is one exception: 3-WAY and XXTEA switch places when moving to

the larger plaintext but this is of minimal significance since they both score the

poorest in terms of average power consumption. The best performing ciphers

on this metric are IDEA, LOKI91, SKIPJACK, MISTY1 and RIJNDAEL. Al-

though DES is included in the study as a reference algorithm, it cannot be

selected as a winning candidate in the profiling due to its compromised status.

It is interesting, however, to observe that it features one of the lowest power

136 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

0

20

40

60

80

100

120

140

ID
E

A

D
E

S

M
IS

T
Y

1

L
O

K
I9

1

T
W

O
F

IS
H

R
IJ

N
D

A
E

L

S
K

IP
J

A
C

K

R
C

5

R
C

6

B
L

O
W

F
IS

H

G
O

S
T

X
X

T
E

A

3
W

A
Y

A
V

G

ID
E

A

D
E

S

M
IS

T
Y

1

L
O

K
I9

1

T
W

O
F

IS
H

R
IJ

N
D

A
E

L

S
K

IP
J

A
C

K

R
C

5

R
C

6

B
L

O
W

F
IS

H

G
O

S
T

X
X

T
E

A

3
W

A
Y

A
V

G

P
e

a
k

 a
n

d
 a

v
e

ra
g

e
 p

o
w

e
r

c
o

n
s

u
m

p
ti

o
n

 (
m

W
)

Peak power (mW)

Average power (mW)

BF_1KB BF_10KB

Figure 4.5: Average and peak power consumption (in mW) for two plaintext

sizes.

profiles even though it is one of the oldest encryption algorithms.

Except for average power consumption, another interesting metric is peak

power consumption. This is especially important for battery-powered systems

such as implants. A battery able to support a cipher with a given average

power consumption may be unable to deliver the required output at a given

point in time if the cipher sporadically presents peak power values which are

largely deviating from its average power needs. To address this aspect of the

profiled ciphers, we have plotted Figure 4.5. The ciphers are depicted in order

of increasing peak-power profiles. The bar series denoted as average power

consumption is the aggregated equivalent of the bars seen previously, in Fi-

gure 4.4.

It is interesting to see that ciphers scoring high in the previous test, such as

IDEA and LOKI91, display a large difference of roughly 35 mW between av-

erage and peak power, which can potentially throw the implant designer off

track. This difference has to be taken seriously into account if such ciphers are

to be employed in an implantable device. That said, IDEA, MISTY1, LOKI91

and RIJNDAEL still occupy the first positions. However, TWOFISH in now

inside the top-scoring ciphers and, what is more, it displays the most consistent

profile between average and peak power. In terms of our chosen plaintext sizes,

and similarly to average power, peak-power profiles present no differences.

4.4. PROFILING OF ENCRYPTION ALGORITHMS 137

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

R
C

6

R
C

5

ID
E

A

D
E

S

M
IS

T
Y

1

R
IJ

N
D

A
E

L

B
L

O
W

F
IS

H

X
X

T
E

A

T
W

O
F

IS
H

3
W

A
Y

G
O

S
T

A
V

G

R
C

6

R
C

5

ID
E

A

D
E

S

B
L

O
W

F
IS

H

M
IS

T
Y

1

R
IJ

N
D

A
E

L

X
X

T
E

A

T
W

O
F

IS
H

3
W

A
Y

G
O

S
T

A
V

G

T
o

ta
l
e
n

e
rg

y
 e

x
p

e
n

d
it

u
re

 (
J
o

u
le

)

OTHER
CLK
I$
ALU
MM

BF_1KB BF_10KB

Figure 4.6: Per-component and total encryption energy costs (in Joules).

4.4.3.2 Energy expenditure

Apart from the rate at which a cipher consumes energy, i.e. its power con-

sumption, it is important to also investigate the total energy costs incurred for

executing the whole cipher. This metric is the total energy expenditure of a

cipher and our findings are summarized in Figure 4.6, for both plaintext sizes.

SKIPJACK and LOKI91 have been omitted from the plots since they display

excessively large energy needs (an order of magnitude larger for LOKI91 than

the rest of the algorithms). However, average values include these two algo-

rithms in their calculation to give a complete view.

Knowing the overall energy budget needed for completing a single encryption

task is especially important for implantable systems. It directly tells us how

much stored energy the given task needs in order to execute and, in effect,

what energy amount will be deduced from the battery. It also tells us if e.g.

a scheduled encryption and transmission of physiological readouts can take

place or not. Given the mission-critical tasks implants perform, it might be

preferable at some point to not engage in transmission of (encrypted) data. For

instance, it is more important for a pacemaker running low on battery to keep

working for an extra couple of days (to allow time for recharging or servicing)

than to transmit ECG readouts to its inquiring host once and then power down.

In terms of energy distribution in the various processor components, we can

again see that the MM, ALU, CLK and I$ are the most demanding ones. How-

ever, Figure 4.6 tells a completely different story for the energy sparingness of

the profiled ciphers. RC6 and RC5 have climbed in the first positions of the

ranking, becoming the most energy-efficient ciphers. IDEA and MISTY1 fol-

low with RIJNDAEL and BLOWFISH contesting for the fifth position across

138 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

0
,0

9
7

0
,1

6
1

0
,1

3
6

0
,2

1
0

0
,2

4
1

0
,1

7
5

0
,5

1
4

0
,6

1
7

0
,8

1
6

1
,5

6
0 2

,8
2

8

0
,1

7
6

1
1

,4
0

3

1
,4

5
6

0
,1

3
7

0
,2

1
0

0
,1

8
6

0
,2

6
7

0
,3

0
9

0
,2

4
3

0
,5

9
3

0
,7

1
6

0
,9

4
3 1
,7

4
8

3
,1

2
7

0
,5

4
4

1
2

,6
0

8

1
,6

6
4

0

2

4

6

8

10

12

14

R
C

6

ID
E

A

R
C

5

M
IS

T
Y

1

R
IJ

N
D

A
E

L

D
E

S

X
X

T
E

A

T
W

O
F

IS
H

3
W

A
Y

G
O

S
T

S
K

IP
J

A
C

K

B
L

O
W

F
IS

H

L
O

K
I9

1

A
V

G

E
n

c
ry

p
ti

o
n

 e
ff

ic
ie

n
c
y
 (

J
o

u
le

)

energy budget (J) for encrypting: 1x BP_10KB

energy budget (J) for encrypting: 10x BP_1KB

Figure 4.7: Computation overhead of ciphers manifested as energy penalty (in

Joules) when encrypting one 10-KB and ten 1-KB plaintexts.

the two different plaintexts. Clearly, MISTY1 and RIJNDAEL perform better

when smaller plaintext sizes are considered. Conversely, BLOWFISH favors

larger sizes. Further, it is surprising that XXTEA is not among the best-scoring

ciphers since it is considered a relatively light-weight algorithm.

A last observation in this subsection is that energy budget does not scale lin-

early with plaintext size for most of the ciphers. The cost of encrypting a

10-KB workload as opposed to that of successively encrypting 10 1-KB work-

loads is 14% smaller, in an overall. The reason for that difference again is the

overhead penalty paid during initialization of the encryption algorithms (e.g.

key setup). As our simulations have revealed, other factors also contributing to

this penalty are the increased fetch- and data-stalls that are reduced over the ex-

ecution time of a cipher as cache entries get filled, etc.. However, this penalty

is not similar across the various ciphers. In Figure 4.7, the energy budgets

for encrypting one 10-KB workload and 10 consecutive 1-KB workloads are

plotted. The ciphers are ranked in order of increasing difference between the

two budgets, i.e. in order of increasing penalty. RC6, IDEA, RC5, MISTY1

and RIJNDAEL are still in the first positions, incurring small penalties but

TWOFISH has fallen near the bottom of the ranking, due to introducing a sig-

nificant energy penalty. This secondary metric of energy is interesting because

it indirectly gives a measure of computational efficiency of the various ciphers.

4.4.3.3 Encryption rate

Another metric we use in our profiling study of block ciphers is their encryp-

tion rate. In Figure 4.8 encryption rates in KB/sec are reported for 1-KB and

4.4. PROFILING OF ENCRYPTION ALGORITHMS 139

0

2

4

6

8

10

12

14

R
C

6

R
C

5

M
IS

T
Y

1

R
IJ

N
D

A
E

L

D
E

S

ID
E

A

B
L

O
W

F
IS

H

X
X

T
E

A

T
W

O
F

IS
H

3
W

A
Y

G
O

S
T

S
K

IP
J

A
C

K

L
O

K
I9

1

A
V

G

R
C

6

R
C

5

B
L

O
W

F
IS

H

M
IS

T
Y

1

D
E

S

R
IJ

N
D

A
E

L

ID
E

A

X
X

T
E

A

T
W

O
F

IS
H

3
W

A
Y

G
O

S
T

S
K

IP
J

A
C

K

L
O

K
I9

1

A
V

G

E
n

c
ry

p
ti

o
n

 r
a

te
 (

K
B

/s
e

c
)

Figure 4.8: Encryption rate (in KB/sec).

10-KB plaintexts. RC6, RC5, MISTY1, RIJNDAEL and BLOWFISH score

the highest on this metric, with RC6 and RC5 being by far the fastest ciphers.

In fact, and contrary to the rest of the ciphers, RC6 and RC5 achieve impres-

sive encryption-rate improvements with increasing plaintext size. The rate of

BLOWFISH appears also to benefit largely from a larger plaintext size. In an

overall, all ciphers seem to benefit from larger plaintexts: from 3.34 KB/sec
for the 1-KB data, the average rate boosts to 4.52 KB/sec . The reasons

for this are the same as the ones previously mentioned concerning the energy

penalty. They are related to the cipher-key initialization phase as well as the

cold start of the processor itself.

For the targeted implant applications, our primary concern is to preserve power

consumption at low levels. This means that we are not seeking the fastest per-

forming cipher but, rather, one which is fast enough to cover our needs. As

can be seen in Table 4.2, the biological data we used as plaintext features a rel-

atively high (in this context) sampling rate of 4.86 KB/sec for the 1-KB and

5.22 KB/sec for the 10-KB workload. In our 2-MHz simulated processor,

only ciphers RC6 and RC5 manage to sustain the required sampling rate. The

cost paid is that both ciphers display a relatively high power profile (93 mW to

100 mW) as seen in Section 4.4.3.1.

4.4.3.4 Executable-binary size

In order to give a measure of proportion to our profiling study, it is useful

to also report on the size of the encryption-algorithm executables, as a mea-

sure of program-memory needs. Since XScale supports the ARM ISA and,

accordingly, XTREM is based on a modified version of SimpleScalar/ARM,

executables have been built with a custom-modified version the GNU ARM-

140 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

encryption size
algorithm (KB)

XXTEA 11.2
3WAY 11.2

LOKI91 11.3

RC6 11.4

RC5 11.4

GOST 12.2

SKIPJACK 12.2

IDEA 13.4

DES 14.6
BLOWFISH 15.3

MISTY1 18.8

TWOFISH 22.2

RIJNDAEL 37.0

Table 4.6: Program sizes (in KB) of the encryption algorithms.

GCC v2.95.2 cross-compiler. Due to these custom modifications, we discov-

ered that the binaries generated by this ARM-GCC all have the same size. 3.

Furthermore, executables have been statically linked (this is an ARM require-

ment) and, therefore, are expected to be somewhat larger in size than their e.g.

8086-architecture counterparts. Optimization level 2 (-O2 flag) has been used

instead of level 3 (-O3 flag). It could possibly make faster code but the ap-

plications that benefit from it are very few, usually image and video decoders.

However it has a side effect: it always generates a larger binary sizes. Since

video/audio applications are not included in our workloads and we try to avoid

large binaries as much as possible, O2 was selected as a proper optimization

level. In Table 4.6, the code complexities of the selected encryption algorithms

are shown in ascending order.

Obviously, results shown in the table are implementation-dependent and

should be considered with caution. However, as we mentioned also in Sec-

tion 4.4.2.3, many different algorithms have been based on the same software

architecture, built by the same author(s). Therefore, the difference in sizes

(not the actual sizes themselves), can give an indication of the difference in

program-memory needs, regardless of the underlying implementations. Best

scoring algorithms in this case are XXTEA, 3WAY, LOKI91, RC6 and RC5.

3To cope with this problem, a standard version (namely, ARM-GCC v4.1.2) has also been

invoked here to calculate the actual binary sizes of the various algorithms.

4.4. PROFILING OF ENCRYPTION ALGORITHMS 141

encryption key size Security
algorithm (bits) margin

GOST 256 2243
BLOWFISH 128 2076

IDEA 128 2076

RC5 128 2076

XXTEA 128 2076

MISTY1 128 2076

RC6 128 2076

TWOFISH 128 2076

RIJNDAEL 128 2076
3WAY 96 2034

SKIPJACK 80 2013

LOKI91 64 1992

DES 56 1982

Table 4.7: Security margins of the encryption algorithms.

4.4.3.5 Security margin

Since we are evaluating encryption ciphers, a last, suitable metric of our com-

parative study is the security level provided by each cipher. According to

Lenstra and Verheul [82], a cryptosystem can be assumed to be secure only

if it is considered to be sufficiently infeasible to mount a successful attack.

Unfortunately, it is hard to quantify what precisely is meant by “sufficiently

infeasible”. To cope with this known issue, we adopt the widely used security

margin metric, proposed also by Lenstra and Verheul, which is defined as the

year until which a user was willing to trust the DES cipher.

According to this definition, if an attacker could afford CDES computations in

1982, sufficient to break DES, and can afford CX computations in year y (y >
1982), sufficient to break cipher X, then the security of cipher X in year y is

computationally equivalent to the security of DES in 1982, or in other words,

the security margin of cipher X is y. Since DES was standardized in 1977 and

set for review in 1982, the year 1982 is used as the baseline. If the best known

attack against a cipher with key length k is exhaustive key search, y can be

calculated according to:

y = 1982 +
30

23
∗ (k − 56).

Security margins for our studied ciphers are shown in Table 4.7 in descending

order. Based on the previous discussion, all algorithms except for LOKI91 and

(of course) DES are secure. Also, SKIPJACK, although secure, displays the

142 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

average power peak power total energy encryption encryption program-code
consumption consumption cost efficiency rate size

IDEA IDEA RC6 RC6 RC6 XXTEA
LOKI91 MISTY1 RC5 IDEA RC5 3WAY

SKIPJACK LOKI91 IDEA RC5 MISTY1 LOKI91

MISTY1 TWOFISH MISTY1 MISTY1 RIJNDAEL RC6

RIJNDAEL RIJNDAEL BLOWFISH RIJNDAEL BLOWFISH RC5

Table 4.8: Five best-performing encryption algorithms (in descending order of

performance).

ARM instruction Equiv. ARM
microcode

stmdb r13!,r4-r8,r10-r15 agen tmp1,r13,0
agen tmp0,tmp1,-16
stp r11,[tmp0]
agen r13,r13,-16
agen tmp0,tmp1,-12
stp r12,[tmp0]

agen tmp0,tmp1,-8
stp r14,[tmp0]
agen tmp0,tmp1,-4
stp r15,[tmp0]

(a) Sample ARM instruction which stores registers in the

stack pointed to by R13 and equivalent ARM µop

sequence.

mov (move)

12%

and (logical and)

5%

orr (logical or)

4%

other

8%

agen (address

generation)

29%

stp (store to private

memory)

7%

eor (logical xor)

14%

ldp (load from private

memory)

21%

(b) µop mix and frequencies for MISTY1 operating on the 1-KB BP

plaintext.

Figure 4.9: ARM microcode representation and MISTY1 µop frequencies

next shortest security margin. Conclusively, LOKI91 and SKIPJACK - if it

does not appear to rank high in the rest of the metrics - will be left out from

our final selection process.

4.4.4 Results & discussion

To summarize our analysis results, we present in Table 4.8 the 5 best-

performing algorithms per profiled metric (except for the security-margin met-

ric). MISTY1 appears in 5 out of 6 metrics in the above table. IDEA, RIJN-

DAEL, RC6 and RC5 follow, each with 4 occurrences in the table. However,

IDEA performs consistently better than RIJNDAEL with the exception of en-

cryption rate. Besides, RIJNDAEL scores almost always last in the ranking

among ciphers with 4 occurrences. Last, RC6 scores always better than RC5.

LOKI91 has 3 occurrences in the table but is, in any case, dismissed due to its

– now – insecure nature.

4.4. PROFILING OF ENCRYPTION ALGORITHMS 143

IDEA RC6
µop percentage µop percentage

mov (move) 29% agen (address generation) 25%
agen (address generation) 18% mov (move) 15%

ldp (load from private memory) 12% ldp (load from private memory) 15%

b (unconditional branch) 9% stp (store to private memory) 8%

add (add) 7% add (add) 8%

cmp (compare) 6% b (unconditional branch) 5%

stp (store to private memory) 5% eor (logical xor) 4%

orr (logical or) 4% sub (subtract) 4%

other 10% rsb (reverse subtract) 4%
other 11%

Table 4.9: µop mix and frequencies for IDEA and RC6 operating on the 1-KB

BP plaintext.

Conclusively, from the above findings, MISTY1 is the most promising cipher

according to our imposed metrics; thus, we take a closer look at its under-

lying instruction mix. Figure 4.9b illustrates the type and frequency of in-

structions executed for encrypting the 1-KB BP plaintext with the MISTY1

cipher. XTREM, which is based on SimpleScalar, implements ARM instruc-

tions through an internal microcode representation (simply referred to as µops

hereon). We included µop statistics rather than the actual ARM instructions

because the µops can better capture the workings of the underlying architec-

ture. For instance, a single ARM command to store multiple registers to the

stack pointed to by R13, breaks down to a number of more elementary µops

(see Figure 4.9a).

Going back to Figure 4.9b, we readily observe that the address-generation op-

eration (agen) – which, in essence, is a standard arithmetic operation – is by

far the most common and, although it is specific to ARM-based microarchitec-

tures, it reveals the importance of implementing an efficient address-generation

mechanism in the envisioned processor. Execution is also heavily dominated

by load/store (stp, ldp) operations, logic operations (eor, and, orr) and register-

to-register copy operations (mov). This mix motivates us towards efficient

implementation of loads/stores, moves and logic operations in terms of power

consumption and execution speed.

By investigating also the second and the third best ciphers, i.e. IDEA and

RC6, we accumulate the statistics, seen in Table 4.9. The mixes in this case

favor, too, address-generation, load/store and move operations but logic op-

erations to a smaller extent, compared to the MISTY1 case. However, they

both display high percentages of arithmetic (add, sub, rsb, cmp) and branch

144 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

(b) operations, contrary to MISTY1. Given that MISTY1 scores high in most

metrics of our profiling study, optimizing our architecture for the more focused

MISTY1 µop mix is considered the best option. Also, since address genera-

tion is a particularly frequent µop, mechanisms for speeding up this specific

arithmetic operation might probably prove highly beneficial in the SiMS pro-

cessor. However, one should keep in mind that “agen” is a µop specific to the

ARM microarchitecture and might, therefore, bring diminished benefits in a

microarchitecture of different approach.

4.5 Profiling of compression algorithms

Similarly to the study previously performed on encryption algorithms, in the

following sections, we profile various popular lossless-compression algorithms

against suitable metrics. Then, we select the ones with the best characteristics

for the targeted application domain and again investigate their respective in-

struction frequencies and mixes, useful for offering insights on the design and

implementation of the targeted processor.

4.5.1 Selection criteria of compression algorithms

As previously discussed, implants periodically record or generate signals

which they store in an on-board memory and selectively transmit wirelessly

to an external monitoring station. This pattern of behavior indicates that out-

bound biological-data traffic almost always dominates inbound traffic.

It has been measured [11] that putting a single bit on the air for transmission

consumes more energy than a 1,000 32-bit computation (i.e. “add”) opera-

tions4. It, then, becomes apparent that performing a 1,000 extra operations for

compressing data by even 1 bit saves overall energy expenditure.

Since the transmissions from the implant to the outside world are expected

to be more than the receptions, it becomes apparent that – in order to save

over implant energy – information needs to be compressed before transmis-

sion. Therefore, in the context of implants, the most important aspect of the

pair data compression-expansion is the former, thus this work deals only with

the compression aspect of the studied compression algorithms. This choice

affects the findings of the study since many compression schemes display un-

4In [11], it has been roughly measured that transmitting 1 bit of information is approx.

equivalent to 485–1267 add instructions, in terms of energy.

4.5. PROFILING OF COMPRESSION ALGORITHMS 145

feature value

ISA 32-bit ARMv5TE-compatible

Pipeline depth 7/8-stage, super-pipelined
Datapath width 32-bit

RF size 16 registers

Issue policy in-order

Instr.window single-instruction

I-Cache, L1 32B, 1-entry, 1-cc hit/170-cc miss lat.

D-Cache, L1 32B, 1-entry, 1-cc hit/170-cc miss lat.

BTB 2-entry direct-mapped

TLB 1-entry
Branch Predictor 2-bit Bimodal

Write Buffer 2-entry

Fill Buffer 2-entry

Mem. bus width 1 Byte

INT/FP ALUs 1/1

Clock freq. 2 MHz

Implem. tech. 0.18 µm @ 1.5 Volt

Table 4.10: XTREM configuration for compression profiling study.

balanced compression and expansion complexities; e.g. the compression effort

typically is much higher than the expansion effort.

Furthermore, the sensitive nature of biomedical signals dictates that, in the

general case, no information can be afforded to be lost or altered during data

acquisition, compression and transmission. We are, therefore, inclined to con-

sider solely lossless compression to ensure complete information recovery at

the receiving end.

4.5.2 Experimental setup

4.5.2.1 Simulator configuration

As discovered in the preceding study on encryption algorithms, XTREM com-

ponents (with the exception of the MM) scale properly performance- and

power-wise. To better match our application field and in lack of better knowl-

edge in the field, many of XTREM’s architectural parameters have been cut

down or disabled for the following study, in order to better reflect the highly

constrained implantable processors. The modified XTREM characteristics are

summarized in Table 4.10.

146 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

compression algorithm shorthand details
name

Static-Huffman Coding [101] huff Huffman coding with static symbol table
Adaptive-Huffman Coding [101] ahuff Huffman coding with adaptive symbol table

Arithmetic Coding, Order-0 [101] arith Simple arithmetic coding

Arithmetic Coding, Order-1 [101] arith1 Order-1 arithmetic coding

Arithmetic Coding, Order-1e [101] arith1e Order-1 arithmetic coding with escape charac-

ters

LZSS (12-bit sliding window) [101] lzss Storer & Szymanski’s slightly modified LZ77

version

LZW (fixed 12-bit) [101] lzw12 LZW with fixed 12-bit symbols
LZW (variable up to 15-bit) [101] lzw15v LZW with variable-size symbols, up to 15 bits

Run-Length Encoding [48] bclrle Simple run-length encoding

Shannon-Fano [48] bclsf –

Finnish [29, 100] fin LZ77-variant with 2-character memory win-

dow

Splay-Tree Compression [29, 70] splay Similar to Huffman encoding, locally adaptive

LZSS w/ Adaptive-Huff. Coding [29] lzhuf oku LZSS with binary-tree symbol table

LZSS w/ Adaptive-Arith. Coding [29] lzari oku –
Urban [100] urban High-order arithmetic coder working at the bit

level

MiniLZO [103] mlzo Light-weight subset of the LZO library (LZ77-

variant)

S-LZW [116] slzw Memory-constrained modification of LZW for

Sensor-nodes

Table 4.11: Collection of profiled lossless-compression algorithms.

4.5.2.2 Compression datasets

An overview of selected implant datasets has been provided in Table 4.2. For

this study, all input datasets (of both 1-KB and 10-KB sizes) have been used.

Due to the huge amount of data generated during the profiling phase, in the

following analysis we only report cumulative figures based on the averaged

results across all profiled datasets. That is to say, we do not favor any of the

datasets presented in Table 4.2. Further, all reported average values in fact

are median values unless stated otherwise, since we cannot guarantee normal

data distribution in the general case. Last, results have been grouped in two

main categories of 1-KB and 10-KB data so as to capture also the variation in

behavior when increasing the input size.

4.5.2.3 Compression algorithms

When putting together our collection of compression algorithms, we have

made an effort to include sources adhering to similar principles as those fol-

4.5. PROFILING OF COMPRESSION ALGORITHMS 147

-25

-15

-5

5

15

25

35

lz
a

ri
_

o
k

u

lz
h

u
f_

o
k
u

m
lz

o

u
rb

a
n

a
ri

th
1

a
ri

th
1
e

lz
s

s

fi
n

s
lz

w

b
c

lr
le

lz
w

1
5

v

s
p

la
y

a
h

u
ff

a
ri

th

h
u

ff

b
c
ls

f

lz
w

1
2

a
v

g

lz
a

ri
_

o
k

u

lz
h

u
f_

o
k
u

m
lz

o

lz
s

s

fi
n

a
ri

th
1
e

u
rb

a
n

a
ri

th
1

lz
w

1
5

v

a
ri

th

h
u

ff

a
h

u
ff

lz
w

1
2

b
c
ls

f

s
lz

w

b
c

lr
le

s
p

la
y

a
v

g

1 KB 10 KB

(%)

Figure 4.10: Averaged compression ratios for 1-KB and 10-KB datasets.

lowed when collecting encryption algorithms; namely: i) large range of loss-

less data compression techniques and styles, from high-performing to compact

flavors; ii) mature implementation code base; iii) various algorithmic com-

plexities; iv) suitability: the XTREM simulator can only handle C and Java

sources. Furthermore, in its current version it does not support an OS on top

of the simulated hardware, thus prohibiting the use of compression sources -

such as the excellent bzip2 algorithm - that require high-level, OS features;

and v) availability: all collected algorithms comprise utterly free, published or

free under the GNU General Public License sources, readily available to the

research community.

The implementation of a given compression algorithm plays as crucial a role

for the performance and behavior of the algorithm as its underlying structure.

While adhering to the above principles, in order to offer the best possible fair-

ness in our selection process, we have attempted to include algorithms built

with the same implementation philosophy (e.g. algorithm suite implemented

by the same author(s)) and/or algorithms being top representatives in their cat-

egory. Table 4.11 summarizes the selected algorithms5.

4.5.3 Profiling analysis

4.5.3.1 Compression ratio

The first profiled metric to discuss is compression ratio and findings are illus-

trated in Figure 4.10. For the case of 1-KB data, our compression algorithms

perform worse (−0.08% on average) that for the 10-KB data (10.14% on av-

erage). For the 1-KB case we actually see an expansion of data, on average.

Given that workloads in this case are 10 times smaller, an overall approx. 100%

poorer compression is performed. To put it simply, attempting to compress 10

consequent 1-KB readouts results in a compressed output double the size of a

5Available online, on the SiMS website: http://sims.et.tudelft.nl

http://sims.et.tudelft.nl

148 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

0

0,2

0,4

0,6

0,8

1

b
c

lr
le

s
lz

w fi
n

m
lz

o

lz
w

1
2

s
p

la
y

lz
w

1
5

v

lz
s

s

a
h

u
ff

h
u

ff

lz
h

u
f_

o
k
u

b
c
ls

f

lz
a

ri
_

o
k

u

a
ri

th

a
ri

th
1
e

a
ri

th
1

u
rb

a
n

a
v

g

b
c

lr
le

s
lz

w

m
lz

o

fi
n

lz
w

1
2

b
c
ls

f

lz
w

1
5

v

h
u

ff

s
p

la
y

a
h

u
ff

lz
h

u
f_

o
k
u

lz
s

s

lz
a

ri
_

o
k

u

a
ri

th

a
ri

th
1
e

a
ri

th
1

u
rb

a
n

a
v

g

1 KB 10 KB

(KB/sec)

Figure 4.11: Averaged, average compression rates for 1-KB and 10-KB

datasets.

compressed, single, contiguous 10-KB readout. Clearly, compression of larger

files is favored. This claim has to be backed also with energy-expenditure re-

sults in order to make it attractive for ULP systems such as implants are. We

will address this topic later.

The difference in compression ratios for different workload sizes is justified by

the fact that for small inputs, many compression algorithms do not simply have

sufficient context to become efficient; symbol tables may not have the time to

be filled thus impacting compression efficiency. In short, it is a “cold start”

problem. Overall, the most compression-efficient algorithms, as the figures

indicate, are lzari oku, lzhuf oku and mlzo. urban and arith1 are contesting

with lzss and fin for the 4th and 5th positions, respectively.

4.5.3.2 Compression rate

Another interesting attribute of the compression algorithms is how fast they

are able to pack data, i.e. their compression rate. In Figure 4.11 average com-

pression rates in KB/sec are reported. Overall, the average compression rate

for 1-KB data is 0.051 KB/sec while for 10-KB data it is 0.095 KB/sec , or

about double the speed. The reason for this difference is anticipated to be the

fact that with 1-KB data, compression algorithms do not have the time to cre-

ate and traverse excessively large data structures such as the symbol table. For

instance, with a typical size of 256 Bytes which is comparable to the input

data size of 1 KB , the symbol table does not have the time to fill and become

efficient. Of course, this has adverse effects on compression. Best-scoring al-

gorithms for this metric are bclrle, slzw, fin, mlzo and lzw12. bclrle achieves

by far the most impressive results due its simplistic design but does so at the

cost of poor or no compression.

4.5. PROFILING OF COMPRESSION ALGORITHMS 149

0

20

40

60

80

100

120

m
lz

o

a
ri

th

a
ri

th
1
e

a
ri

th
1

u
rb

a
n

lz
w

1
2

b
c
ls

f

a
h

u
ff

lz
a

ri
_

o
k

u

lz
h

u
f_

o
k
u

lz
w

1
5

v

lz
s

s

s
lz

w

h
u

ff

fi
n

b
c

lr
le

s
p

la
y

a
v

g

m
lz

o

a
ri

th

a
ri

th
1
e

a
ri

th
1

u
rb

a
n

lz
w

1
5

v

lz
w

1
2

a
h

u
ff

b
c
ls

f

s
lz

w

h
u

ff

lz
s

s

lz
a

ri
_

o
k

u

lz
h

u
f_

o
k
u

fi
n

b
c

lr
le

s
p

la
y

a
v

g

MM

CLK

OTHER

peak power

1 KB 10 KB

(mW)

Figure 4.12: Averaged, average and peak power consumption for 1-KB and

10-KB datasets.

4.5.3.3 Average & peak power consumption

Average power consumption is an important metric of an algorithm’s perfor-

mance. It reveals the average rate at which the executed algorithm draws en-

ergy from the system. An implant battery may have sufficient charge to support

a whole compression operation, however, it might not be able to sustain the en-

ergy rate needed by the compression algorithm. Another interesting metric in

this context is peak power consumption. A battery able to support a com-

pression algorithm with a given average power consumption may be unable to

deliver the required output at a given point in time if the algorithm sporadically

presents peak power values which are largely deviating from its average power

needs. To address both aspects of the profiled algorithms, we have plotted Fi-

gure 4.12. The algorithms are ordered in order of increasing average-power

profiles. Bars indicate average (overall and per-processor-component) power

while black dots indicate peak power.

We can readily see that the memory-manager unit (MM) is the power-hungriest

component with a rough 94% fraction of overall power consumed throughout

both workload groups. The MM unit is activated each time the core is stalled

because of a main-memory instruction or data fetch. Regardless of the afore-

mentioned issue with the non-scaling power model of the MM, a high power

consumption in this unit is generally expected for resource-constrained devices

with small or totally absent I/D-caches as the ones we consider here. Next fol-

lows the CLK consuming about 5% of the overall power.

From the figure we can further discern that average power consumption in-

creases marginally with workload size. In effect, the algorithms’ power needs

are unaffected by the workload size they operate on. We can also see that

most algorithms converge to a consumption threshold of roughly 95 mW . We

have performed some further tests whereby some of the processor’s charac-

teristics have been enhanced, e.g. cache sizes have been increased. In that

150 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

0

5

10

15

20

25

30

35

m
lz

o

b
c

lr
le

s
lz

w fi
n

lz
w

1
2

s
p

la
y

lz
w

1
5

v

lz
s

s

a
ri

th

a
h

u
ff

h
u

ff

lz
h

u
f_

o
k
u

b
c
ls

f

lz
a

ri
_

o
k

u

a
ri

th
1
e

a
v

g

m
lz

o

b
c

lr
le

s
lz

w fi
n

lz
w

1
2

b
c
ls

f

lz
w

1
5

v

h
u

ff

s
p

la
y

a
h

u
ff

lz
h

u
f_

o
k
u

lz
s

s

a
ri

th

lz
a

ri
_

o
k

u

a
ri

th
1
e

a
v

g

MM

CLK

OTHER

1 KB 10 KB

(Joule)

Figure 4.13: Averaged, total energy expenditure for 1-KB and 10-KB datasets.

case, a large variation among the power profiles of the various algorithms has

resulted. This indicates that the constrained version of the processor we cur-

rently use essentially “chokes” the performance of many algorithms forcing

them to slow their execution down and, thus, demand less power from the un-

derlying machine. This is a crucial observation since it excludes from selection

those algorithms whose performance enhancements will not bring any benefit

to a highly resource-constrained, implant processor. Outright best performing

algorithms in terms of average power consumption are mlzo, arith, arith1e,

arith1 and urban. When peak power consumption is considered, the ranking

changes with lzw15v, lzss, fin, mlzo and slzw scoring best, indicating large

deviations between average and peak power figures.

An interesting point to make here is that implantable systems would greatly

benefit from power-aware compression techniques. In effect, compression al-

gorithms that dynamically adapt their actual compression speed and/or ratio

depending on the amount of energy they spend in a given time interval. When

this amount surpasses a preset (or dynamically set) threshold value, they lower

their performance to make it back to the threshold. Of course, this presumes

a way for the algorithm (thus, software) of tapping into processor (thus, hard-

ware) power figures at run-time. None of the profiled algorithms has such

capabilities, yet it would be a crucial adaptation for future ULP systems.

4.5.3.4 Overall energy budget

Knowing the overall energy budget needed for completing a single compres-

sion task is important for battery-operated implants. It directly tells us how

much stored energy the given task needs in order to execute and, in effect,

what stored-energy amount will be deduced from the battery. It also tells us if

the compression computation is worth the effort compared to simply transmit-

ting the data uncompressed over the air. Accordingly, in Figure 4.13 averaged,

overall energy expenditures for both workload sizes have been plotted. urban

4.5. PROFILING OF COMPRESSION ALGORITHMS 151

bench. size bench. size bench. size
(KB) (KB) (KB)

fin 10.4 bclrle 15.7 arith1 17.1
splay 12.5 bclsf 15.7 arith1e 17.1

urban 13.5 huff 16.2 lzhuf oku 17.4

lzw12 13.8 mlzo 16.3 arith 17.4

slzw 14.0 lzw15v 16.7 ahuff 21.5

lzss 14.6 lzari oku 17.0

Table 4.12: Compression algorithms’ program sizes.

and arith1 display very large energy costs and have, thus, been omitted from

the plots to give better resolution for the rest of the algorithms.

From Figure 4.13, we can readily observe that the energy budget does not scale

linearly with workload size. The cost of compressing one 10-KB workload

(9.541 J) as opposed to that of successively compressing 10 1-KB workloads

(1.684 J for one) is about 55% smaller. This agrees also with our compression-

ratio results; that is, rarer compression of larger input data is energy- and

compression-wise preferable to frequent compression of smaller input data.

Agreeing with the previous discussion on power, we can further see that the

MM and CLK components indeed are the overall most energy-consuming parts

of the processor. The best performing algorithms in this case are mlzo, bclrle,

slzw, fin and lzw12 and they preserve their ranking for both workload sizes.

Interestingly, with the exception of mlzo, these are not the same algorithms

as the top-ranking ones in terms of average power consumption, as one might

expect. The reason for this difference lies in the actual algorithm execution

times. An algorithm might consume little power on average but might do so

for a disproportionately large amount of time, thus canceling all benefits of its

low-power nature. For instance, arith consumes only 32.58 mW on average

while compressing a 10-KB workload but it completes its task in 456.63 sec

on average while the overall average compression time for 10-KB workloads

is only 86.28 sec . Hence, its excessive energy budget and resulting poor

ranking.

4.5.3.5 Executable-binary size

A last metric we evaluate is the binary size of the algorithms’ executables,

as a measure of program-memory needs. Executables have been built with

the GNU ARM-GCC v4.1.2 cross-compiler and optimization level O2. Fur-

thermore, executables have been statically linked (this is an ARM require-

152 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

ratio avg. avg. peak total code
rate power power energy size

lzari oku bclrle mlzo lzss mlzo fin
lzhuf oku slzw arith lzw15v bclrle splay

mlzo fin arith1e fin slzw urban

urban mlzo arith1 mlzo fin lzw12

arith1 lzw12 urban slzw lzw12 slzw

lzari oku bclrle mlzo lzw15v mlzo fin
lzhuf oku slzw arith lzss bclrle splay

mlzo mlzo arith1e fin slzw urban

lzss fin arith1 mlzo fin lzw12

fin lzw12 urban slzw lzw12 slzw

Table 4.13: Five best-performing compression algorithms in descending order

(top: 1-KB, bottom: 10-KB).

ment) and, therefore, are expected to be somewhat larger in size than their

dynamically linked counterparts. In Table 4.12, the code complexities of the

selected compression algorithms are shown in ascending order. Obviously, re-

sults shown in the table are heavily implementation-dependent and should be

considered with caution. However, as mentioned in Section 4.5.2, many dif-

ferent algorithms have been based on the same software architecture, built by

the same author(s). Therefore, the difference in sizes can give an indication

of the program-memory needs, regardless of the underlying implementations.

Best scoring algorithms in this case are fin, splay, urban, lzw12 and slzw.

4.5.4 Results & discussion

To summarize our analysis results, we present in Table 4.13 the 5 best-

performing algorithms on each one of our profiled metrics, for both workload

sizes. The undisputed winner is mlzo, followed by fin and slzw. Accordingly,

we take a closer look at the underlying instruction mix of mlzo.

As discussed in the analysis of encryption algorithms, the XTREM simulator

internally breaks up executed ARM instructions to “µops”, by design. This

quirk in fact is useful to us since it allows us to capture microarchitectural de-

tails at the smallest granularity possible. We modified the simulator to be able

to capture these “µop” dynamic traces. In Table 4.14, the on-average most fre-

quent (> 5%) µops for both workload sizes are listed. The address-generation

(“agen”) µop is by far the most common and, although it is specific to ARM-

based microarchitectures, implementing an efficient address-generation mech-

anism in the envisioned processor might benefit performance and power con-

4.5. PROFILING OF COMPRESSION ALGORITHMS 153

µop avg(1KB) uop avg(10KB)

agen 30.00% agen 26.88%

ldp 19.89% ldp 20.57%
b 9.94% b 12.18%

cmp 8.53% cmp 9.65%

stp 8.29% add 7.39%

mov 5.90% stp 5.91%

add 5.66% eor 5.77%

Table 4.14: Popular mlzo µop frequencies.

repeat for all consecutive instruction triplets of the program {

let instr1, instr2, instr3 be 3 new consecutive instructions.

if (instr2.src_reg1 == instr1.dest_reg) or

(instr2.src_reg2 == instr1.dest_reg)

then instr2 is dependent on instr1 (pair).

if (instr3.src_reg1 == instr1 dest_reg) or

(instr3.src_reg2 == instr1.dest_reg)

then also instr3 is dependent on instr1 (triplet).

} end

Table 4.15: Instruction-dependency algorithm.

µop pairs / triplets avg(1KB) avg(10KB)

and eor - 14% 17%

eor eor - 8% 5%

and eor and - 7%

eor cmp - - 6%

beq add add - 6%

Table 4.16: Popular mlzo µop pairs and triplets.

sumption significantly. Loads (“ldp”) follow in frequency, justifying the previ-

ously observed large power component of the MM unit and hinting towards a

power-efficient MM design, if at all present. Branch/jump (“b”) and compare

(“cmp”) instructions follow and expectedly have similar occurrence frequen-

cies. They indicate that even small optimizations in the compare-and-branch

mechanism will improve power and performance significantly.

Lastly, the XTREM simulator has been further modified to also collect pairs

154 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

and triplets of data-dependent instructions (or “µops”6) during execution time.

Data-dependent instructions have been defined according to the simple algo-

rithm shown in Table 4.15. In effect, we are scanning for all data-dependent

dynamic instructions of the program and are interested in the exact nature of

those pairs or triplets of dependent instructions present.

6The terms “instruction” and “µop” are used interchangeably in this text to signify the same

concept.

4.6. IMPBENCH: A NOVEL BENCHMARK SUITE FOR IMPLANTS 155

We report Table 4.16 listing popular dynamic instruction pairs/triplets during

mlzo execution for both workload sizes. Instruction pairs or triplets are con-

secutive µops whereby data generated by the first µop is consumed by the

second and/or third µop; i.e. whereby data dependencies occur. The table

reveals that by far the most popular pair is “and-eor” (eor: exclusive or) fol-

lowed by “eor-eor”. We, thus, get a clear indication that data-forwarding in the

logical-operation part of the ALU, interlock-collapsing-ALU techniques [141]

or other (micro)architectural optimizations will significantly benefit the im-

plant processor. Further, the “and-eor-and” triplet falls in the above category

of optimizations. However, the “eor-cmp” and “beq-add-add” combinations

relate also to the previous discussion on optimizing the compare-and-branch

subsystem of the processor. Last but not least, all above observations on µop

frequencies can give clear directions as to which instructions should be ex-

plicitly implemented in hardware and which ones can be afforded to be imple-

mented in software (compiler-side conversion).

4.6 ImpBench: A novel benchmark suite for implants

In Section 4.2 we have detailed some of what we consider the most popu-

lar workloads for implant applications in the years to come. Based on these

elaborations, in Sections 4.4 and 4.5, we have performed profiling studies on

the most suitable encryption (MISTY1 and RC6) and compression (MiniLZO

and Finnish) algorithms, respectively, for running on implantable devices. For

the two remaining workload categories, i.e. data-integrity algorithms and real

implant applications, we have taken a different approach.

For the data-integrity category – effectively belonging to the vast and exhaus-

tively studied field of error-detecting and -correcting codes – we have dimmed

it more realistic in terms of time to adopt the few but available algorithms al-

ready employed in biomedical implants before: Implant designs by Wang L.

et al. [145] and Eggers et al. [37] indicate the use of simple checksum and

CRC-8/CRC-16/CRC-32 codes for protecting information in the implant.

Real implant applications, on the contrary, are largely unavailable in related

literature. We have set out communicating with all authors of the surveyed

papers reported in Chapter 2. We got few (positive) responses out of which

even fewer ones presented usable code. In the end, we have come up with two

application source codes (in C) based on the works of Wouters et al. [152] and

of Cross et al. [25]. The former code is our own software version of a motion-

detection algorithm implemented in the implant by Wouters et al.. The latter

156 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

code is our modified version (for proper execution in XTREM) of the exact

embedded-C application code, released directly by the authors Cross et al. As

will be discussed in the following sections, these application codes eventually

constitute two synthetic and very diverse applications, as was our original goal.

4.6.1 The need for a new benchmark suite

We have already shown that the list of potential implant applications is con-

stantly expanding and the number of software-based implant solutions is in-

creasing. The need for a formal, standardized way of designing and evaluating

future implant architectures becomes apparent and, to this end, a collection of

carefully selected benchmark programs is needed.

While in the areas of general-purpose computing, multimedia and net-

working, to name a few, research has relied on well-established workload-

characterization suites such as the SPEC benchmark suite [128] for optimizing

the underlying hardware, this has not been the case in the area of implant-

processor design. To address this need, we have developed the ImpBench

(Implant-Benchmark) suite. Through ImpBench we set the following goals:

• Identify a common subset of programs representative of the workloads

of existing and emerging implantable systems;

• Propose self-contained programs written in a popular, HLL so as to al-

low for easy porting to new implant cores under evaluation;

• Propose a free benchmark suite to the research community;

• Verify the uniqueness and, thus, usefulness of ImpBench as compared

to other existing benchmark suites.

4.6.2 The ImpBench components

Even though in the previous sections we have detailed the most prominent im-

plant characteristics, such devices have always been and, by nature, will be

serving a wide variety of applications. This makes the task of identifying a

representative workload set a tough one. ImpBench is expected to be a contin-

uously evolving and updated tool; still, we are confident that we have correctly

identified a common subset of programs essential for all current and future

implantable systems.

4.6. IMPBENCH: A NOVEL BENCHMARK SUITE FOR IMPLANTS 157

Compression Encryption Data integrity Real applications

miniLZO [103] MISTY1 [79] checksum [16] motion [152]

Finnish [29] RC6 [79] CRC32 [19] DMU [25]

Table 4.17: ImpBench components.

To draw a clear structure of our proposed benchmark programs, we have

grouped them in four distinct categories of two programs each: lossless data

compression, symmetric-key encryption, data-integrity and synthetic programs

(what we call henceforth real applications). The benchmarks as summarized

in Table 4.17 and are as follows:

i. miniLZO: MiniLZO is a light-weight subset of the LZO library (LZ77-

variant). LZO is a data compression library suitable for data de-

/compression in real-time, i.e. it favors speed over compression ratio.

LZO is written in ANSI C and is designed to be portable across platforms.

MiniLZO implements the LZO1X-1 compressor and both the standard

and safe LZO1X decompressor.

ii. Finnish: This is a C version of the Finnish submission to the Dr. Dobbs

compression contest. It is considered to be one of the fastest DOS com-

pressors and is, in fact, a LZ77-variant, its functionality based on a 2-

character memory window.

iii. MISTY1: MISTY1 is one of the CRYPTREC-recommended 64-bit ci-

phers and is the predecessor of KASUMI, the 3GPP-endorsed encryption

algorithm. MISTY1 is designed for high-speed implementations on hard-

ware as well as software platforms by using only logical operations and

table lookups. MISTY1 is a royalty-free open standard documented in

RFC2994 [104] and is considered secure with full 8 rounds.

iv. RC6: RC6 is a parameterized cipher and has a small code size. RC6

is one of the five finalists that competed in the AES challenge and has

reasonable performance. Further, Slijepcevic et al. [126] selected RC6

as the algorithm of choice for WSNs. RC6-32/20/16 with 20 rounds is

considered secure.

v. checksum: The checksum is an error-detecting code that is mainly used in

network protocols (e.g. IP and TCP header checksum). The checksum is

calculated by adding the bytes of the data, adding the carry bits to the least

158 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

significant bytes and then getting the two’s complement of the results. The

main advantage of the checksum code is that it can be easily implemented

using an adder. The main disadvantage is that it cannot detect some types

of errors (e.g. reordering the data bytes). In the proposed benchmark, a

16-bit checksum code has been selected which is the most common type

used for telecommunications protocols.

vi. CRC32: The Cyclic-Redundancy Check (CRC) is an error-detecting code

that is based on polynomial division. The main advantage of the CRC code

is its simple implementation in hardware, since the polynomial division

can be implemented using a shift register and XOR gates. In the proposed

benchmark, the 32-degree polynomial7 specified in the Ethernet and ATM

Adaptation Layer 5 (AAL-5) protocol standards has been selected (same

as in NetBench).

vii. motion: This is a synthetic benchmark based on the algorithm described

in the work of Wouters et al. [152]. It is a motion-detection algorithm for

the movement of animals. In this algorithm, the degree of activity is actu-

ally monitored rather than the exact value of the amplitude of the activity

signal. That is, the percentage of samples above a set threshold value in a

given monitoring window. In effect, this motion-detection algorithm is a

smart, efficient, data-reduction algorithm.

viii. DMU: This is a synthetic benchmark based on the system described in

the work of Cross et al. [25]. It simulates a drug-delivery & monitoring

unit (DMU). This program does (and can) not simulate all real-time time

aspects of the actual (interrupt-driven) system, such as sensor/actuator-

specific control, low-level functionality, transceiver operation and so on.

Nonetheless, the emphasis here is on the operations performed by the im-

plant core in response to external and internal events (i.e. interrupts). A

realistic model has been built imitating the real system very closely.

As explained in the preceding profiling studies, lossless as opposed to lossy

compression algorithms have been included since information deterioration

is not an option for implant applications. Also, symmetric- as opposed to

asymmetric-encryption algorithms have been included since they character-

ize better the operational profile of implants. The checksum error-detecting

code has been selected for its minimal overhead and effectiveness (it has been

7CRC32 generator polynomial: x 32
+ x

26
+ x

23
+ x

22
+ x

16
+ x

12
+ x

11
+ x

10
+ x

8
+ x

7
+ x

5
+

x
4
+ x

2
+ x + 1.

4.6. IMPBENCH: A NOVEL BENCHMARK SUITE FOR IMPLANTS 159

feature value

ISA 32-bit ARMv5TE-compatible

Pipeline depth 7/8-stage, super-pipelined
Datapath width 32-bit

RF size 16 registers

Issue policy / Instr.window in-order / single-instruction

I-Cache, L1 32KB, direct-mapped (1cc-hit/170cc-miss lat.)

D-Cache, L1 32KB, direct-mapped (1cc-hit/170cc-miss lat.)

TLB 1-entry fully-associative

BTB 2-entry direct-mapped

Branch Predictor 2-bit Bimodal (32-entry RAS)
Write Buffer / Fill Buffer 2-entry / 2-entry

Mem. port no / bus width 1 port / 1 Byte

INT/FP ALUs 1/1

Clock frequency 2 MHz

Implem. tech. 0.18 µm @ 1.5 Volt

Table 4.18: XTREM configuration for ImpBench evaluation.

used in implantable systems time and again) while CRC32 has already been

implemented in various light-weight network protocols including the energy-

scavenging ZigBee. Lastly, we have implemented both real applications (mo-

tion and dmu) after extensively investigating the diverse field of implant ap-

plications and consider them capable of capturing commonly met operations

in contemporary and future implants. Suitable datasets representing biological

content have been used to feed all benchmarks. Particularly for the dmu bench-

mark, actual field data have been used in order to capture the exact behavior

of the simulated implantable system.

By including pairs of different algorithms performing similar functionality in

ImpBench, we attempt to offer some benchmarking diversity able to capture

different aspects of a new system when evaluated against the suite. This diver-

sity will be further illustrated in Section 4.6.4.

4.6.3 Experimental setup

For evaluating the uniqueness and usefulness of ImpBench, we have chosen to

compare it against a number of benchmark programs extracted from MiBench.

MiBench, rather than SPEC, MediaBench or other benchmarks suites (dis-

cussed in Section 3.3), appears to be the most closely pertinent – in terms of

workloads – to the application field we are targeting. In order to perform fair

comparisons between the two suits across various metrics, we had to run both

benchmark collections in a suitable profiling platform.

160 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

Profiling has been based on XTREM. The modified XTREM characteristics

used in this experiment are summarized in Table 4.18. The reasons for the

current XTREM configuration will be explained through the course of the fol-

lowing analysis.

4.6.4 Benchmark characterization

Since the MiBench suite spans a wide range of application fields, we have se-

lected a small but representative subset from the ones most related to our own

field. Selection has also been based on porting issues since not all MiBench

programs could be successfully compiled on our bare-metal (i.e. no OS-

support) simulator. From the “Consumer” category jpeg has been been chosen,

from the “Office” category stringsearch, from the “Network” category blow-

fish, from the “Security” category SHA and from the “Telecomm.” category

ADPCM enc.. For all profiled benchmarks, only the compression part of com-

pression algorithms and the encryption part of cryptographic algorithms have

been considered since they are the most computationally demanding aspects

and/or are the most commonly executed from the point of view of implants.

The goal of this phase is to empirically test whether the ImpBench suite is

quantitatively different from the MiBench suite, each operating on its own

representative datasets (inter-benchmark variation). We also wish to point out

the variety in behavior offered by the two alternative flavors in each one of the

four ImpBench categories (intra-benchmark variation). Most results indicate

relative values, that is, ratios.

4.6.5 Performance, caches and branch prediction

The first characteristic we explore is benchmark performance measured as the

Instructions Per Cycle (IPC) of each benchmark. Since IPC depends also on

the cache performance and the efficiency of the branch-prediction unit, we

include such results here, as well. Accordingly, in Figure 4.14, overall average

IPC, L1 I-cache and D-cache hit rates and branch-prediction rates are depicted.

As can be seen from Figure 4.14a, ImpBench programs achieve on average a

lower IPC (0.047) than the MiBench ones (0.063); yet, both IPCs are expect-

edly low. To elaborate, in order to closely model real implantable processors,

the XTREM simulator has been modified to such a degree that all tasks running

on it are effectively “choked” by the limited resources left on it. That is, the in-

trinsic performance of many tasks is capped by the maximum performance the

4.6. IMPBENCH: A NOVEL BENCHMARK SUITE FOR IMPLANTS 161

0,
04

7

0,
53

7

0,
99

6

0,
21

1

0,
06

3

0,
57

0

0,
99

3

0,
19

3

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

avg IPC BPRED (BIMOD) hit rate L1.I$ hit rate L1. D$ hit rate

mlzo
fin
misty1
rc6
checksum
crc32
motion
dmu
avg ImpBench

cjpeg
stringsearch
blowfish
sha
rawcaudio
avg MiBench

(%)

(a) Per-benchmark, average values.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench

avg IPC BPRED (BIMOD) hit rate L1.I$ hit rate L1.D$ hit rate

1st Quartile

Min

Median

Max

3rd Quartile

(%)

(b) Box-and-whiskers plot.

Figure 4.14: IPCs, I-/D-cache hit rates and branch-prediction rates

simulated processor can deliver. This is reflected in the limited IPCs observed

for both benchmark suites. However, Figure 4.14b captures a more prominent

difference between the two suits. Although both suite distributions are skewed

closer to their minimum values, ImpBench programs display a wider disper-

sion as can be seen by the box sizes formed by the 1st and 3rd quartile (i.e. the

middle 50% of the values).

In terms of intra-benchmark variation, MiBench’s rawcaudio (ADPCM encod-

ing) and sha perform apparently better than most of the ImpBench programs

while stringsearch is scoring the lowest in MiBench and even low for many

ImpBench programs. The two compression algorithms of ImpBench, although

varied, display by far the poorest performance across all benchmarks, seem-

ingly impacted by the limited D-cache size, as will be discussed later. For

the encryption algorithms, misty1 appears to perform better than rc6 while,

for the data-integrity algorithms, checksum’s simpler structure clearly outper-

forms crc32. Last, motion, of the real applications, although simpler, performs

162 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

significantly worse than dmu contrary to which motion displays a higher ratio

of I/O- over control- or data-intensive operations. In effect, it reads successive

data from a file (representing motion-sensor readouts), compares them against

a preset motion threshold value and writes an activity factor to an output file

(representing a data-logging memory).

As shown in the section on XTREM configuration, above, a Bimodal branch-

prediction scheme has been used with a mere 2-entry table, the reasons being:

a) to reflect the constrained nature of an implant processor and, b) to isolate the

dynamic behavior of the various benchmarks. Referring back to Figure 4.14,

we conclude that overall branch-prediction (BPRED) hit rates are similar for

both suites. However, contrary to the observed IPCs, the MiBench programs

display a significantly wider dispersion of BPRED values than ImpBench. Fur-

ther, the MiBench values are strongly skewed towards the maximum value

whereas ImpBench values present a distribution closer to the Gaussian. In ef-

fect, ImpBench programs present a slightly less predictable but overall more

consistent dynamic behavior among them and it is interesting to note that the

range (i.e. max-min) of ImpBench BPRED values (0.333) is quite smaller

than that of MiBench ones (0.466).

Besides, fin achieves a worse BPRED rate than mlzo and the worst overall

for ImpBench programs but, still,x3 better than the worst MiBench program

(sha). In terms of intra-variation, encryption and data-integrity algorithms also

vary largely in behavior while the real applications display similar profiles.

The selected I-cache configuration and the intrinsic behavior of the pro-

grams has yielded essentially miss-free cache operation, as can be seen in

Figure 4.14a. This behavior is observed in the MiBench programs as well,

featuring a marginally smaller I-cache hit rate. Figure 4.14b indicates that,

in this case, value dispersion is extremely low with a slight skew towards the

maximum value, for both suites. Combined, the two figures tell us that in terms

of I-cache behavior, there is no significant difference between the two suites.

The D-cache, on the other hand exhibits a different hit-rate behavior. As seen

in Figure 4.14a, ImpBench programs feature an overall 0.211 miss rate, quite

higher than its 0.193 MiBench counterpart, but both much lower than the I-

cache hit rates witnessed previously. Figure 4.14b further reveals that the dis-

persion of values is moderate for both suites, with ImpBench being marginally

larger. Yet, its distribution is again closer to the Gaussian than that of MiBench

whose values are clearly skewed towards the minimum. A last observation to

make at this point is that the lower hit rates of the D-cache, as compared to the

I-cache, reveal a strong data-intensive nature of the biomedical applications.

4.6. IMPBENCH: A NOVEL BENCHMARK SUITE FOR IMPLANTS 163

4
7

.1
7

6
.5

4
4

2
3

.9
3

2
.6

4
7

8
.2

1
7

.9
4

1

7
0

0
.1

7
5

9
.5

8
1

.4
2

3

1
.2

0
4

.4
5

2

1
3

,9
4

1
0

,9
0

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

m
lz
o fin

m
is

ty
1

rc
6

ch
ec

ks
um

cr
c3

2

m
otio

n
dm

u

av
g Im

pB
en

ch

cj
peg

st
rin

gse
ar

ch

blo
w
fis

h
sh

a

ra
w
ca

udio

av
g M

iB
en

ch

cc (#) instr (#) uops (#) code size (KB)

(a) Per-benchmark, average values.

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench

cc (#) uops (#) instr (#) code size (KB)

1st Quartile

Min

Median

Max

3rd Quartile

(b) Box-and-whiskers plot.

Figure 4.15: Static code size (in KB) and dynamic code size (instruction and

clock-cycle count).

4.6.5.1 Dynamic & static benchmark size

We, next, delve into the differences between the two benchmark suites in terms

of static and dynamic program size. From Figure 4.15 we can readily observe

that, in an overall, ImpBench programs feature a moderately smaller static size,

about 10.9 KB compared to the 13.94 KB of the MiBench programs but their

sizes are somewhat more dispersed. cjpeg displays the overall largest static

size while crc32 the overall smallest one. In terms of intra-variation, fin is

smaller than mlzo, rc6 is smaller than misty1 while checksum is slightly larger

than crc32. dmu is much larger than motion which is to be expected since the

former implements a much larger and more complex application. We can also

notice that across the compression and encryption categories, the algorithms

which perform better, do so at an increased code size.

In terms of dynamic behavior, which depends on the input datasets used as well

as on the intrinsic structure of the various benchmarks, we can observe that

ImpBench programs exhibit, on average, a clock-cycle count about half that of

164 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

the MiBench ones but a much smaller dispersion of values. This, once more,

reveals the more diverse nature of the biomedical applications selected. We

have also plotted the total number of executed instructions and µops. XTREM,

which is based on SimpleScalar, implements ARM instructions through µops.

We included µop statistics at this point and in the following discussion so

as to better capture the workings of the underlying architecture. Overall,

ImpBench programs display shorter execution times (about ×0.5) but much

shorter instruction/µop counts (about ×0.1) than the MiBench ones. This

agrees with the observations we made previously regarding the IPC and at-

tests to the more control- and I/O-intensive nature of the biomedical programs

compared to general multimedia programs. Last, it is interesting to observe

that, although fin and crc32 have smaller static code sizes than their respective

counterparts mlzo and checksum, they have much larger dynamic code sizes.

Given that all compression, encryption and data-integrity algorithms operate

on the same input dataset (a 10-KB binary file of ECG readouts), these ob-

served variations between static and dynamic program sizes directly expose

diverse intrinsic properties of the various algorithms.

4.6.5.2 Instruction distribution

Having discussed overall instruction counts, we elaborate further on the nature

of the executed instructions per benchmark suite, i.e. the instruction mix. For

the same reason as before, we choose to profile µops rather than instructions.

We have organized µops into five groups: data move (load, store, move), arith-

metic operations (INT and FP), comparison operations, logical operations and

branches (conditional and unconditional). Only the dmu benchmark includes

floating-point operations and even that does not stress them. We wish to adhere

to the initial observation that the majority of implant applications can do with-

out or with few floating-point calculations. In effect, FP arithmetic operations

are scarce or absent and have, thus, been merged with the INT operations.

Overall µop mixes are shown in Figure 4.16. We can readily observe that rates

of ld/st/mov, arith, cmp and logical operations all differ significantly between

the ImpBench and MiBench programs. Overall, we notice less ld/st/mov and

cmp µops for ImpBench. Yet, there are more logical and br/j µops further

supporting the argument that biomedical applications exhibit a more dynamic

behavior than average multimedia ones. The number of arith µops is simi-

lar for both suites. We also observe that all µop categories display a larger

range (max − min) of values for ImpBench compared to MiBench. Also, the

ImpBench boxplots reveal more dispersed ld/st/mov and logical µop ratios.

4.6. IMPBENCH: A NOVEL BENCHMARK SUITE FOR IMPLANTS 165

0%

20%

40%

60%

80%

100%

m
lz
o fin

m
is

ty
1

rc
6

ch
ec

ks
um

cr
c3

2

m
otio

n
dm

u

av
g Im

pB
en

ch

cj
peg

st
rin

gse
ar

ch

blo
w
fis

h
sh

a

ra
w
ca

udio

av
g M

iB
en

ch

load/store/move arithmetic compare logical branch/jump

(a) Per-benchmark, average values.

0

10

20

30

40

50

60

70

80

ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench

load/store/move arithmetic compare logical branch/jump

1st Quartile
Min

Median
Max
3rd Quartile

(%)

(b) Box-and-whiskers plot.

Figure 4.16: Relative frequencies for load/store/move, arithmetic (int/fp),

compare, logic and branch/jump instructions.

In terms of intra-variation, mlzo differs largely from fin in all µop ratios, misty1

differs notably from rc6 in arith and logical µop ratios and, with the addition

of cmp ratios, so does crc32 compared with checksum. All in all, the variation

among the various ImpBench programs is visible. A last observation to make

at this point is that logical µops are clearly dominating the µop mix which is

partly explained by the known tendency of the utilized ARM cross-gcc to favor

the generation of logical instructions.

As previously mentioned in the analysis of compression algorithms, the

XTREM simulator has been modified to collect pairs and triplets of data-

dependent instructions during execution time. In Fig.4.17 we have plotted

dependent-instruction combinations for all profiled benchmarks. We have lim-

ited the plot to only those combinations appearing with a frequency of 4.5%

or higher during dynamic-code execution. With this limitation, Figure 4.17

has been plotted. It reveals that ImpBench and MiBench both favor (heavily

depending on the compiler used) predominantly the “and-eor” and “eor-eor”

166 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

0%

5%

10%

15%

20%

25%

and

eor

eor

eor

eor

eor

and

eor

and

eor

eor

eor

eor

eor

and

eor

and

eor

and

eor

add

orr

mvn

add

mvn

add

eor

eor

and

eor

eor

eor

and

eor

cmp

sub

and

eor

eor

eor

cmp

sub

and

eor

and

eor

add

orr

mvn

add

mvn

add

eor

eor

and

eor

and

eor

eor

eor

and

eor

eor

eor

and

eor

and

eor

eor

eor

mlzo fin misty1 rc6 checksum crc32 motion dmu avg ImpBench cjpeg string

search

sha blow

fish

rawc

audio

avg

MiBench

Figure 4.17: Relative frequencies of data-dependent, dynamic-instruction

combinations.

pairs with high occurrence frequencies (“eor”: exclusive-or operation). Imp-

Bench once more illustrates a higher diversity and introduces more frequent in-

struction combinations. Namely, the pairs “cmp-sub” (due to dmu) and “mvn-

add” (due to checksum) as well as the triplets ‘and-eor-add” and “orr-mvn-add”

(both due to checksum). As desired, it also captures different instruction de-

pendencies within the compression, the encryption, the data-integrity and the

real-programs categories.

When popular instruction combinations (along with the previously discussed

single-instruction frequencies) have been identified, specific microarchitec-

tural or architectural optimizations can be made to achieve more efficient ma-

chines. For instance, in a processor design seriously limited by power and

area constraints, to favor the execution of “eor-eor” or “and-eor” pairs, only

data forwarding in the logical-operations circuitry of the ALU may be allowed

to be incorporated. Other techniques, like the known interlock-collapsing

ALUs [141], might also be considered.

4.6.5.3 Power consumption

A final metric to be evaluated against ImpBench and MiBench is average

power consumption of the executed programs. This is highly relevant to

embedded systems and particularly to energy-scavenging microelectronic im-

plants. In Figure 4.18 we have plotted the per-component and overall average

power consumption of our simulated processor. Overall, the average power

consumption of MiBench is about ×1.2 times that of ImpBench. This can be

attributed partly to the fact that most ImpBench programs have been carefully

picked for low-power applications [134, 135]. Yet, it also indicates that they

can provide meaningful means of workload characterization for implant pro-

4.6. IMPBENCH: A NOVEL BENCHMARK SUITE FOR IMPLANTS 167

0

20

40

60

80

100

120

m
lz
o fin

m
is

ty
1

rc
6

ch
ec

ks
um

cr
c3

2

m
otio

n
dm

u

Im
pB

en
ch

 a
vg

cj
peg

st
rin

gse
ar

ch sh
a

blo
w
fis

h

ra
w
ca

udio

M
iB

en
ch

av
g

OTHER
D$
I$
ALU
CLK
MM

(mW)

(a) Per-benchmark, average values.

0,01

0,1

1

10

100

ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench

MM CLK ALU I$ D$

1st Quartile
Min
Median
Max
3rd Quartile

(mW)

(b) Box-and-whiskers plot.

Figure 4.18: Per-component and overall average power consumption.

cessors since they implicitly respect tight power budgets ever present in the

considered application field.

Further analysis of the results indicates the most power-hungry unit to be the

memory manager (MM) for ImpBench and MiBench programs alike, followed

by the CLK, ALU, I-cache and D-cache structures. MiBench manages to stress

the power consumption of the MM more than ImpBench, judging by its higher

percentage in the plot. The same is true for the ALU and I-cache components.

However, the ImpBench programs display, in all components except for the

ALU, more data-dispersed power profiles. This finding further enforces the

initial observation that biomedical programs indeed are more diverse in char-

acteristics than general multimedia ones.

In terms of intra-benchmark variation, we can clearly see that the compression

algorithms display by far the smallest power consumption across both suites.

Last, with the exception of the two data-integrity algorithms, the two members

of all other ImpBench categories vary largely between them in terms of power,

168 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

i.e. one features an average power consumption half or double that of the other.

4.6.6 Summary

In view of more structured and educated implant processors in the years to

come, we have carefully put together ImpBench, a collection of benchmark

programs and assorted input datasets, able to capture the intrinsic of new ar-

chitectures under evaluation. In the above, we have shown that ImpBench

displays considerably different characteristics than the most related MiBench.

IPCs, data-cache hit rates, branch-prediction hit rates, instruction frequencies

and power consumption show increased or sufficient variation compared to

MiBench, to justify the presence of a new benchmark suite.

Besides, ImpBench is a dynamic construct and, in the future, more benchmarks

will be added, subject to our ongoing research. Among others, we anticipate

simple DSP applications as potential candidates as well as more “real applica-

tions” like the ones we already included.

4.7 A SiMS case study

With the simulator and all benchmarks finally in place, we are now able to put

together a first, realistic application for our envisioned SiMS processor. As the

closing part of this chapter, we present, next, the case study a typical implant

application the functionality of which is implemented as executed software

in the SiMS processor. Through the use of XTREM, we evaluate different

application aspects using an array of metrics. With this case study, we chiefly

provide a first proof-of-concept application of the implant processor and, in so

doing, exhibit its potential for future implant design.

4.7.1 Implant characteristics

In order to study and simulate a representative implant application, commonly

met characteristics of implantable systems need to be identified. Our prior

work, has revealed a number of facts which we repeat here for convenience.

First, biomedical implants perform periodic, in-vivo measurements of physio-

logical data through appropriate sensors. The collected data need to be stored

inside the implant for later telemetry to an external monitoring/logging de-

vice. Second, data must be transmitted securely as well as reliably; information

4.7. A SIMS CASE STUDY 169

Figure 4.19: DMU device lateral photograph (Courtesy: [25]).

eavesdropping or loss thereof can not be tolerated. Third, open- or closed-loop

control of (in-vivo) physiological parameters may be effectuated through ap-

propriate actuators, e.g. the “artificial pancreas” application whereby insulin is

released to the blood based on periodic, in-vivo, glucose-level measurements.

Fourth, biological or other data manipulation in implants can in most cases be

coped with through integer (INT) arithmetic. Expensive, floating-point (FP)

operations can be avoided by smart manipulation of the data or postponed un-

til the time when data is telemetered to an external logging station with infinite

(in our context) computational resources. Last, typical data-memory sizes in-

side the implants range from 1 KB to 10 KB . Program memories are equally

restricted, with sizes in the order of magnitude of 10 KB .

4.7.2 Crafting a realistic application

Rather than creating an artificial and, thus, potentially biased application based

on synthetic application descriptions, we chose to use a real-world scenario.

As already seen in the description of the ImpBench components, Cross et al.

[25] have developed intravaginal drug-delivery & monitoring units (DMUs) for

regulating the oestrus cycle of dairy cows. The functionality of each DMU is

implemented as embedded-C code running in a M16C, a 16-bit microcontroller

(µC) from Mitsubishi. This µC is the central component in a system consisting

of a transceiver module, temperature, pressure, motion and other sensors as

well as a current-driven gas cell (i.e. an actuator) which is used for controlled

drug release based on electrolytic-gas production (see a system photograph in

Figure 4.19). According to the authors, the DMUs have been designed: i) to

deliver an arbitrary and complex variable-rate profile of a viscous vehicle, ii)

170 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

to be controlled externally from the animal, and iii) to be monitored externally

and provide immediate or logged data over a wireless link.

We have extracted the embedded-C code and have adapted it from the im-

plantable system. The current program version does (and can) not simulate

all real-time aspects of the actual (interrupt-driven) system, such as low-level

functionality (e.g. sensor/actuator calibrations), transceiver operation and so

on. Nonetheless, the emphasis here is on the computations performed by the

implant core in response to external and internal events (i.e. interrupts). Hav-

ing contacted the DMU designers directly, we have acquired real data col-

lected from the field (e.g. temperature, pressure and current output). They

have been used in our source code to drive the (simulated) run-time behavior

of the actual DMU system as closely as possible.

This particular application has been selected since it incorporates all aspects

we consider common and crucial in current and future implants. That is, real-

time, closed-loop control of actuating elements based on sensory readouts,

device self-calibration and self-check operations (e.g. battery-level check, ad-

herence to the desired drug-delivery profile etc.), to name a few. At the same

time, the application imposes low- to moderate-speed requirements on the de-

vice which, for our targeted field of ultra-low-power implants, is a desired

feature. All in all, the selected application is considered highly representative

for our envisioned biomedical processor.

In concordance with our discussion in Section 4.2 on future implant work-

loads, the basic DMU functionality has been enhanced with data compression,

encryption and data-integrity runs. The functionality of our overall case study

is illustrated as a block diagram in Fig.4.20. Over a period of approx. 10

(simulated) hours, the implant periodically (i.e. every 6 min) collects intrav-

aginal temperature- and pressure-sensor readings and logs them. Based on

those readings, it switches the gas cell on and off. This gas cell is responsi-

ble for the rate of drug delivery into the animal intravaginal space, following

a user-defined drug-delivery profile. Besides, every 40 minutes, the implant

performs some housekeeping tasks like safety checks and recalibrations of the

sensors and actuators.

At the end of the 10 simulated hours (pure DMU operation is finished), logged

data is compressed and remain stored in native memory or transmitted to an ex-

ternal host. Transmitted data are first compressed, then encrypted and, finally,

augmented with data-integrity check bits. In order to comply with the previ-

ously described specifications, data logs of maximally 10 KB each have been

generated. All above tasks are performed in software by the implant processor.

4.7. A SIMS CASE STUDY 171

DMU

application

compression

encryption

data

integrity

logged raw

data (10KB)

T

P
I
drug

compressed

data (2.2KB)

encrypted

data (2.3KB)

data with

CRC32(2.3KB)
TxD

10011100111001110011

10011

XXXX

CXXXX

XXXX

XXXX

storage

00:00:00

09:55:00

09:55:05

09:55:08

09:55:10

HH:MM:SS

Figure 4.20: Block diagram of simulated implant application and data-

payload sizes.

feature value

ISA 32-bit ARMv5TE-compatible
Pipel. depth / Datap. width 7/8-stage, super-pipelined / 32-bit

RF size 16 registers

Issue policy / Instr.window in-order / single-instruction

I-Cache, L1 64KB, 64-way assoc. (1cc hit/170cc miss)

D-Cache, L1 32KB, 2-way assoc. (1cc hit/170cc miss)

TLB / BTB 1-entry fully-assoc.

Branch Predictor 2-bit Bimodal (32-entry RAS)

Write Buffer / Fill Buffer 2-entry / 2-entry
Mem. port no / bus width 1 port / 1 Byte

INT/FP ALUs 1/1

Clock freq. / Implem. tech. 2 MHz / 0.18 µm @ 1.5 Volt

Table 4.19: XTREM configuration for exploring a SiMS-processor case study.

Based on our previous work, suitable algorithms in terms of performance,

power, energy and size have been used for the compression (miniLZO [103]),

encryption (MISTY1 [79]) and data-integrity (CRC32 [19]) operations.

172 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

0,00

0,20

0,40

0,60

0,80

1,00

IPC (avg) L1.I$ hit rate L1.D$ hit rate BPRED hit

rate

miniLZO

MISTY1

CRC32

avg

Figure 4.21: Average IPCs, I-/D-cache hit rates and branch-prediction rates.

4.7.3 Experimental setup

Main XTREM characteristics for this case study are summarized in Table 4.19.

Various XTREM architectural parameters have been restricted or disabled to

better reflect the highly constrained implant processor (also included in the

table above). Concisely, the BTB has been reduced to a 2-entry, direct-mapped

structure, the WB and the FB have been reduced also to 2-entry structures, the

MEM width has been reduced to 1 Byte, both L2 caches have been disabled,

both L1 caches have been configured based on concurrent – at the time of

writing – microarchitecture optimization studies (to be discussed in the next

chapter) while the number of INT/FP ALUs has been reduced to 1.

4.7.4 Profiling analysis

In order to gain insight on the behavior and requirements of the tasks exe-

cuted inside the implant, various metrics have been monitored and concisely

presented hereafter. As we can see from Figure 4.20, tasks are executed in a

sequential fashion. Execution times are sufficiently small for this real-time

application as is the case with most implantable systems. For a 10 − KB data

payload, miniLZO achieves a high compression ratio (78%) in about 5.1 sec .

Encryption adds a small overhead in size to the compressed data due to quanti-

zation since MISTY1 operates on 8− Byte quantities. It achieves symmetric-

key encryption of the compressed data in about 3.2 sec . Last, CRC32 data

integrity adds a size overhead of 4 Bytes to the payload by appending an

unsigned-long-integer checksum value and costs an extra 1 sec in time.

Overall, a (simulated) application execution time of 9.3 sec is required to per-

form all data-manipulation tasks after the 10− KB log file has been generated;

that is, an extra processing time of 9.3 sec for every 10 hours of logging ac-

tivity. Even though we are using a highly-resource constrained processor, the

system response time is very low indicating a processor performance which

4.7. A SIMS CASE STUDY 173

0

20

40

60

80

100

miniLZO MISTY1 CRC32 avg

OTHER

ALU

CLK

MM

(mW)

Figure 4.22: Per-component and overall average power consumption.

is more than adequate for the subclass of moderate-throughput applications

we are targeting. To illustrate, in Figure 4.21 Instructions Per Cycle (IPC),

cache- and branch-behavior are depicted. The exceptionally low D-cache

hits reveal strong data-locality characteristics of the biological data and hint

on clear performance gains should larger D-cache sizes be allowed. Con-

versely, the high I-cache hits indicate that relatively small I-cache sizes8 are

sufficient due to the highly predictable program behavior of the considered

tasks. Given that we have used a relatively simple branch-prediction scheme

(2-bit Bimodal), BPRED rates are rather high with miniLZO scoring excep-

tionally high. Its IPC, though, remains the smallest due to its low D-cache hit

rates. Besides, IPC is low for all programs but, as discussed previously in the

execution times, it is more than sufficient for covering the real-time-application

demands of the implant.

In fact, the low IPCs - as long as they cover the demands of the application

- are a desired feature since they imply limited power demands on the part

of the processor. This is a much sought attribute in power-starved systems

as implants are. To illustrate this, overall and per-component average power-

consumption figures for all three tasks are depicted in Figure 4.22. We can see

that miniLZO consumes remarkably low power (about 20 mW) but, in general,

all tasks consume less than 100 mW . The low power profile of miniLZO agrees

with the lower IPC it exhibits, as previously predicted. We can further deduce

from the figure that the main culprit of power consumption in the processor

is the non-power-scalable memory-manager unit (MM), followed by the clock

network (CLK). This indicates that the selected 2−MHz operating frequency is

high enough for the tasks to execute in time and, at the same time, low enough

to impact power consumption minimally. Besides, the known fact that MM

power (in XTREM) does not scale properly with frequency does not forbid us

from observing that in implantable systems as the one modeled here, the MM is

8See Section 5.1 in the next chapter for the cache scaling factor assumed.

174 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

0

50

100

150

200

250

300

miniLZO MISTY1 CRC32 avg

OTHER

ALU

CLK

MM

(mJ)

Figure 4.23: Per-component and overall total energy expenditure.

0%

20%

40%

60%

80%

100%

miniLZO MISTY1 CRC32 avg

ld/st mov arith cmp logic br/j

Figure 4.24: Relative frequencies for load/store, move, arithmetic, compare,

logical and branch/jump µop.

under heavy use and should be carefully designed for low power consumption.

Except for average power consumption, it is interesting also to see what the

overall energy budgets of the various tasks are; that is, by how much we must

deplete the implant battery to perform each task. In Figure 4.23 we can see that

the encryption program, MISTY1, consumes a disproportionally large amount

of energy compared to the other tasks. This indicates that we should carefully

select whether to encrypt the biological data or not prior to transmission, de-

pending on the application scenario and the sensitivity of the data itself. If

privacy is not required or is guaranteed through other means, e.g. transmission

in a trusted environment, considerable battery reserves can be saved by dis-

abling encryption. Alternatively, a compromise between level of provided se-

curity and consumed energy could be investigated. While this is not (currently)

supported in MISTY1, future versions of it or other low-power encryption al-

gorithms might be considered that are able to achieve such a trade-off. Overall,

Figure 4.23 reveals that the energy costs of the various tasks are not necessarily

identical to their power profiles and is essential in deciding which tasks can be

performed at a given point in time, based on available battery-capacity levels.

The final topic of our discussion relates to the instruction mix of the various

tasks. We, again, included µop (rather than instruction) statistics at this point

4.7. A SIMS CASE STUDY 175

0

5

10

15

20

and-

eor

eor-

cmp

and-

eor

eor-

eor

eor-

eor

and-

eor

and-

eor

eor-

eor

eor-

cmp

miniLZO MISTY1 CRC32 avg

(%)

Figure 4.25: Relative frequencies of data-dependent, dynamic-µop combina-

tions.

and in the following discussion so as to better capture the workings of the un-

derlying architecture. Overall instruction mixes are shown in Figure 4.24. All

programs heavily utilize logical µops; MISTY1 expectedly scores the highest

which is typical of encryption algorithms. In terms of arithmetic operations,

it should be stressed that all tasks (except DMU) are integer programs and

miniLZO displays the highest concentration of arithmetic and compare opera-

tions. It also includes the largest ratio of branch or jump µops. MISTY1 and

CRC32, on the contrary, exhibit larger ratios of data move µops.

In Figure 4.25, we further collect (dynamic) data-dependent µop pairs and

triplets. µop pairs or triplets are consecutive µops whereby data generated by

the first µop is consumed by the second and/or third µop; i.e. whereby data

dependencies occur. We have limited the plot to only those combinations ap-

pearing with a frequency of 4% or more during dynamic-code execution. With

this constraint we see that, overall, dependent “and-eor” (and: logical and)

and “eor-eor” (eor: logical exclusive-or) pairs are by far the most frequent

ones, followed by “eor-cmp” (cmp: compare) pairs. This observation reveals

a high popularity of dependent logical-µop pairs. We, thus, get a clear indica-

tion that data-forwarding in the logical-operation part of the ALU, interlock-

collapsing-ALU techniques [141] or other (micro)architectural optimizations

will significantly benefit the implant processor. Further, the “eor-cmp” pair,

combined with the previously seen µop mixes, gives directions on optimizing

the compare-and-branch subsystem of the processor. Last but not least, all

above observations on µop frequencies can give clear directions as to which

instructions should be explicitly implemented in hardware and which ones can

be afforded to be implemented in software (compiler-side conversion).

176 CHAPTER 4. SIMS-PROCESSOR SIMULATION ENVIRONMENT

4.7.5 Discussion

To sum up our findings, based on the selected biomedical application, we can

support the viability of a highly resource-constrained, novel processor for im-

plants. Featuring a low as 2 − MHz clock frequency and small I/D-caches, it

will be able to meet its real-time goals for a broad range of application sce-

narios similar to or simpler than the one described here. Furthermore, it will

feature a low average power profile of less than 100 mW , and - excluding data

encryption - a similarly low energy profile of less than 300 J (overall) per

executed task.

It should be noted, however, that at the area and power penalty of a slightly

increased D-cache size, program execution times will drop significantly as the

simulations indicate. This will, in turn, lead to an even lower energy profile.

The next chapter will provide a more extensive analysis of the energy benefits

incurred with a bigger D-cache. Besides, reported power/energy figures are

likely to be higher than actual ones since the XTREM simulator was not aimed

at the ULP application spectrum. What is more, compression and encryption

algorithms designed for or tuned to implantable systems, should assist further

in this direction.

Last, explicit microarchitectural optimizations of the envisioned processor will

drive power and energy figures further down. Hardware provisions for favor-

able execution of logical and, secondarily, arithmetic/compare µops as well as

of specific logical/compare µop pairs must be incorporated in the design.

4.8 Summary

This chapter has laid the seminal work for the design of the SiMS processor.

A simulator has been selected and its suitability for the purpose intended has

been demonstrated, albeit in the presence of bugs. Through use of this sim-

ulator, a large-scale exploration and analysis of suitable workloads for future

implant processors has been conducted. This analysis, apart from highlighting

optimal candidates across various metrics such as performance, power, energy

and memory footprint, has also offered ample hints towards the optimal design

of the SiMS processor. To the best of our knowledge, this is the first such

analysis and has led to the creation of ImpBench, a novel benchmark suite that

aspires to be a reference platform for designing and comparing implant proces-

sors. Last, in this chapter we have presented a case study of the first, complete

and realistic application to be run on the envisioned SiMS processor.

4.8. SUMMARY 177

Note. The content of this chapter is partly based on collaborative work with

D. Zhu, ir., and C. Kachris, dr., and has resulted in the following papers:

C. Strydis, G. N. Gaydadjiev, Profiling of Lossless-Compression Algorithms

for a Novel Biomedical-Implant Architecture, 6th IEEE/ACM/IFIP inter-

national conference on Hardware/Software codesign and system synthesis

(CODES’08), pp. 109-114, Atlanta, Georgia, USA, October 2008.

C. Strydis, D. Zhu, G. N. Gaydadjiev, Profiling of Symmetric-Encryption Al-

gorithms for a Novel Biomedical-Implant Architecture, ACM International

Conference on Computing Frontiers (CF’08), pp. 231-240, Ischia, Italy, May

2008.

C. Strydis, C. Kachris, G. N. Gaydadjiev, ImpBench: A Novel Benchmark

Suite for Biomedical, Microelectronic Implants, IEEE International Confer-

ence on Embedded Computer Systems: Architectures, Modeling, and Simula-

tion (IC-SAMOS VIII), pp. 86-95, Samos, Greece, July 2008.

C. Strydis, G. N. Gaydadjiev, The Case for a Generic Implant Processor,

30th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC’08), pp. 3186-3191, Vancouver, Canada, August

2008.

5
SiMS-processor microarchitecture

evaluation

E
XTENSIVE work has been done, as detailed in the previous chapter,

in identifying and profiling common workloads to be executed on the

targeted implant architecture. Algorithms for lossless data compres-

sion, symmetric-key encryption and data integrity as well as representative

real-world applications have been evaluated and suitable candidates have been

isolated. Moreover, a carefully selected benchmark suite for microelectronic

implants (ImpBench) has been proposed, based on the profiled applications, to

guide and assist future implant design. This benchmark suite has been shown

to offer diverse program behaviors and, thus, to be able to capture corners of

our design space.

In this chapter, we rely on our established simulation environment to offer

an in-depth exploratory study on suitable cache organizations and branch-

prediction policies for our envisioned SiMS processor. Standard, first-order,

optimization goals performance, power consumption and energy expenditure,

that we have employed so far, are in this chapter expanded by a third one, area

utilization.

5.1 Evaluation of cache organizations

We profile various instruction- and data-cache organization alternatives for the

SiMS processor against metrics of performance, power, energy and area. We,

then, select the ones with the best characteristics for the targeted application

domain. We, thus, offer insights on the design and implementation of the

cache subsystem of the targeted processor. Concisely, the contributions of this

evaluation are as follows:

179

180 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

• With respect to a given collection of typical and representative biomed-

ical workloads, to specify optimal I- and D-cache geometries under per-

formance, power, energy and area constraints;

• To offer original, quantitative data on the behavior and specifications of

I- and D-caches for current and future implant processors; and

• To propose a sound methodology and toolset for selecting optimal I- and

D-cache geometries for different biomedical (or other) workloads.

A problem with related evaluation works is that caches are studied in isola-

tion from the rest of the system and, thus, no overall performance behavior is

attached to the various power figures, while information about the interplay

between different cache configurations and other components of a processor

core cannot be acquired. The work presented here is original in that it targets

a different class of low-power devices with particular idiosyncrasies. To the

best of our knowledge, no similar effort has been reported so far in explic-

itly studying cache structures for an implant processor. Furthermore, we have

considered aspects of performance and power but also energy and area in our

study, to drive our selection process.

5.1.1 Experimental setup

In order to correctly set up our experiments as well as to select suitable cache

geometries, to be discussed in the following section, we first elaborate on the

particular idiosyncrasies of microelectronic implants. Such implants are highly

resource-constrained devices. The (re)implantation frequency for battery re-

placement - a costly and risky undertaking - is directly related to the opera-

tional life of a device. In order to achieve long in-vivo operation times, we are

aiming at a tight power budget (µW order of magnitude).

An ultra-small form factor is also required for such devices considering the

space available for implantation inside the body. This means that available

processor area is also limited. Besides there are further aspects benefitting

from low transistor counts (but out of the scope of this work) such as higher

device yield, increased testability and higher coverage for fault-tolerant design.

There has been shown to exist in Chapter 2 and we are targeting a signifi-

cant category of biomedical applications displaying moderate performance

requirements, e.g. a feedback loop periodically regulating the functionality of

bioactuators based on readouts from biosensors. Even so, under tight power

5.1. EVALUATION OF CACHE ORGANIZATIONS 181

Benchmark name size (KB)

Compression miniLZO [103] 16.3

Finnish [29] 10.4
Encryption MISTY1 [79] 18.8

RC6 [79] 11.4

Data integrity checksum [16] 9.4

CRC32 [19] 9.3

Real applications motion [152] 9.44

DMU [25] 19.5

Table 5.1: ImpBench components and (static) binary size.

and area budgets, the implant still has to complete its real-time (repetitive)

duties within specific time margins. To do so, it must maintain a minimal

instruction rate under the worst-case scenario.

5.1.1.1 Input datasets

For the work presented in this cache-evaluation study, we have used the 10−KB

ECG dataset representative of all workloads in our disposal (see Table 4.2).

Our implant survey has revealed that typical memory sizes inside the implants

range from 1 KB to 10 KB ; thus, the use of 10− KB ECG data.

5.1.1.2 Benchmarks

All eight benchmarks of the ImpBench suite have been used, namely the loss-

less data compression algorithms, the symmetric-key encryption algorithms,

the data-integrity algorithms and the real applications. The benchmarks are

reported once more in Table 5.1 for convenience; binary sizes are also included

to give an idea about their code complexity.

5.1.1.3 Simulation testbed

Our cache evaluation study has been based on the XTREM simulator. As pre-

viously mentioned in Section 4.1, XTREM allows monitoring of 14 different

functional units of the Intel XScale core: Instruction Decoder (DEC), Branch-

Target Buffer (BTB), Fill Buffer (FB), Write Buffer (WB), Pend Buffer (PB),

Register File (REG), Instruction Cache (I$), Data Cache (D$), Arithmetic-

Logic Unit (ALU), Shift Unit (SHF), Multiplier Accumulator (MAC), Internal

Memory Bus (MEM), Memory Manager (MM) and Clock (CLK). However,

182 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

feature value

ISA 32-bit ARMv5TE-compatible

Pipeline depth 7/8-stage, super-pipelined
Datapath width 32-bit

RF size 16 registers

Issue policy/Instr.window in-order/single-instruction

I-Cache, L1 2B/block, 1-cc hit/170-cc miss lat.
D-Cache, L1 2B/block, 1-cc hit/170-cc miss lat.
BTB/TLB 2-entry direct-mapped/1-entry

Branch Predictor 2-bit Bimodal (32-entry RAS)

Write Buffer 2-entry
Fill Buffer 2-entry

Mem. bus width 1 Byte (1 mem. port)

INT/FP ALUs 1/1

Clock freq. 2 MHz

Implem. tech. 0.18 µm @ 1.5 Volt

Table 5.2: XTREM configuration for study on cache geometries.

to better match our application field and, also, to isolate cache behavior as

much as possible, many of XTREM’s architectural parameters have been cut

down or disabled to better reflect the highly constrained implantable proces-

sors. The modified XTREM characteristics are summarized in Table 5.2. As

has been highlighted in bold in the table, in this study we are interested in the

optimal configuration for the two L1 cache structures (i.e. the instruction- and

data-cache units).

Last, in order to be able to evaluate a large number of cache configurations

and automatically gather, plot and evaluate the findings, we have developed

software wrappers in Perl. Through these wrappers, we were able to run simu-

lations on thousands of different cache configurations and aggregate the mon-

itored metrics into few, manageable figures. The wrappers were also respon-

sible for boundary control of the tested geometries and error checking of the

XTREM simulator. Illegal or erroneous simulator stated have been pruned out

and excluded from the conclusions of this study. Moreover, the CACTI tool

which has been used for cache-size estimations (to be discussed later on), has

been interfaced to the simulator to automatically generate and return figures

for different cache sizes. This Perl-based simulator ensemble has allowed us

to perform a large number of runs with diverse cache and other simulator pa-

rameters and could easily be used in a score of other profiling studies with little

to moderate modifications.

5.1. EVALUATION OF CACHE ORGANIZATIONS 183

0%

1%

10%

100%

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

IPC

I$ miss rate

D$ miss rate

Figure 5.1: Averaged, average IPC and I/D-cache miss rates for various

direct-mapped, I-cache sizes.

5.1.2 Profiling analysis

The XScale core (and thus XTREM) assumes a Harvard architecture, with

separate L1 I-cache and D-cache and no L2 caches so as to relax the bandwidth

requirements on the memory bus. Most implantable systems we have studied

so far feature separate caches (or memories, in general), and thus we have

limited our study to split caches as well.

To perform a thorough but realistic investigation of cache sizes for biomedical

implants, we have evaluated sizes in the range: [32B, 16KB], in accordance

with our prior study of existing implantable devices. However, as seen in Ta-

ble 5.2, XTREM simulates a 32-bit wide architecture which is unrealistic for

the ultra-low-power processor that we are targeting. By conservatively assum-

ing an average size of 8-bits for our implant-processor ISA, we had to scale up

by a factor of ×4, to move from 8-bit to 32-bit quantities (which are supported

by our simulation testbed). Further, since the minimal block size supported by

XTREM is 2, the scaling factor becomes ×8. In effect, the properly scaled,

final cache-size range becomes: [256B, 128KB]. We are well aware that the

final, scaled-down findings might be suboptimal when mitigated to our actual

implant processor however they will give us useful hints and a good starting

point for further architectural design-space exploration. All 8 benchmarks have

been profiled against each cache size and average values are reported.

184 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

5.1.2.1 Cache sizes

The first step in our methodology involves finding the pair of optimal L1 I- and

D-cache sizes under constraints of performance, power, energy and area. First,

we have kept D-cache size constant at 32 KB and we have gradually increased

I-cache size from 256 B to 128 KB , each step featuring double the size of the

previous one. Both caches have been configured as direct-mapped structures

for this step. Figure 5.1 illustrates the variation of IPC and I/D-cache miss

ratios as a function of I-cache size. The figure actually plots also larger cache

sizes to give a better overview of the observed trends, but such excess sizes are

not considered as viable for our application domain.

Expectedly, the D-cache miss rate is not affected by the I-cache size, while the

I-cache miss rate drops rapidly and practically assumes a constant miss rate

at 32 KB and onwards. This affects the IPC which assumes a constant value

at the same point. This comes as little surprise since each benchmark in our

collection (see Table 5.1) essentially fits in the I-cache for sizes of 32 KB or

more. However, it is interesting to observe that the IPC value does not, in

an overall, change drastically with improving miss rates (viz. from 0.027% it

saturates at 0.044%).

The next metric we examine is average power consumption. In Figure 5.2,

total and per-component power figures are plotted for the investigated I-cache

sizes. XTREM components with zero power consumption have been omitted

from the plot. We can readily see that, while the I-cache power increases expo-

nentially with size, it is one to two orders of magnitude smaller than that of the

main power culprit: the MM unit1. The decoder and ALU components present

the most notable increase in their power profile with increasing I-cache size,

in response to the increased IPC, while the clock, D-cache and memory bus

in fact display dropping power trends. Overall, average power consumption in

the processor reaches a minimum for an I-cache size of 64 KB .

Apart from average power consumption, for embedded systems with a very

constrained energy budget such as implants are, it is also important to exam-

ine the overall energy spent by the processor for executing all assigned tasks.

Energy has been shown to depend heavily on execution time and, thus, energy

plots are not necessarily identical to power plots. In Figure 5.3 overall energy

budgets for different I-cache sizes are plotted. Energy profiles in this case are

similar to the power profiles with the minimum again observed for the 64−KB

1Remember that, as discussed in Chapter 4, the MM power does not scale properly with

frequency – contrary to the other XTREM subsystems.

5.1. EVALUATION OF CACHE ORGANIZATIONS 185

0,001

0,01

0,1

1

10

100

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

0

10

20

30

40

50

60

70

80

90

100

DEC BTB ALU I$ D$
MEM MM CLK TOTAL(mW)

Figure 5.2: Averaged, total (right axis) and per-component (left axis) average

power consumption (in mW) for various direct-mapped, I-cache

sizes.

case. However, as can be observed from the “TOTAL” line plots, contrary to

power, energy budget drops more steeply in the range from 256 B to 64 KB

which makes moving to I-cache sizes smaller than 64 KB more attractive.

In a fashion identical to I-cache sizes, we further investigate D-cache sizes. In

Figure 5.4, the average IPC and I/D-cache miss rates for a constant I-cache

size of 32 KB and variable D-cache sizes are plotted. Contrary to I-cache

behavior, we can readily observe that increasing the D-cache size has minimal

impact on its miss rate. To be precise, D-cache miss rates drop from an initial

maximum of 0.863% to a final minimum of 0.776% (first observed at 512 KB)

for our selected benchmark suite. I-cache miss rates by comparison present a

proportionally larger drop in the locus of 64 KB , but in absolute terms remain

roughly unaffected by the D-cache size. In effect, the IPC presents a positive

peak at 1 KB but then stabilizes to a constant value for a 64 − KB size and

onwards.

As far as power consumption is concerned, results are plotted in Figure 5.5.

With the exception of the clock network and of course the D-cache itself, D-

cache size increases do not affect other processor subsystems as radically as

the I-cache. The IPC spike observed in the previous figure, manifests here also

186 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

0,001

0,01

0,1

1

10

100

1000

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

0

100

200

300

400

500

600

700

800

900

1000

DEC BTB ALU I$ D$
MEM MM CLK TOTAL

(mJ)

Figure 5.3: Averaged, total (right axis) and per-component (left axis) energy

budget (in mJ) for various direct-mapped, I-cache sizes.

0%

1%

10%

100%

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

IPC
I$ miss rate
D$ miss rate

Figure 5.4: Averaged, average IPC and I/D-cache miss rates for various

direct-mapped, D-cache sizes.

as a power spike in the locus of 1 KB . Minimum power is located again in the

64 − KB locus but, opposite to the I-cache case, overall power consumption

drops steeply to this value immediately after D-cache sizes of 2 to 4 KB . A last

observation is that, in an overall, I-cache size variation has a stronger impact

on power than D-cache size variation.

Figure 5.6, last, illustrates energy results for various D-cache sizes. As was

5.1. EVALUATION OF CACHE ORGANIZATIONS 187

0,01

0,1

1

10

100

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

0

10

20

30

40

50

60

70

80

90

100

DEC BTB ALU I$ D$
MEM MM CLK TOTAL

(mW)

Figure 5.5: Averaged, total (right axis) and per-component (left axis) average

power consumption (in mW) for various direct-mapped, D-cache

sizes.

0,1

1

10

100

1000

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

0

100

200

300

400

500

600

700

800

900

1000

DEC BTB ALU I$ D$
MEM MM CLK TOTAL

(mJ)

Figure 5.6: Averaged, total (right axis) and per-component (left axis) energy

budget (in mJ) for various direct-mapped, D-cache sizes.

188 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

also the case with power, D-cache size variation has a smaller impact on energy

than I-cache variation. However, the energy and power profiles in the D-cache

case are less consistent between them. Minimum energy in this case is clearly

observed in the 32 − KB locus, followed by a steep ramp-up for larger sizes.

This gives us a clear indication that, energy-wise, we should focus on D-cache

sizes of 32 KB or less.

For selecting the best sizes for the I-cache and D-cache structures, we

have based our evaluation on performance, power-consumption and energy-

expenditure figures. As a performance metric, we have chosen the IPC instead

of the cache miss rates since we do not wish to study the caches in an isolated

environment but, rather, to capture overall system performance as a function

of cache size. That is why we have used a processor (rather than cache) simu-

lator as our testbed. For the very same reason we have also used total average

power consumption and total energy budget as our second and third metric,

respectively.

To find optimal solutions, we have used the following formula as our objective

function for minimization:

F(x) = IPCPD(x) + PPD(x) + EPD(x), (5.1)

where x represents a single cache-size node. Each VARPD(x) term in for-

mula (5.1) represents the percentage difference between the VAR value at

node x and the best VAR value (maximal value for IPC, minimal value for

power and energy) across all cache-size nodes. This percentage difference is,

in turn, given by the formula:

VARPD(x) =
|VAR(x)− VAROPT |

(1/2) ∗ (VAR(x) + VAROPT)
∗ 100, (5.2)

where VAROPT = max(VAR(x)) or min(VAR(x)), with x in the range

[256B, 128KB]. We have chosen to use percentage differences in our objec-

tive function (5.1) so as to normalize all involved variables by calculating their

“relative” deviation from the per-case optimal value.

We initially sought a cache size that optimizes all three imposed metrics. For

the case of the I-cache, the size of 64 KB (or 8 KB for our targeted implant

processor) gave the best results across IPC, power and energy. This is reflected

in Table 5.3 which shows precisions levels of 1.000 for all metrics; in essence,

no compromises had to be made in the decision.

Some commenting on this result is needed here. It is obvious that we have

avoided including an area metric in the objective function above. The reason

5.1. EVALUATION OF CACHE ORGANIZATIONS 189

PRECISION LEVELS

metric I$-size: 64 KB D$-size: 32 KB

IPC 1.0000 0.9650
power 1.0000 0.9700
energy 1.0000 0.9700

Table 5.3: Precision levels [0.000: worst, 1.000: best] for IPC, power and

energy in I/D-cache-size objective functions.

0

50

100

150

200

250

300

3
2
B

6
4
B

1
2
8
B

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

I-cache w/o area D-cache w/o area
I-cache w/ area D-cache w/ area

(-)

Figure 5.7: Results for various I- and D-cache sizes of objective function (5.1).

for this is the following: Area doubles with each increasing node and this

represents a large percentage difference resulting in the “optimal” value for the

area to be the very first node (smallest size). Further, due to this doubling of

values, the area metric becomes dominant compared to the other three metrics

which are changing slowly by comparison. In effect, the objective function

would be strongly dominated by the area metric, returning the smallest cache

size as the optimal one. At this point, we do not have a specific upper bound

for the overall (and, thus, also cache) size of our targeted processor nor can we

make any educated guess about the weight of the area metric in the objective

function. We, thus, chose to omit the area metric and conclude that, under no

area constraints, for the given representative benchmark collection, the optimal

I-cache size is 8 KB for our processor.

190 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

0%

1%

10%

100%

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

2
5
6
-w

a
y

5
1
2
-w

a
y

1
0
2
4
-w

a
y

2
0
4
8
-w

a
y

4
0
9
6
-w

a
y

F
A

IPC

I$ miss rate

D$ miss rate

Figure 5.8: Averaged, average IPC and I/D-cache miss rates for various I-

cache associativity degrees.

However, for the D-cache case optimal results are not directly related to pro-

gram size and, what is more, are more dispersed, as has been also observed in

the previous discussion on power and energy profiles. In this case, we had to

lower the objective-function precision levels down to the point that we found

a valid D-cache configuration. As can be seen from Table 5.3, a slight bias has

been given to power and energy over IPC for two reasons: i) the IPC displayed

insignificant variations with increasing D-cache sizes, and ii) in our targeted

processor we consciously want to emphasize more on achieving low power

and energy and less on performance. The D-cache size giving the best results

across all three metrics was 32 KB (or 4 KB for our implant processor). For the

same reasons as for the I-cache case, the area metric has been omitted here,

too. Cumulative results for objective function (5.1) for various direct-mapped

I- and D-cache sizes are given in Figure 5.7 where the effect the area metric

would have - should it be included - is also shown.

5.1.2.2 Cache associativity

Having selected optimal I- and D-cache sizes, we affix our simulator I/D-

caches to 64 KB and 32 KB respectively and move to the second step of our

study, which is the evaluation of different degrees of associativity for both

structures. Starting with the I-cache, in Figure 5.8, IPC and miss-rate re-

sults are plotted for various associativity configurations, ranging from direct-

mapped (DM) to fully associative (FA). It can be easily observed that increas-

5.1. EVALUATION OF CACHE ORGANIZATIONS 191

0,01

0,1

1

10

100

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

2
5
6
-w

a
y

5
1
2
-w

a
y

1
0
2
4
-w

a
y

2
0
4
8
-w

a
y

4
0
9
6
-w

a
y

F
A

60,0

60,5

61,0

61,5

62,0

62,5
DEC BTB ALU I$ D$ MEM MM CLK TOTAL(mW)

Figure 5.9: Averaged, total (right axis) and per-component (left axis) aver-

age power consumption (in mW) for various I-cache associativity

degrees.

ing the I-cache ways has no effect on the processor performance. Going back

to Figure 5.1, we can recall that with an I-cache of 64 KB (and onwards) the

miss rate was essentially eliminated. In effect, the IPC figure here points to-

wards a direct-mapped or few-way organization for the I-cache.

In Figure 5.9, power figures are given for various I-cache ways. As expected,

changing the cache associativity hardly affects the power behavior of the pro-

cessor subsystems except, of course, for the I-cache itself. It is interesting to

see that although required hardware area increases with the ways, overall I-

cache power consumption drops. We attribute this to the way the cache is con-

structed (e.g. cache-line buffering etc.). In a processor employing aggressive

low-power techniques such as XScale (and, thus, XTREM) is, increasing the

number of ways implies reducing the number of active sets per cache access

and, thus, the cache overall power consumption. On the other hand, from the

same figure we can also observe a slight increase in the D-cache power when

more ways in the I-cache are implemented. Given that the IPC is not notably

impacted, we have so far been unable to find the reason for that phenomenon.

In any case, the combined result of the above two cache trends (plus an initial

drop in the MM unit) is a net decrease of the overall, average power consump-

tion in the processor which, for the considered ultra-low-power implants we

envision, is non-negligible. In effect, with 64 ways or more the I-cache power

consumption settles to its overall minimum.

192 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

0,1

1

10

100

1000

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

2
5
6
-w

a
y

5
1
2
-w

a
y

1
0
2
4
-w

a
y

2
0
4
8
-w

a
y

4
0
9
6
-w

a
y

F
A

369

379

389

399

409

419

429

439

449

459

469
DEC BTB ALU I$ D$ MEM MM CLK TOTAL(mJ)

Figure 5.10: Averaged, total (right axis) and per-component (left axis) energy

budget (in mJ) for various direct-mapped, I-cache associativity

degrees.

0

1

10

100

1000

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

2
5
6
-w

a
y

 Data-array area

 Tag-array area

 Total area

(mm^2)

Figure 5.11: Data-array, tag-array and total area (in mm 2) for various I-cache

associativity degrees.

The energy budgets for different I-cache ways are illustrated in Figure 5.10. In

a similar manner to power, albeit slower, overall energy costs drop with more

cache ways due to the previously discussed I-cache and D-cache behaviors. At

the 32- to 64-way nodes, the processor achieves the lowest energy expenditure

throughout.

5.1. EVALUATION OF CACHE ORGANIZATIONS 193

0%

1%

10%

100%

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

2
5
6
-w

a
y

5
1
2
-w

a
y

1
0
2
4
-w

a
y

2
0
4
8
-w

a
y

4
0
9
6
-w

a
y

F
A

IPC

I$ miss rate

D$ miss rate

Figure 5.12: Averaged, average IPC and I/D-cache miss rates for various D-

cache associativity degrees.

In this part of our analysis, it makes sense to also consider the area cost of the

I-cache when moving to more associativity ways. Since moving to a higher

associativity degree while keeping the overall cache size constant results in a

slower area increase compared to doubling the cache size (with a given asso-

ciativity degree), our objective function shall only show weak biasing towards

the area metric, in this case. We have, therefore, properly configured and run

CACTI v6.0 to collect area-utilization figures for various cache geometries.

Findings for up to a realistic number of ways are illustrated in Figure 5.11. We

can easily observe that the global area minimum lies at an associativity degree

of 2. The 4-way or 8-way configurations are also attractive alternatives with

similar area costs.

We now move to investigating the optimal D-cache associativity. Figure 5.12

reveals that changing the associativity of the D-cache has the same marginal

effect to the IPC as for I-cache. Miss rates are equally unaffected, the reason

being that higher associativity does not seem to offer any additional speedup

to the execution of the benchmarks.

As far as power consumption is concerned, Figure 5.13 has been plotted. As

expected, I-cache power does not change significantly with D-cache associa-

tivity, while the power consumption of the D-cache gradually drops. Overall

power presents a slowly rising trend mainly due to the contributions of the

clock network and the MM unit. This implies that, in the general case, less

ways for the D-cache should be sought in terms of power, but the correlation

is weak.

194 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

0,01

0,1

1

10

100

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

2
5
6
-w

a
y

5
1
2
-w

a
y

1
0
2
4
-w

a
y

2
0
4
8
-w

a
y

F
A

60,0

60,5

61,0

61,5

62,0

62,5
DEC BTB ALU I$ D$ MEM MM CLK TOTAL(mW)

Figure 5.13: Averaged, total (right axis) and per-component (left axis) aver-

age power consumption (in mW) for various D-cache associativ-

ity degrees.

0,1

1

10

100

1000

D
M

2
-w
a
y

4
-w
a
y

8
-w
a
y

1
6
-w
a
y

3
2
-w
a
y

6
4
-w
a
y

1
2
8
-w
a
y

2
5
6
-w
a
y

5
1
2
-w
a
y

1
0
2
4
-w
a
y

2
0
4
8
-w
a
y

F
A

369

379

389

399

409

419

429

439

449

459

469
DEC BTB ALU I$ D$ MEM MM CLK TOTAL(mJ)

Figure 5.14: Averaged, total (right axis) and per-component (left axis) energy

budget (in mJ) for various D-cache associativity degrees.

D-cache associativity versus energy cost has been plotted in Figure 5.14. Ob-

servations are identical to the ones previously made for power, however in this

case we witness a less uniform profile in the memory bus, the MM unit and

other components, resulting in a high-energy spike at the 16-way node. This

prepossesses us in favor of a D-cache design with less than 16 ways.

Last, the D-cache area cost with increasing associativity has been plotted in Fi-

5.1. EVALUATION OF CACHE ORGANIZATIONS 195

0

1

10

100

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

 Data-array area

 Tag-array area

 Total area

(mm^2)

Figure 5.15: Data-array, tag-array and total area (in mm 2) for various D-

cache associativity degrees.

PRECISION LEVELS

metric I$-assoc.: 2-way D$-assoc.: 2-way

IPC 0.9985 0.9985
power 1.0000 1.0000
energy 1.0000 1.0000
area 0.9865 0.9900

Table 5.4: Precision levels [0.000: worst, 1.000: best] for IPC, power, energy

and area in I/D-cache-way objective functions.

gure 5.15. As was the case for the I-cache, again the globally minimal area cost

is found for 2-way associativity with the direct-mapped and 4-way alternatives

being also viable choices.

For identifying the best I-/D-cache associativity degrees, we have used a cache-

associativity objective function similar to (5.1) and percentage differences

given by (5.2). The new objective function (5.3) varies only in the fact that

the area percentage difference has been incorporated in the sum:

F(x) = IPCPD(x) + PPD(x) + EPD(x) + APD(x), (5.3)

We have once more (see Table 5.4) favored power and energy slightly more

than performance and, in this case, area. In so doing, we have acquired the

best associativity degree for both the I-cache and for the D-cache to be 2-way.

196 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

0

50

100

150

200

250

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

I-cache w/ area D-cache w/ area

(-)

Figure 5.16: Results for various I- and D-cache associativity degrees of ob-

jective function (5.3).

For convenience, cumulative results for objective function (5.3) for various I-

and D-cache associativity degrees and fixed sizes are given in Figure 5.16.

5.1.3 Conclusions

In this evaluation study we have provided a detailed investigation of various

instruction- and data-cache configurations. We have run sequential optimiza-

tion (here: minimization) functions on the specified design space and have

identified best instruction- and data-cache candidates for our end goal which

is the design of an implant processor. Concisely, a 2-way L1 instruction-cache

of 8 KB size and a 2-way associative L1 data-cache of 4 KB size have been

selected. We are fully aware of the fact that we have scaled our simulation

parameters and the produced results to reflect the targeted biomedical-implant

processor. This does not necessarily mean that these results will represent op-

timal selections in our final processor design but, rather, an educated starting

point for our design-space exploration.

5.2. EVALUATION OF BRANCH-PREDICTION SCHEMES 197

BENCHMARK NAME SIZE C.CYCLES INSTR. BRANCHES BR.RATIO
TYPE (KB) (#) (#) (#) (%)

Compression miniLZO 16.30 32,482,046 199,163 34,008 17.08
Finnish 10.40 80,581,690 852,663 147,971 17.35

Encryption MISTY1 18.80 41,006,520 1,268,465 63,086 4.97

RC6 11.40 25,919,634 864,930 60,869 7.04

Data integrity checksum 9.40 1,102,562 62,869 7,933 12.62

CRC32 9.30 12,021,257 419,159 69,976 16.69

Real apps. motion 9.44 25,891,030 859,371 130,773 15.22

DMU 19.50 483,432,846 36,808,268 4,393,796 11.94

Table 5.5: ImpBench components and useful general statistics.

5.2 Evaluation of branch-prediction schemes

By building upon the previous study on suitable cache geometries for the SiMS

processor, in this section we investigate different branch-prediction alternatives

under varying L1 I- and D-cache configurations. The approach we take in

analyzing the various schemes is identical to the one we took for the cache

study and it makes the following contributions:

• Careful evaluation of various branch-prediction schemes under perfor-

mance, power, energy, area constraints using different processor cache

configurations and a collection of representative biomedical workloads;

• Precise analysis of the quantitative data for the evaluated branch-

prediction schemes for current and future implant processors; and

• A sound methodology and toolset for selecting best-suited branch-

prediction mechanisms for different biomedical (or other) workloads.

The work presented here is original, as compared to related works, in that: i) it

studies the whole processor when different prediction schemes are utilized and

particularly their reaction to different I/D-cache sizes, ii) it involves 3 more

metrics in the study apart from performance, and iii) it targets a different class

of low-power devices with particular idiosyncrasies.

5.2.1 Experimental setup

The evaluation environment for this work is almost identical to that set up for

studying different cache geometries. Some adjustments have been made to

198 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

feature value

ISA 32-bit ARMv5TE-compatible

Pipeline depth / width 7/8-stage, super-pipelined / 32-bit
RF size 16 registers

Issue policy in-order

Instruction window single-instruction

I-Cache L1 var-size, 2-way assoc. (1-cc hit / 170-cc miss lat.)

D-Cache L1 var-size, 2-way assoc. (1-cc hit / 170-cc miss lat.)

TLB 1-entry

Branch Predictor var-type, 4-cc mispred. lat. (32-entry RAS)
BTB var-size
Write Buffer 2-entry

Fill Buffer 2-entry

Mem. bus width 1B (1 mem. port)

INT/FP ALUs 1/1

Clock frequency 2 MHz

Implem. technology 0.18 µm @ 1.5 Volt

Table 5.6: XTREM configuration for study on BPRED schemes.

the aforementioned, Perl-based wrapper to support – apart from varying cache

configurations – also different BPRED schemes, as allowed by the XTREM

simulator. 10−KB ECG data have been used in this case, too, to reflect implant

memory sizes properly. All eight ImpBench components have been used as

usable workloads. The benchmarks are reported once more in Table 5.5 along

with additional statistics pertinent to this study. XTREM has been used for

evaluating different BPRED schemes. Its characteristics have been modified

accordingly and are summarized in Table 5.6 – processor parameters under

investigation are highlighted in bold in the table.

5.2.2 Considered branch-prediction schemes

A large range of branch-prediction techniques has already been proposed in

the literature. As previously discussed, our envisioned biomedical-implant

processor is being designed - among others - under constraints of ultra-low

power consumption and miniature form factor at the calculated cost of limited

performance. Accordingly, the processor pipeline will feature a small depth.

This set of attributes has effectively narrowed our evaluation effort towards the

less complex end of the branch-prediction spectrum.

In the work at hand, we evaluate two static-prediction techniques, i.e. AL-

WAYS TAKEN and ALWAYS NOT-TAKEN; it is interesting to investigate how

these low-sophistication (but also low-complexity) schemes perform in a

5.2. EVALUATION OF BRANCH-PREDICTION SCHEMES 199

Branch Addres [31:9,1] Target Addres [31:1]
History

Bits [1:0]

DATATAG

Figure 5.17: Illustration of a BTB entry in the case of a bimodal predictor

(Courtesy: [64]).

implantable-device context. We further evaluate one dynamic-prediction tech-

nique, i.e. an N-entry, direct-mapped BIMODAL (2-bit) predictor which is

coupled with a Branch-Target-Buffer (BTB) structure used to drive branch

penalties down. The BTB stores the history of branches that have executed

along with their targets. Figure 5.17 shows an entry in the BTB, where the

tag is the instruction address of a previously executed branch and the data con-

tains the target address of the previously executed branch along with two bits

of branch-history information (four states: strong-taken, weak-taken, weak-

not-taken, strong-not-taken).

There clearly are more sophisticated techniques than a bimodal predictor to

achieve higher prediction accuracy in the general case (e.g. skew predictor,

gshare predictor) but their complexity is considerably higher, as well. More

general, n-bit predictors could be also studied but it has been sufficiently

proven that 2-bit predictors score almost as high as infinite-bit predictors [59].

Besides, we would have liked to explore slightly more complex, dynamic pre-

dictors, too, but we are hindered by the limited capabilities of XTREM. We

did not take the approach assumed by many experts in the field of developing

our own standalone BPRED simulation models since we still wish to evaluate

the overall effects that different BPRED schemes have on the processor core.

It is important at this point to mention that, for reasons of reliability as well

as design complexity, our biomedical processor is meant to feature single-

threaded execution, at least in the foreseeable future. Accordingly, all branch-

prediction schemes are similarly evaluated on the XTREM simulator on single-

executing, non-switched programs. Therefore, the accuracy and performance

of the various branch-prediction schemes reported hereafter is pure and not not

subject to deterioration due to context switching, as Pasricha and Veidenbaum

have shown to occur [108].

200 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

BPRED configuration scheme BTB #entries

bc01 TAKEN n/a

bc02 NOTTAKEN n/a

bc03 BIMOD 2

bc04 BIMOD 4

bc05 BIMOD 8

bc06 BIMOD 16

bc07 BIMOD 32
bc08 BIMOD 64

bc09 BIMOD 128

bc10 (perfect) BIMOD 4K

L1-cache configuration I-cache, 2-way D-cache, 2-way

cc01 (min) none none

cc02 128B 64B

cc03 1KB 512B

cc04 8KB 4KB

cc05 32KB 16KB

cc06 (opt) 64KB 32KB

Table 5.7: Branch-prediction and I/D-cache configurations used.

5.2.3 Evaluation study

In this study we have evaluated 10 different branch-predictor configurations,

as shown in Table 5.7. The first two are the always-taken and always not-

taken, static predictors. The remaining eight focus on the bimodal predictor,

as discussed in the previous section, with an increasing number of entries for

the BTB. The last configuration utilizes an unrealistically large BTB of 4K-

entries - in effect, an infinite BTB - used as a reference for (almost) perfect

predictions.

To make the study more involved and identify subtler interactions among the

various processor components, we have also chosen, along with the different

BPRED configurations, to co-vary also the L1 I/D-cache structures. Based on

the previous findings, we have selected two extreme cache configurations (one

with no L1 caches and one with optimally-sized L1 caches) as well as four in-

termediate configuration nodes, as shown also in Table 5.7. The combination

of the branch-predictor and cache configurations brings the total number of

processor-simulator configurations to 60; that is, for each cache configuration,

all predictor configurations have been evaluated. The 8 benchmark applica-

tions presented above, have been run for each possible predictor/cache combi-

nation and their results have been averaged over all possible configurations.

5.2. EVALUATION OF BRANCH-PREDICTION SCHEMES 201

1

1,01

1,02

1,03

1,04

1,05

1,06

1,07

1,08

bc01 bc02 bc03 bc04 bc05 bc06 bc07 bc08 bc09 bc10

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

cc01 cc02
cc03 cc04
cc05 cc06
BRANCH MISS RATE

IPC

(-)

MISS

RATE (-)

Figure 5.18: Normalized, average IPCs (left y-axis values) and normal-

ized overall branch miss rate (right y-axis values) for various

BPRED/cache configurations.

In the following discussion, we plot various metrics as normalized values to

the per-configuration minimum value so as to stress the differences between

the various presented schemes. Further, reported plot values in fact are values

averaged across all 8 biomedical benchmarks.

With this clarification, we first evaluate the performance of the processor with

an improving branch-predictor scheme. In Figure 5.18, average IPCs for all

six cache configurations are plotted. Overall, we can see that for our simulated

simple and slow (2− MHz clock frequency) processor, IPC gains with improv-

ing predictor schemes are diminishing (up to about 8% w.r.t. the baseline) with

increasing cache sizes, although the total branch miss rate drops considerably.

Relatively speaking, cache configurations cc01, cc02 and cc03 benefit the most

from improved branch prediction. That is, a processor with larger caches hides

the branch misprediction penalties better than one with smaller caches by cap-

turing more instruction fetch requests from main memory. Configuration cc01

(no cache), in particular, displays the most impressive IPC gains compared

to the other cache configurations. Inversely, this means that processors with

smaller caches ought to benefit the most from an efficient branch prediction

(BPRED) scheme. Last, we can observe that both static schemes (predictor

configurations bc01 and bc02) impact IPC minimally (they form the baseline)

and in a similar fashion for all cache sizes while significant speedup is observed

202 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

1

1,001

1,002

1,003

1,004

1,005

1,006

bc01 bc02 bc03 bc04 bc05 bc06 bc07 bc08 bc09

cc01 cc02 cc03 cc04 cc05 cc06

Power

(-)

Figure 5.19: Normalized, average power consumption for various BPRED/-

cache configurations.

from configurations bc05 or bc06 and up for most cache configurations.

The next metric we investigate is the average power consumption. In Fi-

gure 5.19, power figures are plotted for all configuration combinations. The

bc10 configuration results in excessive power consumption in the BTB com-

ponent of the processor ranging from 338 mW 2 (or 376% normalized w.r.t. the

baseline) for cc01 to 563 mW (or 962% normalized w.r.t. the baseline) for cc06.

This is due to its excessive size and has been omitted from the current and

following plots to maintain a good resolution for the other nine BPRED con-

figurations.

The main observation in this figure is that smaller-cache processor configura-

tions increase their power consumption at a faster pace with improving BPRED

schemes. This observation complies with the IPC plots of Figure 5.18. That

is, the higher IPC gains noticed in the presence of smaller caches are sustained

by necessary increases in the processor core power consumption. Particularly

the IPC bump observed in Figure 5.18 lying in the locus of bc05 to bc06 is

followed by a related increase in power consumption across the majority of

cache configurations.

The question arises, then, whether the noticed, net performance increase is

worth the extra power costs. Figure 5.20 has been plotted to address this ques-

2The XTREM simulator has not been initially designed for modeling a µ W -level processor.

Thus, the relative differences between the power figures reported here should be considered,

rather than their absolute values.

5.2. EVALUATION OF BRANCH-PREDICTION SCHEMES 203

1

1,01

1,02

1,03

1,04

1,05

1,06

1,07

bc01 bc02 bc03 bc04 bc05 bc06 bc07 bc08 bc09

cc01 cc02 cc03 cc04 cc05 cc06

Power

efficiency

(-)

Figure 5.20: Normalized, average power consumption per instruction per cy-

cle (i.e. instruction efficiency w.r.t. power) for various BPRED/-

cache configurations.

tion; it shows the normalized plots for the power consumed (in mW) per in-

struction per cycle, i.e. the normalized instruction power efficiency. In this

type of figure, “lower values are better”; it is clearly visible that for larger-

cache configurations, the impact of more sophisticated BPRED schemes is

lower, thus the power savings are similarly smaller. We observe, however, that

the power efficiency of smaller-cache configurations is poor but improves more

rapidly compared to larger-cache ones.

Last, the minimal impact the two static predictors (bc01 and bc02) have on the

IPC is revealed in Figure 5.19, as well. Since they promote instruction-level

parallelism (ILP) the least, they also don’t stress the core much compared to

the other BPRED schemes, resulting in the lowest power profiles across all

evaluated schemes.

Apart from average power consumption, for embedded systems with a very

constrained energy budget such as implants are, it is also important to exam-

ine the overall energy spent by the processor for executing all assigned tasks.

Energy, by definition, depends heavily on program execution time and, thus,

energy plots are not necessarily identical to average-power plots.

In Figure 5.21 overall energy budgets for different BPRED/cache configura-

tions are plotted. Opposite to the case made on power before, the metric at

hand (i.e. energy) achieves a minimum value when moving to more complex

BPRED configurations, showing a dramatic improvement from configuration

204 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

1

1,01

1,02

1,03

1,04

1,05

1,06

bc01 bc02 bc03 bc04 bc05 bc06 bc07 bc08 bc09

cc01 cc02 cc03 cc04 cc05 cc06

Energy

(-)

Figure 5.21: Normalized, total energy expenditure for various BPRED/cache

configurations.

nodes bc07 and bc08 and onwards. When seen from the cache-size perspec-

tive, the cache configurations that lead to the highest energy savings are the

larger-cache ones (cc04, cc05 and cc06), opposite to the power results. Choos-

ing between a power-efficient and an energy-efficient configuration depends

on the priorities imposed on the design specifications of the processor.

In the locus of bc05 or bc06 where IPC has been shown to manifest a non-

trivial speedup, energy expenditure does not visibly drop across almost all

cache configurations. This hints toward the fact that, at that point, the power

costs needed to sustain the higher IPC annul the achieved speedup.

Figure 5.22 plots the instruction energy efficiency of the various configura-

tions. Contrary to the previous figure, this figure presents the same trends as

Figure 5.20. The most noticeable difference is that, with the exception of cc01,

the lines do not drop in this case as radically around the locus of bc5 and bc06

as in the case of power efficiency.

In this part of our analysis, it also makes sense to consider the area cost

of the various BPRED schemes when moving to more advanced techniques.

We have, therefore, properly configured and run CACTI v3.0 to collect area-

utilization figures for various predictor circuits. Area for the static predictors

as well as for the first two bimodal configurations have been based on esti-

mations. CACTI v3.0 (instead of any newer versions) has been used since

it is suitable for modeling simpler (older) cache-like structures (such as the

BTB) and at an implementation technology identical to the one of the simula-

5.2. EVALUATION OF BRANCH-PREDICTION SCHEMES 205

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

bc01 bc02 bc03 bc04 bc05 bc06 bc07 bc08 bc09

cc01 cc02 cc03 cc04 cc05 cc06

Energy

efficiency

(-)

Figure 5.22: Normalized, total energy expenditure per instruction per cycle

(i.e. instruction efficiency w.r.t. energy) for various BPRED/-

cache configurations.

0,0001

0,001

0,01

0,1

1

10

100

bc01 bc02 bc03 bc04 bc05 bc06 bc07 bc08 bc09 bc10

Area

(mm^2)

Figure 5.23: Total BPRED-scheme area (in mm 2) for all BPRED configura-

tions.

tor (0.180µm). CACTI results are illustrated in Figure 5.23. Please notice the

logarithmic scale of the plot.

For selecting the best BPRED configuration for different I/D-cache geome-

tries, we have based our evaluation on performance, power consumption, en-

ergy expenditure and area. As a performance metric, we have chosen the IPC

206 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

PRECISION LEVELS

n cc01 cc02 cc03 cc04 cc05 cc06

IPC 0.985 0.990 0.985 0.995 1.000 1.000
power 0.990 0.990 0.990 1.000 1.000 1.000

energy 0.990 0.990 0.990 1.000 1.000 1.000

area 0.980 0.985 0.980 0.995 0.995 0.995

Table 5.8: Precision levels [0.000: worst, 1.000: best] for IPC, power, en-

ergy and area in objective function (5.1) for all cache configura-

tions when area is considered.

instead of the branch miss rate since we do not wish to study the BPRED

techniques in an isolated environment but, rather, we wish to capture over-

all system performance as a function of predictor type. That is why we have

used a processor (rather than branch-predictor) simulator as our testbed. For

the very same reason we have also used total average power consumption and

total energy budget as our second and third metric, respectively.

To find optimal BPRED schemes for each cache configuration, we have as-

sumed approach identical to the one taken for evaluating different cache ge-

ometries: We have employed formula 5.3 as our objective function for mini-

mization. Table 5.8 shows, per cache node, the precision levels we have used

for all metrics. Remember, that the closer to ‘1.000’ a metric’s precision level

is, the more strictly constrained the objective function (5.1) becomes and the

more close to optimal is the solution. In the table above, precision levels have

been iteratively decreased until a single solution (i.e. the optimal) to each ob-

jective function was found.

In the absence of accurate processor design constraints3 we have imposed an

intuitive ordering to the metrics used in the objective function. In order of

decreasing importance, the metrics have been ranked: power and energy first,

then IPC and, last, area. It is with this order that we have adjusted the precision

levels in search of the best solution for all six objective functions.

We can readily see from Table 5.8 that, as we move from configuration cc01

to cc06 (i.e. to higher cache sizes), the precision levels become increasingly

higher, that is, stricter. This indicates that with increasing cache sizes, optimal

values across the four metrics are less scattered; thus, the solution is more

straightforward.

3Previous, related work does not provide solid data for properly adjusting the metric weights,

i.e. the contribution of the different metrics, in formula (5.1). To avoid unfair biasing of the

results, we have assumed here a policy of equal weights.

5.2. EVALUATION OF BRANCH-PREDICTION SCHEMES 207

1

10

100

1000

10000

bc01 bc02 bc03 bc04 bc05 bc06 bc07 bc08 bc09 bc10

cc01 cc02 cc03 cc04 cc05 cc06

Obj. function

(-)

Figure 5.24: Normalized results to the minimum value for various cache con-

figurations of objective function (5.1) when area is included.

The results of the optimization process are graphically depicted in Fig.5.24.

With deviations of 1% or less between them, the static predictors ALWAYS

TAKEN and ALWAYS NOT-TAKEN minimize the objective function across

all cache configurations. The remaining configurations follow with signifi-

cantly worse ranking, although we can see that smaller-cache configurations

would benefit more from the bimodal predictors of any size, compared with

larger-cache configurations.

Some commenting on this result is needed here. In the objective functions

above we have included the area metric. However, area calculation has been

done through CACTI, outside the XTREM simulator. As a result, the area

utilization for specific BPRED configurations as well as the modeling of the

BTB through CACTI has been based, to a certain degree, on speculations and

assumptions.

For fear of skewing the optimization results and for purposes of completeness

we have also optimized the objective function (5.1) once more after disregard-

ing the area metric APD(x). In so doing, the precision levels of the remaining

metrics have also been readjusted, as illustrated in Table 5.9. The new preci-

sion levels are somewhat lower than before to compensate for the area vari-

208 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

PRECISION LEVELS

n cc01 cc02 cc03 cc04 cc05 cc06

IPC 0.980 0.980 0.990 0.995 0.999 0.999
power 0.980 0.990 0.990 0.999 0.999 0.999

energy 0.980 0.990 0.990 0.999 0.999 0.999

area 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.9: Precision levels [0.000: worst, 1.000: best] for IPC, power, en-

ergy and area in objective function (5.1) for all cache configura-

tions when area is not considered.

1

10

100

1000

10000

bc01 bc02 bc03 bc04 bc05 bc06 bc07 bc08 bc09 bc10

cc01 cc02 cc03 cc04 cc05 cc06

Obj. function

(-)

Figure 5.25: Normalized results to the minimum value for various cache con-

figurations of objective function (5.1) when area is not included.

able, yet they exhibit the same trend as in the previous case; that is, they can

be raised higher with increasing cache sizes.

Graphical depictions of the objective-function results in this case are shown in

Fig.5.25. Most suitable BPRED configurations for almost all cache sizes are,

as before, the ALWAYS TAKEN and ALWAYS NOT-TAKEN static schemes.

However, objective-function trends are general different, in this case. We

can observe that for smaller-cache configurations the objective function is not

monotonously increasing but, rather, features more than one (local) minimum.

As a result, when the area metric is factored out of the equation, more solutions

5.3. SUMMARY 209

than the TAKEN/NOT-TAKEN schemes may become attractive, especially for

smaller-cache configurations. To exemplify, for cache configuration cc03 the

optimal BPRED configuration is in fact bc08, i.e. a bimodal predictor with a

64-entry BTB, followed by the typical TAKEN/NOT-TAKEN schemes. These

suboptimal configuration nodes could become the nodes of choice in a design

where e.g. a lower threshold on IPC is imposed; thus, in cases of constrained

optimization.

Overall, and to combine the results of both Fig.5.24 and Fig.5.25, it becomes

clear that - even by factoring the area component out of the optimization func-

tion - the cost of bimodal predictors of any BTB size is too high to justify the

overheads incurred to the processor, across all cache sizes. Practically speak-

ing, this means that the reduction in branch mispredictions offered does not

improve performance to the point that introduced power penalties of a dynamic

predictor can be justified.

5.2.4 Conclusions

We have provided a detailed investigation of various branch-prediction con-

figurations in conjunction with different I/D-cache configurations, tested on

a specially modified, low-power, cycle-accurate processor simulator. Find-

ings indicate that, under (relaxed) area constraints, the optimal selections for

branch prediction interchangeably are the static schemes ALWAYS TAKEN

and ALWAYS NOT-TAKEN, regardless of processor cache size. This means

that for slow-performing, ultra-low power processors and the given biomedical

workloads, dynamic-prediction schemes are too expensive to implement, their

drawbacks outperforming their benefits.

A second interesting result, however, is that processor configurations with

smaller caches (i.e. for I/D-cache sizes up to 1024KB /512KB , respectively)

benefit from efficient BPRED schemes more. Especially under relaxed area

constraints, more suboptimal configurations but close to the optimal one exist.

In lack of more accurate data from the literature, in this work we have imposed

loose design constraints on the evaluated metrics. Yet this last observation can

be particularly useful under highly constrained processor design.

5.3 Summary

In this chapter, with implant benchmarks available, input data to drive them

and a suitable simulator testbed, we were able to perform two in-depth inves-

210 CHAPTER 5. SIMS-PROCESSOR MICROARCHITECTURE EVALUATION

tigations on two particular microarchitectural aspects of the envisioned SiMS

processor, namely, the cache and branch-prediction subsystems. Our choice

for studying these two subsystems was dictated primarily by their significance

in the characteristics of the processor as well as by the limited capabilities

provided by XTREM. Except for the novel application field, what makes this

investigation more important is the fact that we studied the effects of various

configurations of the two subsystems (and their interplay) with respect to the

whole processor core. Total performance, power, energy and area metrics have

been utilized to get the complete picture when considering such subsystems

in an implant processor (or any processor, for that matter). Truly enough, the

investigation findings have generated interesting and – in some cases – counter-

intuitive conclusions.

Last but not least, the work presented in this chapter had another side-benefit:

The vast needs in automated simulation runs needed for this study have driven

us to extend the XTREM simulator with a Perl-based wrapper construct. This

wrapper, through interfacing to CACTI, an established simulator for cache-

area estimations and various Bash (shell) scripts, has enabled automatic config-

uring of the simulators, feeding them with any number of benchmark-dataset

combinations, running a large number of simulations unattended, collecting,

aggregating and reporting data as the ones we showed in the previous sections.

This methodology can as well be used, with minor or moderate modifications,

for other (micro)architectural experiments.

Note. The content of this chapter is based on the following papers:

C. Strydis, Suitable Cache Organizations for a Novel Biomedical Im-

plant Processor, 26th IEEE International Conference on Computer Design

(ICCD’08), pp. 591-598, Lake Tahoe, California, USA, October 2008.

C. Strydis, G. N. Gaydadjiev, Evaluating Various Branch-Prediction

Schemes for Biomedical-Implant Processors, 20th IEEE International

Conference on Application-specific Systems, Architectures and Processors

(ASAP’08), pp. 169-176, Boston, MA, USA, July 2009.

6
Automated exploration of

SiMS-processor microarchitectures

O
PTIMAL cache and branch-prediction subsystems for the SiMS pro-

cessor have been studied in the previous chapter. These studies have

offered many design insights on the processor, yet provide local and,

by necessity, biased optimizations.

On the other hand, it is well-known that the global optimization of multiple de-

sign objectives – such as performance, power and area – across all processor

subsystems is a non-trivial task. One must explore all possible processor con-

figurations, compute the corresponding design objectives and find the Pareto-

dominant solutions to be included in the final trade-off set. Since, typically,

the design parameters that affect a processor are numerous, computing the be-

havior of all their possible combinations is quite hard, if not impossible. For

example, by considering 13 processor design parameters represented by 36

(binary) bits, if one were to simulate all combinations, one would need to eval-

uate 236 = 68, 719, 476, 736 different processor configurations to identify

the true Pareto front – an unrealistically high number. To make matters worse,

in this new field of implant processors there is no established set of processor

characteristics that would allow meaningful limiting of the above number of

potential configurations.

We, therefore, need a way to realistically approximate this ideal trade-off set

without performing all possible simulations. Furthermore, even in an approx-

imated scenario, thousands of configurations might still have to be evaluated

and compared to get a good approximation of the true Pareto front. Hence, we

need an automated method for doing so.

In this chapter, we build upon the methodology developed in the previous chap-

ter and introduce ImpEDE, a new tool offering automated, multiobjective DSE

211

212

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

of optimal SiMS processor microarchitectural configurations. Through Imp-

EDE, we introduce one more optimization goal – execution time – next to

performance, power consumption, energy expenditure and area. The need to

introduce the notion of “hard deadlines” in program execution have coerced us

in developing an updated version of ImpBench (v1.1), reported next. As a last

and culminating point in this thesis, we utilize ImpEDE, ImpBench v1.1 and

suitable implant applications extracted from the survey in Chapter 2 to offer a

number of optimal SiMS-processor solutions.

6.1 ImpEDE: A DSE tool for implant processors

To the best of our knowledge, none of the existing DSE tools are explicitly

concerned with implantable systems. The field of biomedical, microelectronic

implants is new and fast-progressing and calls for particular design constraints

such as ultra-low power consumption, high fault-tolerance levels and tight ex-

ecution deadlines. What is needed is a fresh top-down approach to the field

where implant applications are extensively profiled in a properly fine-tuned

environment and the findings are used to drive an (automated, if possible)

design-exploration effort for a suitable implant device. Setting up such an

environment is a non-trivial problem as its specific parameters are either un-

known or undisclosed, subject to tight proprietary controls.

In this work we present a novel framework intended for the systematic, rapid

and adaptable DSE of processor architectures suitable for biomedical implants.

The framework is termed ImpEDE (Implant-processor, Evolutionary, Design-

space Explorer) and provides careful investigation of the processor design

space through the use of a particular genetic-algorithm (GA) variant called

NSGA-II, along with cycle-accurate simulations, considering realistic design

constraints imposed by our prior knowledge of the field. This implementation

has exhibited – due to the large problem complexity – very long computational

times and, therefore, a parallelized version of the algorithm has also been im-

plemented and described here. Also, we attempt to fine-tune ImpEDE to the

goal at hand by providing the first – in our knowledge – tool to offer bounded

DSE. Concisely, the contributions of ImpEDE are:

• A first yet educated attempt towards the systematic, automated and ac-

curate design of implant processors;

• A fine-tuned toolset that delivers optimized implant-processor configu-

rations across multiple first-order (e.g. performance, power) and second-

6.1. IMPEDE: A DSE TOOL FOR IMPLANT PROCESSORS 213

order (e.g. hard real-time deadlines) objectives; and

• A freely available parallelized version that can be expanded with ad-

ditional design objectives and constraints and extended to applications

classes other than implants.

6.1.1 Framework organization

Before introducing the DSE framework, we first have to identify the nature of

the problem we attempt to solve: In designing our implant processor, we have

formulated our problem as a multiobjective-minimization problem, with the

objectives being processor latency, average power consumption and area cost.

This is a set of first-order objectives typically optimized for in digital design.

In the future and as the framework matures, we wish to add more objectives

in our design effort such as fault coverage and more constraints such as hard

realtime deadlines. In later sections, we will exemplify the latter by imposing

a hard deadline on execution time (i.e. latency).

Since our objectives are minimizing area and power while maximizing per-

formance, in order to convert our problem to a fully minimizing problem, we

need to take the complement of performance as the objective encoded in our

framework. We use IPC as the metric of performance. Therefore, we can sim-

ply use IPC*(-1) as the objective to be minimized1. For the rest, we use the

metrics mm 2 and mW as the area and the power objectives, respectively.

With these objectives in mind, we have designed the multiobjective, DSE

framework shown in Figure 6.1. At first, the selected GA (NSGA-II) gen-

erates valid processor configurations (i.e. a set of parameters) – also known as

“chromosomes” – that are fed to the XTREM cycle-accurate, performance and

power simulator and to the CACTI cache-area simulator. XTREM also accepts

as inputs implant-related benchmarks and assorted datasets (ImpBench). Then,

both simulators execute and their resulting performance, power and area figu-

res are fed back into the waiting GA which uses them to evaluate the optimality

of the currently simulated processor configuration. This process is repeated a

number of times equal to the preset chromosome population; then, a few best-

performing chromosomes – based on their fitness results – are selected, pro-

cessed and propagated to the next round of optimizations, also known as gener-

ation. With each successive generation, increasingly better chromosomes are

found and promoted; that is, we are approaching the true Pareto front for our

1Note that cycles per instruction (CPI) could have also been used: since CPI is the inverse

of IPC, it would give an identical relative ordering of processor configurations as IPC*(-1).

214

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

Legend

Software (C/C++)

Supporting Scripts (Perl)

Data

Software Calls

Data Transfer

Multiple Instances*

Simulators

XTREM

(Processor Simulator)

Wrapper Script

Implant Application

Input

Data

Benchmarks

Genetic Algorithm

Estimates

Area

*

Generates Processor Configuration

*

Used as

Input

Estimates

Power,

Performance

Parse

Power,

IPC

CACTI

(Cache Simulator)

Figure 6.1: Framework organization.

DSE problem. Figure 6.2 shows the progress of the front at various evolution

stages for a particular run of our framework. In the following subsections, we

will describe in more detail the components of the framework as well as the

choices made on the GA parameters such as the population size, the number

of generations and the chromosome-selection policy used.

6.1.1.1 Genetic algorithm: NSGA-II

The classical single-objective optimization methods can be used to perform

multiobjective optimization by reformulating the multiobjective optimization

problem into a single-objective one. This can either be done by combining

the objectives into a single aggregate objective [75] or by only considering

one of the objectives and moving the rest to a constraint set [88]. When de-

signing this framework, we first used a single-objective GA that employed the

weighted-sums approach for finding the fitness of an individual. However,

this was quickly abandoned as we could not logically assign the values of the

weights since there was no rationalization for preferring one objective over an-

other without more information about the problem domain. Besides, there was

no way of knowing the absolute upper and lower limits of the three objectives

6.1. IMPEDE: A DSE TOOL FOR IMPLANT PROCESSORS 215

-0.4
-0.35

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

 0 80
 90

 100
 110

 120
 130

 140
 150

 160

 0

 2000

 4000

 6000

 8000

 10000

 12000

Area

Start
Generation 1
Generation 10
Generation 20
Generation 40
Generation 80
Generation 160
Generation 200

Performance

Power

Area

Figure 6.2: ImpEDE-generated Pareto solutions (i.e. implant-processor in-

stances).

(performance, power, area). Finally, such approaches suffer from being unable

to find solutions to problems having non-convex fronts. Therefore, special

algorithms were formulated for multi-objective problems [30].

NSGA [129] was one of the first GAs that evolve Pareto-front solutions to

multi-objective problems. NSGA-II [31] is the successor of NSGA that over-

comes some of the limitations faced by the former. NSGA-II evolves Pareto

fronts using an elitist approach and uses density and crowding distance met-

rics to ensure well spread out points along the front, at the same time having a

lower computational complexity than its predecessor. It has, therefore, become

in its own right widely accepted and used in diverse applications such as [114]

and [14]. Due to its superiority over other algorithms, popularity, ease of use

and availability, we use it as our algorithm of choice.

216

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

feature value

ISA 32-bit ARMv5TE-compatible

Pipeline depth / width 7/8-stage pipeline / 32-bit

RF size 16 registers

Issue policy in-order

Instruction window single-instruction

I-Cache L1 VAR size&assoc. (1-cc hit / 170-cc miss lat.)

D-Cache L1 VAR size&assoc. (1-cc hit / 170-cc miss lat.)

BTB VAR size, fully-assoc. / direct-mapped

Branch Predictor VAR (4-cc mispred. lat.)

Ret. Address Stack VAR size

I-TLB 1-entry / 1-entry

D-TLB 1-entry / 1-entry

Write Buf. / Fill Buf. 2-entry / 2-entry

Mem. bus width 8-bit (1 mem. port)

INT/FP ALUs 1/1

Clock frequency 2 MHz

Implem. technology 0.18 µm @ 1.5 Volt

Table 6.1: XTREM configuration for ImpEDE integration.

6.1.1.2 Processor & cache simulators

In the current version of our DSE framework, evaluation of the performance

and power consumption of a given chromosome (i.e. processor configuration)

has been based on the XTREM simulator. We have extensively used XTREM

in our previous studies on the implant processor and, in order to match our

application field better, we have disabled many of XTREM’s architectural pa-

rameters. In this case, however, we wish to allow for some degree of freedom

in the processor design parameters so that the GA can explore a wider range

of possible configurations. We have, thus, ended up with the XTREM con-

figuration summarized in Table 6.12. In the next section, we shall go through

the selected simulator parameters and the way they have been encoded in the

GA. It should be noted that flexible wrapper scripts (based on the methods

developed previously, see Chapter 5) have been used to provide the input to

and capture the output of XTREM. As a result, the internal framework struc-

ture has been kept highly modular allowing for porting faster, more accurate

or more powerful simulators in the future.

For evaluating the area cost of each chromosome, we have made the valid ap-

proximation that the subsystem dominating our envisioned implant processor

2Values denoted with ’VAR’ indicate adjustable parameters by the GA.

6.1. IMPEDE: A DSE TOOL FOR IMPLANT PROCESSORS 217

Benchmark type Name Size (KB) #Instr.* Sim. time* (sec)

Compression miniLZO 16.30 199,163 3.07

Finnish 10.40 852,663 21.82
Encryption MISTY1 18.80 1,268,465 16.65

RC6 11.40 864,930 9.37

Data integrity checksum 9.40 62,869 0.80

CRC32 9.30 419,159 5.46

Real applications motion 9.44 859,371 31.16

DMU 19.50 36,808,268 37.25

Table 6.2: ImpBench components. Columns denoted with a (*) indicate aver-

age values for 1− KB input datasets.

Dataset name size (Bytes) Samples (#) duration (sec)

Electromyogram II (EMGII) 1147 / 9605 144 / 1201 0.288 / 2.402

Electroencephalogram (EEGI) 984 / 9616 123 / 1202 0.615 / 6.010

Electrocardiogram (ECGI) 912 / 9615 114 / 1202 0.114 / 1.202
Respiratory Cycle I (RCI) 1192 / 9520 149 / 1191 1.490 / 11.910

Pulmonary Function I (PFI) 1184 / 9240 148 / 1155 1.480 / 11.550

Skin Temperature (AEP) 1120 / 9736 140 / 1217 0.700 / 6.085

Blood Pressure (BP) 1128 / 9545 141 / 1198 0.282 / 2.396

Table 6.3: Physiological input datasets with double-precision (8-Byte) data

samples of sizes 1-KB and 10-KB.

is the cache (which holds also true for modern general-purpose processors).

Furthermore, as can be seen from Table 6.1, more adjustable parameters (e.g.

BTB, WB, FB) include some cache-like structure in them. Therefore, for quan-

tifying each chromosome’s area cost, we have used CACTI, a well-known,

cache-area estimation tool. CACTI v3.2 has been primarily used since it is suit-

able for modeling simpler (older) cache-like structures (such as the BTB) and

at an implementation technology identical to the one of the simulator (180 nm).

In any case, the wrapper scripts we have created (Figure 6.1) can also handle

CACTI versions 4.1 and 6.0, if desired.

6.1.1.3 Biomedical benchmarks & input datasets

In consistency with our prior experiments, the eight ImpBench components

have been used as representative implant workloads for execution on XTREM,

for evaluating different chromosomes. These benchmarks represent antici-

pated common tasks running on future implant processors and exhibit varied

characteristics, as shown in Table 6.2.

218

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

Furthermore, we have considered actual physiological input data that has been

provided from the BIOPAC (R) Student Lab PRO v3.7 Software. A concise

overview of the dataset details is provided in Table 6.3. Each chromosome

represents a particular processor instance onto which each all benchmarks ex-

cept DMU (which runs on a single, hard-coded input) are fed with each of the

7 datasets (of (1 KB or 10 KB)) and are executed. This accounts for a total of

50 benchmark runs for the 1 KB case and another 50 for the 10 KB case. As

we shall see in Section 6.1.1.4, this is a substantial amount of (cycle-accurate)

simulation time. In order to get practical results in our limited time frame and

without loss of generality, for this work we have selected and executed only

the EMGII dataset (both sizes) as it displays worst-case performance charac-

teristics. In so doing, we have limited the number of runs to 8 per dataset size.

We, nonetheless, explore the design space for both sizes in order to investigate

the effect dataset size has on the Pareto-optimal solutions.

6.1.1.4 Parallelization & optimization

As shown in Table 6.2, evaluating a single processor configuration (i.e. one

GA individual) with a single input (EMGII) and a single data size (1 KB),

across all 8 benchmarks takes 125.58 seconds, on average. Assuming the

10 − KB datasets run ×10 as slow as the 1 − KB benchmarks (except for

DMU) and, considering optimization across all 7 dataset types, a full run of the

GA with a population size of 20 and 200 generations will take approximately

343 days per result. We do not consider the GA run-times in this calculation

as the execution overhead of the parallelized GA was found to be negligible,

contributing only 0.13 seconds per generation.

Since this run-time (a little less than a full calendar year) is quite prohibitive,

we parallelized the evaluation stage of the GA so that different individuals are

evaluated on idle CPUs of the CE-group’s laboratory machines. Hence, the

speedup offered by our parallelized version is equal to ∼ P/⌈ P/N ⌉, where

P is the population size and N is the number of computers available. During

the run-time of the GA, support scripts periodically search for and prepare

free machines for the algorithm to use; these machines are used on the lowest

priority in order to not disrupt regular usage. Therefore, this framework is

expandable, modular and requires minimal dedicated resources.

It turns out that, at any given time, we had around 20 machines available for

computation. Therefore, the runtime has been effectively reduced to about

17.5 days for each run. As discussed before, we reduced this time further

by only considering the worst-case input for each benchmark, EMGII, and we

6.1. IMPEDE: A DSE TOOL FOR IMPLANT PROCESSORS 219

performed separate runs for each of the input sizes of 1 KB and 10 KB .

6.1.2 Framework fine-tuning

In the previous section, we went through the various building blocks of the

DSE framework. Adjusting the framework to target implant processors re-

quires, however, fine-tuning of the GA parameters and proper encoding (i.e.

representation) of the chromosomes. In what follows, we go through such

details that make our framework suitable for implant-processor design.

6.1.2.1 Chromosome encoding & XTREM errata

Since GAs optimize the information encoded in the chromosomes, we needed

to define a chromosomal representation for the processor parameters that the

GA can work with. There are several chromosomal encoding strategies, the

simplest being encoding each variable as a string of 1 and 0 bits. In this work

we chose this encoding rather than real encoding [153] since the processor

parameters encoded are integer values. Each chromosome is encoded as shown

in Table 6.4. The table lists the processor variables chosen, their ranges as well

as the encoding and decoding rules. The included variables are in agreement

with the ones in Table 6.1.

The processor parameters we chose to include in the search space depended

both on what we wanted out of the processor and the capabilities and limita-

tions of the simulators we had. As can be seen from Table 6.4, clock frequency

has been encoded but was not used in this version of the GA; we found that

running the simulator with different clock-frequency values did not affect the

results. For the purposes of this work, XTREM runs on a default clock fre-

quency of 2 MHz, typical for implant processors.

The Write Buffer and the Fill Buffer included in XScale (and, thus, XTREM)

help achieve better performance by hiding memory-access stalls when the core

is running at a high clock frequency (e.g. 200 MHz). This is hardly the case

for an implant processor; therefore, we did not encode the two buffers but

rather fixed their sizes at the minimum supported by XTREM, i.e. exactly two

entries. For similar reasons, Translation Lookaside Buffers (I/D-TLBs) have

been excluded from the GA and fixed to a single-entry structure each.

As can be seen from Table 6.4, I-cache and D-cache structures have also been

encoded in the chromosome. Although the simulator theoretically supports ad-

justable I-cache and D-cache latencies, we found that varying the I-cache la-

220

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

tency above the default value of 1 often had the simulator hanging. Therefore,

we only include D-cache latency as a variable, which we vary from 1 to 16

clock cycles. Note also that the above discussion pertains only to L1 caches.

At a stage where embedded applications hardly have even an L1 cache, we

think having L2 caches would be an overkill, and therefore exclude them from

our exploration. This is also in agreement with the results in Chapter 5.

Except for the processor parameters, also their ranges have been defined: i) by

the minimum and maximum allowed range that the simulators could support –

so that we could capture as much of the design spectrum as possible –, and ii)

by the (micro)architectural profiling studies we have performed so far.

6.1.2.2 Population size

The size of the population represents the maximum number of Pareto points

the algorithm can find. If we pick too small a size for the population, we would

have lesser tradeoffs available. On the other hand, the GA is O(mN 2), where

m is the number of objectives and N is the population size. Keeping these

factors in mind, we chose a population size of 20, which also coincided with

the number of machines we expected to be free at any given time. Therefore,

the entire population could be evaluated at once in parallel.

6.1.2.3 Number of Generations

The number of generations represent the time the GA is allowed to reach the

Pareto front. We observed that the GA converges rather rapidly to a front, then

tries to increase its spread in the subsequent generations. After this, the GA

reaches a sort of ‘stable state’ where it is unable to improve the spread without

degrading the distance from the front, and vice versa. We can limit the number

of generations at this phase, in order to reduce computation time. We use a

reduced problem set - that of only optimizing the checksum benchmark, and

run this for a large number of generations (1000) in order to approximate the

number of generations needed, then use this as a guide to selecting the number

of generations for the full problem.

6.1. IMPEDE: A DSE TOOL FOR IMPLANT PROCESSORS 221

P
a
ra

m
et

er
E

n
co

d
ed

D
ec

o
d

in
g

R
em

a
rk

s
N

a
m

e
(R

ef
)

R
a
n

g
e

R
a
n

g
e

B
it

s
F

o
rm

u
la

C
o
re

C
lo

ck
F

re
q
u
en

cy
(F
r
e
q

)
[
1
.
.
.
6
4
]

[0
..

.6
3
]

6
n
+
1

N
o
t

u
se

d
in

cu
rr

en
t

v
er

si
o
n

B
ra

n
ch

P
re

d
ic

ti
o
n

(B
p
r
e
d

)
B
i
m
o
d
a
l
,
T
a
k
e
n
,
n
o
t
T
a
k
e
n

[
0
.
.
.
2
]

2
-

b
i
t
0
=
i
s
B
i
m
o
d

,
b
i
t
1
=
i
s
T
a
k
e
n

B
ra

n
ch

T
ar

g
et

B
u
ff

er
:

N
u
m

b
er

o
f

S
et

s
(b
t
b
n
s
e
t
s

)
[
3
2
.
.
.
1
2
8
]

[
0
.
.
.
5
]

3
2
n
+
5

O
n
ly

va
li

d
fo

r
i
s
B
i
m
o
d
=
T
R
U
E

B
ra

n
ch

T
ar

g
et

B
u
ff

er
:

A
ss

o
ci

at
iv

it
y

(b
t
b
a
s
s
o
c

)
[
1
.
.
.
3
2
]

[
0
.
.
.
5
]

3
2
n

O
n
ly

va
li

d
fo

r
i
s
B
i
m
o
d
=
T
R
U
E

B
ra

n
ch

P
re

d
ic

ti
o
n
:

R
et

u
rn

A
d
d
re

ss
S

ta
ck

(R
A
S

)
[
0
.
.
.
8
]

[
0
.
.
.
4
]

3
f
l
o
o
r
(
2
n
−
1
)

-

L
1

I/
D

-C
ac

h
e:

N
u
m

b
er

o
f

S
et

s
(I
/
D
n
s
e
t
s

)
[
1
.
.
.
8
1
9
2
]

[
0
.
.
.
1
3
]

4
2
n

-

L
1

I/
D

-C
ac

h
e:

B
lo

ck
S

iz
e

(I
/
D
b
s
i
z
e

)
[
8
.
.
.
3
2
]

[
0
.
.
.
2
]

2
2
n
+
3

-

L
1

I/
D

-C
ac

h
e:

A
ss

o
ci

at
iv

it
y

(I
/
D
a
s
s
o
c

)
[
1
.
.
.
3
2
]

[
0
.
.
.
2
]

3
2
n

-
L

1
I/

D
-C

ac
h
e:

R
ep

la
ce

m
en

t
P

o
li

cy
(I
/
D
r
e
p
l

)
f
,
r
,
l

[
0
.
.
.
2
]

2
-

b
i
t
0
=
i
s
F
i
f
o

,
b
i
t
1
=
i
s
R
a
n
d
o
m

L
1

D
-C

ac
h
e:

L
at

en
cy

(D
l
a
t
e
n
c
y

)
[
1
.
.
.
1
6
]

[
0
.
.
.
4
]

3
f
l
o
o
r
(
2
n
)

-

L
1

I-
C

ac
h
e:

L
at

en
cy

(I
l
a
t
e
n
c
y

)
[
1
.
.
.
1
6
]

[
0
.
.
.
4
]

3
f
l
o
o
r
(
2
n
)

N
o
t

u
se

d
in

cu
rr

en
t

v
er

si
o
n

T
a
b
le

6
.4

:
P

ro
ce

ss
o
r

d
es

ig
n

p
a
ra

m
et

er
s

co
n
si

d
er

ed
in

th
is

w
o
rk

,
en

co
d
ed

a
s

3
6

ch
ro

m
o
so

m
a
l

b
it

s.

222

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

For quantifying the distance of the solution front Q from the ‘true’ Pareto front

P ∗3 we have chosen Veldhuizen’s Generational-Distance (GD) metric [142]:

Let di =
|P∗|
min
k=1

p

√

√

√

√

M
∑

m=1

(fm
(i) − f ∗

m
(k)

)p

Then, GD =

(

∑|Q |
i=1 d

p
i

)1/p

|Q |
, (6.1)

where Q is the solution under consideration; P ∗ is the reference Pareto-front,

M is the total number of objective functions, and fm
(x) and f ∗

m
(x) are the

mth-objective-function values of the xth solutions of Q and P ∗, respectively.

The lower the value of GD, the closer the distance between Q and P ∗ and the

better the solution, with GD = 0 for solutions lying on the reference front.

For quantifying the diversity (spread) of the front Q , we have used Deb et. al’s

spread metric ∆ [30]:

∆ =

M
∑

m=1

d e
m +

|Q |
∑

i=1

|di − d̄ |

M
∑

m=1

d e
m + |Q |d̄

(6.2)

where di is the same distance metric described in GD, and d̄ is their mean and

d e
m is the distance between the extreme solutions of P ∗ and Q with respect to

the mth objective.

We found both metrics to be very noisy, especially the diversity metric. There-

fore, to make them easier to compare, we smooth the data using a moving

average with a span of 20 generations. Figure 6.3 shows the resulting metrics.

We observer that GD declines rapidly until about the 100th generation, after

which it fluctuates around GD = 0.4 for a long time until finally dropping to

zero around generation #600. The rapid decline is of course due to the solution

fronts converging towards the reference. After generation #51, it can be seen

that the general trend is that as spread decreases, distance increases and vice

versa. The behavior from generations #100-#593 are also expected - as the

algorithm searches for new solutions, the distance fluctuates. A minor rise in

3Since we do not know the true front (by the problem definition itself), we approximate it

by computing a combined front consisting of mutually non-dominating points from the results

of 10 separate runs of the algorithm. We call this the ‘reference front’.

6.1. IMPEDE: A DSE TOOL FOR IMPLANT PROCESSORS 223

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Metric

G
e
n
e
ra

ti
o
n

Distance

Diversity

Figure 6.3: Smoothed distance and diversity metrics over 1000 generations

(Benchmark: checksum)

both GD and spread may not mean that the front is actually further away than

the one previously – since we have finite points in the reference front, points

that are the same distance from the actual front may give slightly varying dis-

tance values from the reference front. The behavior at the tail end reflects

the fact that the reference solution is a combination of several solutions, and

therefore also contains the final solution of the run in question. The apparent

rapid convergence seen therefore, is in fact the algorithm moving towards its

own final solution – a foregone conclusion. Therefore, we do not consider this

region in our analysis.

Since after generation #100, the algorithm seems to oscillate between improv-

ing spread and distance at the cost of the other; without loss of precision in both

quantities at the same time, we can stop the algorithm around generation #100.

Since GAs are random by nature, in order to be sure of getting good results,

we run every subsequent experiment for twice this time, i.e. 200 generations.

This also compensates for the smoothing we performed.

6.1.2.4 Mutation

There are a number of ways to select the mutation probability, including com-

plicated adaptive mutation strategies [67]. However, the simplest and most

224

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

recommended strategy is simply setting the mutation probability as pm = 1/n
where n is the chromosome length [9]. This means that a single bit per chro-

mosome is expected to change from the parent to the child population. There-

fore, the child chromosome is likely to vary from the parent chromosome in

exactly one attribute, that too by a hamming distance of one. We use this ap-

proach for setting the mutation probability in our implementation of the GA,

i.e. pm = 1/36.

6.1.2.5 Crossover probability

Crossover allows chromosomes to exchange information that may lead to bet-

ter chromosomes that combine the “good qualities” of the parent chromo-

somes. Used carefully, crossover can lead to much quicker evolution times,

and is central to the idea of Genetic Algorithms examining more solutions in

the more promising regions of the solution space [63]. Therefore, it is impor-

tant to set a good crossover probability Pc , which determines the percentage of

chromosomes that undergo recombination at each generation. As in the case of

number of generations, we used a reduced problem set – running only check-

sum with the 1− KB EMGII input for 200 generations with different crossover

probabilities. Figure 6.4 shows the two metrics for the Pareto fronts resulting

from each value of Pc
4. Keeping in mind the discussion from Section 6.1.2.3,

we see from the graphs that Pc = 0.2 and Pc = 0.6 seem to lead to the fastest

convergence and best values for the two metrics over the course of the genera-

tions, and therefore Pc = 0.2 is chosen for subsequent runs.

6.1.3 Selected results & validation

In this section, the correct functionality of the framework is demonstrated.

Also, an expansion of the framework with a hard realtime deadline leading to

constrained design is illustrated.

6.1.3.1 Implant-processor results

Having prepared and fine-tuned the framework to the best of our knowledge,

we move on to testing it by running it with all the benchmarks, once for each of

4Note that in this case, these are the un-normalized, un-smoothed metrics. They appear

less noisy due to the fact that the number of generations plotted is much lower than in Sec-

tion 6.1.2.3.

6.1. IMPEDE: A DSE TOOL FOR IMPLANT PROCESSORS 225

0 20 40 60 80 100 120 140 160 180 200
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

p
c
=0.0 p

c
=0.2 p

c
=0.4 p

c
=0.6 p

c
=0.8 p

c
=1.0

(a) Distance metric

0 20 40 60 80 100 120 140 160 180 200
0.75

0.8

0.85

0.9

0.95

1

p
c
=0.0 p

c
=0.2 p

c
=0.4 p

c
=0.6 p

c
=0.8 p

c
=1.0

(b) Diversity metric

Figure 6.4: Distance and Diversity metrics for various crossover probabilities

(Pc) over 200 generations (Benchmark: checksum)

the two dataset sizes. We call these the baseline results. Figure 6.5 shows the

projections of the Pareto front evolved on the 3 Cartesian planes (performance,

power, area).

We readily see in both rows of results that the algorithm reaches the “front”

226

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

by generation #40. After this, the points spread out and a wider Pareto front is

found. We see from Figure 6.5b and Figure 6.5d that the 10−KB datasets have

a wider front w.r.t. performance. We anticipate this to be so because the big-

ger dataset increases processor utilization by allowing the caches and branch

predictor table to fill and, hence, minimizing processor stalls. This higher per-

formance also leads to a corresponding increase in the power consumption as

can be seen from the power axes in Figure 6.5b and Figure 6.5c.

On the contrary, we see slightly bigger area-utilization solutions for the smaller

dataset. Although measurements with more dataset sizes are needed to draw

safe conclusions, this area trend may again be due to “cold-start” effects; that

is, due to the fact that when small datasets are processed, poor CPU utilization

occurs since the cache structures do not have enough time to fill, pushing the

GA towards larger structures in the hopes of minimizing cache stalls.

6.1.3.2 Framework expansion

As this is one of the first steps towards designing an implant processor, we

wanted to make sure that the framework is expandable, in order to facilitate

the addition of new domain specific information into the framework as it gets

available. In order to test this property of the framework, we devised a syn-

thetic implant application with a hard realtime deadline. Indeed, many implant

applications have realtime requirements so formulating a synthetic problem

with such a constraint does not fall far from practice. For a demanding, syn-

thetic application we have started from the SiMS case study we have presented

in Section 4.7 and added the Motion benchmark to it, as well. In order to also

introduce realtime constraints, we have further modified the DMU and Motion

benchmarks (called StressDMU and StressMotion, respectively5), to represent

a single iteration of these (repetitive) applications. This one iteration was cho-

sen to be the worst-case iteration in terms of instruction-cycle count for each

of the two original benchmarks.

As illustrated in Figure 6.6, the two stress-benchmarks (or stressmarks, for

short) – combined with data-integrity checks, compression and encryption –

represent an atomic action for an implant application. In a real-world scenario,

this atomic action must be completed, for instance, before the next set of in-

put arrives. Therefore, we constrain the total time required for this combined

operation as a hard realtime deadline.

5These and other modifications in the ImpBench benchmarks will be detailed later, in Sec-

tion 6.2.

6.1. IMPEDE: A DSE TOOL FOR IMPLANT PROCESSORS 227

−0.45
−0.4

−0.35
−0.3

−0.25
−0.2

−0.15
−0.1

−0.05

80

90

100

110

120

130

140

150

10
0

10
1

10
2

10
3

10
4

10
5

Performance

Power

A
re

a

10 KB

1 KB

(a) 3D view

−0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05
80

90

100

110

120

130

140

150

Performance

P
o
w

e
r

10 KB

1 KB

(b) Performance-Power

80 90 100 110 120 130 140 150
10

0

10
1

10
2

10
3

10
4

10
5

Power

A
re

a

10 KB

1 KB

(c) Power-Area

10
0

10
1

10
2

10
3

10
4

10
5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

Area

P
e
rf

o
rm

a
n

c
e

10 KB

1 KB

(d) Performance-Area

Figure 6.5: Baseline DSE results for 1 KB and 10 KB datasets running on all

benchmarks.

Out of the ImpBench benchmark set, we chose checksum, miniLZO and RC6

as the data-integrity, compression and encryption algorithms, respectively. We

obtain the simulated execution time of the processor configuration under in-

vestigation from the simulator output. In case the deadline is violated, the

processor configuration is deemed to be unacceptable. On the other hand, if

the deadline is met, we calculate the objectives of the configuration by com-

bining with the rest of the benchmarks in the test suite (including the original

versions of DMU and Motion). Therefore, the fitness metric remains the same

as the baseline case.

Figure 6.7 shows the Pareto front evolved with a deadline of 1 second, and

also with a slightly relaxed deadline of 2 seconds. As expected, the stricter

deadline encourages processor configurations that have a higher performance,

228

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

Compression

(miniLZO)

Encryption

(RC6)

Data Integrity

(checksum)

logged raw

data (10KB)

Motion

Pressure

Activity factor

compressed

data (~2.2KB)

encrypted

data (~2.3KB)

data with

CRC32(~2.3KB)
TxD

10011100111001110011

10011

XXXX

CXXXX

XXX

XXX

Off-chip

memory

storage

00:00

00:04

00:06

00:07

00:08

MM:SS*

Application 1

(stressDMU3)

Application 2

(stressmotion)

Temperature
Drug release rate

*(indicative times)

Figure 6.6: Block diagram of simulated implant application with realtime

deadlines.

but at the same time take slightly more power and area.

6.1.4 Conclusions

In this work we have developed ImpEDE, a novel, multiobjective, framework

that provides high-level DSE of biomedical-implant processors, populated by

suitable biomedical benchmarks and assorted datasets. ImpEDE organization

is described in detail and its functionality is fine-tuned based on our previ-

ous experience (e.g. processor parameter values and ranges) and new findings

(e.g. crossover probability, dataset size). Restricted by its simulator compo-

nents, the current framework version can deliver (near) Pareto-optimal pro-

cessor solutions, co-optimized across performance, power consumption and

area utilization. In view of potentially more optimization goals and bench-

marks, we have paid attention to making the framework modular and expand-

able. Furthermore, we have provided a parallelized, versatile version of the

6.2. IMPBENCH V1.1: REVISITING THE IMPLANT BENCHMARK SUITE229

−0.4

−0.2

0

50

100

150

10
0

10
5

PerformancePower

A
re

a

−0.4 −0.3 −0.2 −0.1 0
80

90

100

110

120

130

140

150

Performance

P
o
w

e
r

80 100 120 140 160
10

0

10
5

Power

A
re

a

10
0

10
5

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

Area

P
e
rf

o
rm

a
n
c
e

no deadline

deadline = 2 sec

deadline = 1 sec

Figure 6.7: DSE results expanded with hard realtime deadlines of 2 seconds

and 1 second for 10 KB datasets running on all benchmarks.

framework which offers execution speedup roughly equal to the number of

processor available, without dedicated hardware resources. Last, it has been

our intension to make the proposed framework a freely accessible tool, avail-

able to everyone online for further studies and improvements.

6.2 ImpBench v1.1: Revisiting the implant benchmark

suite

As shown in the previous sections, through the course of developing the Imp-

EDE framework, we have come across some limitations of ImpBench like, for

instance, the absence of any components in the suite for modeling the realtime

behavior of a designed processor. For this and some additional reasons, the

need for an extended version of ImpBench naturally arose.

In the sections to follow, we attempt to expand the original ImpBench charac-

230

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

terization study with extensive, new results acquired through use of ImpEDE:

We effectively investigate the sensitivity of different processor attributes (e.g.

cache geometries) to the various benchmarks in ImpBench. We also update

the suite with a new benchmark and two new, so-called “stressmarks”, bring-

ing ImpBench to version 1.1. Concisely, this work contributes in:

• Providing a novel and sound methodology, based on GAs, of evaluating

benchmark characteristics in terms of resulting processor configurations;

• Identifying a representative (subset of) benchmark(s) for substituting the

whole suite in simulations, thus achieving radically shorter DSE times;

• Updating the ImpBench suite to version 1.1 by proposing: (a) a more so-

phisticated version of the DMU benchmark, and (b) two derived stress-

marks for enabling shorter simulation times while biasing the explo-

ration process insignificantly or, at least, predictably; and

• Reporting/amending errata of the original work and giving further clari-

fications, where needed.

Compared with our own prior work, the new version of the ImpBench suite

introduces a more detailed variation of the (originally described) DMU bench-

mark and two stressmarks, that is, two benchmarks based on DMU and motion

and exhibiting worst-case execution (i.e. stress) behavior. A further novelty

of the current work is the employment of a GA-based, DSE framework and

analytic metrics in order to characterize the old and new ImpBench bench-

marks. In effect, this work extends the previous work in both terms of content

and methodology. To the best of our knowledge, no benchmark suite has been

published before to address the rising family of biomedical-implant processors.

What is more, no characterization study has utilized GAs before to explore the

benchmark properties and their implications on the targeted processor.

6.2.1 ImpBench v1.1 overview

In order to start our analysis. the original, modified and extended compo-

nents of the ImpBench benchmark suite are reproduced in Table 6.5. The

table further reports binary sizes (built for ARM) and averaged, dynamic

instruction/µop counts so as to give a measure of the benchmark complexity.

We maintain the original grouping into four distinct categories: lossless data

compression, symmetric-key encryption, data-integrity and real applications.

6.2. IMPBENCH V1.1: REVISITING THE IMPLANT BENCHMARK SUITE231

benchmark name size dyn. instr.* dyn. µops*
(KB) (average) (#) (average) (#)

Compression miniLZO 16.30 233,186 323,633
Finnish 10.40 908,380 2,208,197

Encryption MISTY1 18.80 1,267,162 2,086,681

RC6 11.40 863,348 1,272,845

Data integrity checksum 9.40 62,560 86,211

CRC32 9.30 418,598 918,872

Real applications motion 9.44 3,038,032 4,753,084

DMU4 19.50 36,808,080 43,186,673

DMU3 19.59 75,344,906 107,301,464
Stressmarks stressmotion 9.40 288,745 455,855

stressDMU3 19.52 124,212 224,791

(*) Typical 10 − KB datasets have been used, except for DMU-variants

which use their own, special datasets.

Table 6.5: ImpBench v1.1 components and useful general statistics.

By including groups of different algorithms performing similar functionality

in ImpBench, benchmarking diversity has been sought for capturing different

processor design aspects. This diversity has already been illustrated in Sec-

tion 4.6 and will be further elaborated in Section 6.2.3. In this version of Imp-

Bench (v1.1), real applications have been expanded with “DMU3” and a new

category stressmarks has been added, featuring “stressmotion” and “stress-

DMU3”. The new nomenclature will become clear in the following benchmark

descriptions:

MiniLZO (shorthand: “mlzo”) is a light-weight subset of the LZO library

(LZ77-variant). LZO is a data compression library suitable for data de-

/compression in real-time, i.e. it favors speed over compression ratio. LZO is

written in ANSI C and is designed to be portable across platforms. MiniLZO

implements the LZO1X-1 compressor and both the standard and safe LZO1X

decompressor.

Finnish (shorthand: “fin”) is a C version of the Finnish submission to the Dr.

Dobb’s compression contest. It is considered to be one of the fastest DOS

compressors and is, in fact, a LZ77-variant, its functionality based on a 2-

character memory window.

MISTY1 (shorthand: “misty”) is one of the CRYPTREC-recommended 64-bit

ciphers and is the predecessor of KASUMI, the 3GPP-endorsed encryption al-

gorithm. MISTY1 is designed for high-speed implementations on hardware as

well as software platforms by using only logical operations and table lookups.

MISTY1 is a royalty-free, open standard documented in RFC2994 [104] and

is considered secure with full 8 rounds.

232

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

RC6 (shorthand: “rc6”) is a parameterized cipher and has a small code size.

RC6 is one of the five finalists that competed in the AES challenge and has

reasonable performance. Further, Slijepcevic et al. [126] selected RC6 as the

algorithm of choice for WSNs. RC6-32/20/16 with 20 rounds is considered

secure.

Checksum (shorthand: “checksum”) is an error-detecting code that is mainly

used in network protocols (e.g. IP and TCP header checksum). The checksum

is calculated by adding the bytes of the data, adding the carry bits to the least

significant bytes and then getting the two’s complement of the results. The

main advantage of the checksum code is that it can be easily implemented

using an adder. The main disadvantage is that it cannot detect some types of

errors (e.g. reordering the data bytes). In the proposed benchmark, a 16-bit

checksum code has been selected which is the most common type used for

telecommunications protocols.

CRC32 (shorthand: “crc32”) is the Cyclic-Redundancy Check (CRC) is an

error-detecting code that is based on polynomial division. The main advantage

of the CRC code is its simple implementation in hardware, since the polyno-

mial division can be implemented using a shift register and XOR gates. In the

proposed benchmark, the 32-degree polynomial6 specified in the Ethernet and

ATM Adaptation Layer 5 (AAL-5) protocol standards has been selected (same

as in NetBench).

Motion (shorthand: “motion”) is a kernel based on the algorithm described

in the work of Wouters et al. [152]. It is a motion-detection algorithm for the

movement of animals. In this algorithm, the degree of activity is actually mon-

itored rather than the exact value of the amplitude of the activity signal. That

is, the percentage of samples above a set threshold value in a given monitor-

ing window. In effect, this motion-detection algorithm is a smart, efficient,

data-reduction algorithm.

DMU4 (shorthand: “dmu4”), formerly known as DMU7, is a real program

based on the system described in the work of Cross et al. [25]. It simulates

a drug-delivery & monitoring unit (DMU). This program does not and cannot

simulate all real-time time aspects of the actual (interrupt-driven) system, such

as sensor/actuator-specific control, low-level functionality, transceiver opera-

tion and so on. Nonetheless, the emphasis here is on the operations performed

6CRC32 generator polynomial: x 32
+ x 26

+ x 23
+ x 22

+ x 16
+ x 12

+ x 11
+ x 10

+ x 8
+ x 7

+ x 5
+

x
4
+ x

2
+ x + 1.

7The original benchmark DMU has been renamed to DMU4, to differentiate it from the new

addition DMU3. See main text for further details.

6.2. IMPBENCH V1.1: REVISITING THE IMPLANT BENCHMARK SUITE233

by the implant core in response to external and internal events (i.e. interrupts).

A realistic model has been built imitating the real system as closely as possible.

DMU3 (shorthand: “dmu3”) is an extension of “dmu4”. The original “dmu4”

benchmark emulates a real-time implantable system by reading real pressure,

temperature and integrated-current sensory data (as provided by true field mea-

surements by the implant developers [25]) and by writing to transceiver module

(abstracted as a file). “dmu3” emulates this in a more sophisticated manner by

also accurately modeling the gascell unit used to switch drug delivery in the

implant on and off. To this end, it reads additional input data termed ”gas-

cell override switch” and ”gascell override value”. The suffix numbers in both

DMU benchmarks originate from different field-test runs using different drug-

delivery profiles: A high-low-high varying, ”bathtub” profile (#4) has been

used for “dmu4” and a constant, flat profile (#3) has been used for “dmu3”.

Due to its affinity with “dmu4”, “dmu3” will not be analyzed further in this

work. It has been briefly introduced, though, so that the content of stressmark

“stressdmu3” will be better understood.

Stressmotion (shorthand: “stressmotion”) and stressDMU3 (shorthand:

“stressdmu3”) constitute a new addition to the ImpBench suite, their creation

stemming from the fact that the original “motion” and “dmu4” benchmarks

have considerably long run times w.r.t. the rest of the benchmarks (see Ta-

ble 6.5). “dmu3” rather than “dmu4” has been used for extracting a stressmark

due to its more sophisticated emulation of the DMU applications. Since all

benchmarks essentially are pieces of continuously iterated code, each stress-

mark in fact is a derived, worst-case iteration of its respective benchmark. That

is, an iteration wherein the implant is required to perform all possible opera-

tions; thus, the term “stressmark”. As shall be seen in the following analysis,

the stressmarks feature significantly shorter execution times.

With the exception of the DMU-variants that use their own internal input data,

all other benchmarks come with a full complement of physiological input

datasets (e.g. EEG, EMG, blood pressure, pulmonary air volume). Without

loss of generality, for this work we have, again, selected and executed only the

10 − KB EMGII dataset as it exhibits worst-case performance characteristics

and, thus, provides a lower-bound for processor design.

6.2.2 Experimental setup

As evaluation framework for our characterization, we have employed Imp-

EDE. An overview of the framework has already been shown in Figure 6.1.

234

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

Optimization (minimization) objectives within the framework are: processor

performance (in CPI), processor total area utilization (in mm 2) and processor

average power consumption (in mW). As shown in the same figure, a well-

known GA (NSGA-II [31]) has been selected for traversing the design space. It

generates valid processor configurations also known as ”chromosomes”. Com-

promising between unrealistic execution times and quality of results, all full

runs of the GA have been allowed to evolve for 200 generations with a popu-

lation size of 20 chromosomes per generation.

Within the framework, chromosome performance and power metrics are pro-

vided by executing the ImpBench benchmarks on the XTREM processor sim-

ulator. XTREM settings with ImpEDE have been summarized in Table 6.1.

For quantifying each chromosome’s area cost, we have used CACTI v3.2, a

well-known, cache-area estimation tool.

ImpEDE has primarily been designed for exploring promising implant-

processor configurations. However, in this work we employ it as a meta-tool,

that is, a means of characterizing the various ImpBench benchmarks in terms

of the different directions they push the GA-based optimization process. In

short, we wish to compare the Pareto-optimal fronts of the various ImpBench

components and to identify differences in resulting processor configurations.

6.2.3 Benchmark characterization

The first characterization study of ImpBench (see Section 4.6) has focused on

illustrating its novelty and variation - thus, its significance - with respect to the

most closely related MiBench suite. In the following analysis, we investigate

further important attributes within the updated suite. Namely, we address the

below questions:

(a) What is the aggregate Pareto front of optimal processor configurations,

as driven by the whole ImpBench suite? What are the implications in

predicted processor-hardware resources?

(b) What is the contribution to the aggregate Pareto front of each separate

benchmark? What is the contribution to the predicted hardware resources?

(c) What is the complexity (in simulation time) of ImpBench as a whole and

of its components? With respect to the previous questions, can a repre-

sentative ImpBench subset with significantly shorter simulation times be

identified?

6.2. IMPBENCH V1.1: REVISITING THE IMPLANT BENCHMARK SUITE235

6.2.3.1 Lossless compression

Each complete run of our DSE framework evolving chromosomes for 200 gen-

erations, results in - at most - 20 Pareto-optimal, implant-processor configura-

tions. Three-dimensional plots can be produced, revealing the shape of the

true8 Pareto curve. Figure 6.8 illustrates, across the three objectives, three

such fronts: the aggregate Pareto front P ∗9 labeled in the plots as “all” and

used as the reference front, and two Pareto fronts formed when only “mlzo”

and “fin” benchmarks are used for the GA evolutions.

Figure 6.8a depicts clear power and performance cut-offs for all three cases

with a wide dispersion of chromosomes, indicating a very well-defined design

space. We can observe that both compression algorithms achieve a quite dis-

tributed performance-power front, yet “mlzo” is closer to the aggregate “all”

than “fin” and is, thus, a better candidate for substituting “all”. Figure 6.8b re-

veals that, in terms of area, “mlzo” is also closer matching “all”, even though

it appears to be having slightly higher area requirements.

To better understand what these area requirements might translate to in a real

processor core, we have put together Figure 6.9. In this Figure, boxplots are

drawn for different subsystems of the explored processors. Each boxplot has

been created by either running the GA with a single benchmark or the whole

ImpBench. Statistics (min, max, median etc.) have been calculated based on

the evolved population of 20 processor solutions that reside on the Pareto front.

In the current analysis, we will focus on a limited number of observations from

this Figure. However, Figure 6.9 contains a large amount of information and

can offer the interested reader more predictions on the various processor during

architectural exploration.

For the case of lossless-compression benchmarks, Figure 6.9 reveals that

“mlzo” tends to lead to processors with slightly higher provisions, in partic-

ular in the L1 D-cache (D$, hereon) subsystem compared to “all” and “fin”.

For instance, “mlzo” requires, on average, a D$ of 64 KB size10 compared

to 4 KB for “fin” and 8 KB for “all” (see Figures 6.9h, 6.9i and 6.9j). By

8In a real-world optimization problem like ours, the true Pareto front is not known. There-

fore, we make the reasonable assumption (and have verified to the best of our equipment’s

capabilities in [27]) that the aggregate front P∗ reached after 200 generations matches the true

Pareto front P ,i.e. |P∗ − P | ≈ 0. This means that the Pareto front at generation 200 is

considered our reference front for comparisons.
9The aggregate Pareto front P∗ has resulted from running the GA with all original ImpBench

benchmarks. That is, “dmu3” and both stressmarks are excluded, since they are covered by

“dmu4”.
10It holds that: cachesize = #sets ∗ blocksize ∗ associativity .

236

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

10
0

10
1

10
2

10
3

90

100

110

120

130

140

150

160

CPI

P
o
w

e
r

all

mlzo

fin

(a) CPI (-) – Power consumption, avg.

(mW)

90 100 110 120 130 140 150 160
10

−1

10
0

10
1

10
2

10
3

Power

A
re

a

all

mlzo

fin

(b) Power consumption, avg. (mW) –

Area (mm 2)

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Area

C
P

I

all

mlzo

fin

(c) Area (mm 2) – CPI (-)

Figure 6.8: Final Pareto-fronts (after 200 generations) for lossless-

compression benchmarks on 10− KB datasets.

observing the rest of the plots in Figure 6.9, it becomes apparent that, in an

overall, “mlzo” is very close (slightly worse) to “all” in terms of performance

and power but - if it substituted the whole ImpBench in the processor DSE - it

would lead to more area-hungry processor configurations. Therefore, “mlzo”

would be an interesting replacement for ImpBench, always giving worst-case

design boundaries. “fin”, on the other hand, is more obscure in this respect

requiring, on average, smaller D$ but larger BTB structures than “all”.

6.2. IMPBENCH V1.1: REVISITING THE IMPLANT BENCHMARK SUITE237

8
0
%

1
0
0
%

B
IM

O
D
A
L

A
L
W
A
Y
S
T
A
K
E
N

A
L
W
A
Y
S
N
O
T
T
A
K
E
N

2
0
%

4
0
%

6
0
%

0
%

(a
)

B
P

R
E

D
p
o
li

cy
(N

T
/T

/b
im

o
d
a
l)

1
6

3
2

4
8

6
4

8
0

9
6

1
1
2

1
2
8

1
4
4

(b
)

B
T

B
se

ts
(#

)

08

1
6

2
4

3
2

4
0 (c
)

B
T

B
a
ss

o
ci

a
ti

vi
ty

(#
w

a
ys

)

14

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

1
6
3
8
4

(d
)

L
1

I-
ca

ch
e

se
ts

(#
)

08

1
6

2
4

3
2

4
0 (e
)

L
1

I-
ca

ch
e

b
lo

ck
si

ze
(B

yt
es

)

1248

1
6

3
2 (f
)

L
1

I-
ca

ch
e

a
ss

o
ci

a
ti

vi
ty

(#
w

a
ys

)

8
0
%

1
0
0
%

R
A
N
D
O
M

F
IF
O

L
R
U

2
0
%

4
0
%

6
0
%

0
%

(g
)

L
1

I-
ca

ch
e

re
p
la

ce
m

en
t

p
o
li

cy

(L
R

U
/F

IF
O

/r
a
n
d
o
m

)

14

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

(h
)

L
1

D
-c

a
ch

e
se

ts
(#

)

F
ig

u
re

6
.9

238

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

08

1
6

2
4

3
2

4
0 (i
)

L
1

D
-c

a
ch

e
b
lo

ck
si

ze
(B

yt
es

)

1248

1
6

3
2 (j
)

L
1

D
-c

a
ch

e
a
ss

o
ci

a
ti

vi
ty

(#
w

a
ys

)

8
0
%

1
0
0
%

R
A
N
D
O
M

F
IF
O

L
R
U

2
0
%

4
0
%

6
0
%

0
%

(k
)

L
1

D
-c

a
ch

e
re

p
la

ce
m

en
t

p
o
li

cy

(L
R

U
/F

IF
O

/r
a
n
d
o
m

)

02468

1
0

1
2

1
4

1
6

1
8 (l
)

L
1

D
-c

a
ch

e
m

is
s

la
te

n
cy

(#
c.

cy
cl

es
)

012345678 (m
)

R
et

u
rn

-a
d
d
re

ss
st

a
ck

(R
A

S
)

(#
en

tr
ie

s)

F
ig

u
re

6
.9

:
H

a
rd

w
a
re

re
q
u
ir

em
en

ts
o
f

o
p
ti

m
a
l

p
ro

ce
ss

o
rs

,
a
s

ev
o
lv

ed
o
ve

r
2
0
0
-g

en
er

a
ti

o
n

ru
n
s.

E
a
ch

b
o
xp

lo
t

is
a

se
p
a
ra

te

G
A

ru
n

ei
th

er
fo

r
a

si
n
g
le

b
en

ch
m

a
rk

o
r

fo
r

th
e

w
h
o
le

Im
p
B

en
ch

su
it

e
a
n
d

co
n
ta

in
s

st
a
ti

st
ic

a
l

re
su

lt
s

o
f

2
0

p
ro

ce
ss

o
rs

,
a
t

m
o
st

.
B

a
rc

h
a
rs

a
re

p
lo

tt
ed

fo
r

(a
),

(g
)

a
n
d

(k
)

si
n
ce

d
a
ta

in
th

es
e

ca
se

s
a
re

n
o
n
-n

u
m

er
ic

a
l.

L
eg

en
d
:

M
ed

ia
n
s

(t
ri

a
n
g
le

),
1
st

a
n
d

3
rd

q
u
a
rt

il
es

(s
ta

r
a
n
d

rh
o
m

b
u
s)

,
m

in
(s

q
u
a
re

),
m

a
x

(x
-s

ym
b
o
l)

.

6.2. IMPBENCH V1.1: REVISITING THE IMPLANT BENCHMARK SUITE239

Benchmark GD ∆ Sim. time*
(normalized) (average) (sec)

miniLZO 0.082 0.383 3.07
Finnish 0.115 0.367 21.82

MISTY1 0.083 0.181 16.65

RC6 0.049 0.151 9.37

checksum 0.090 0.189 0.80

CRC32 0.111 0.285 5.46

motion 0.094 0.163 31.16

DMU4 0.085 0.174 37.25

stressmotion 0.088 0.266 1.33

stressDMU3 0.105 0.143 0.60

all 0.000 0.000 125.58

(*) Measured on a dual-core, AMD Athlon(TM) XP 2400+

@ 2000.244 MHz, cache size 256 KB running Fedora 8
Linux.

Table 6.6: Pareto-front distance and normalized-spread metrics, and average

simulation time per benchmark.

All Pareto fronts Q evolved from single-benchmark runs, present similar (but

not identical) 3D-plots. Since results are numerous, we have chosen to also

use arithmetic metrics to evaluate the benchmarks in a more quantitative and,

thus, more reliable manner. For quantifying the distance between each single-

benchmark Pareto front Q and the reference (aggregate) Pareto front P ∗, we

have chosen to use Veldhuizen’s Generational-Distance GD , based on the pre-

viously discussed formula (6.1). Likewise, for quantifying diversity, we have

used Deb et. al’s spread metric ∆, according to the formula (6.2).

Distance and spread calculations for each benchmark have been accumulated

in Table 6.6. Numbers verify the visual observations we have made based on

Figure 6.8. The sharper matching of “mlzo” to “all”, as compared with “fin”,

is revealed here by the distances of the two compression benchmarks; 0.082

and 0.115, respectively. In fact, “mlzo” features the second smallest GD to

“all” after “rc6”, to be discussed next.

The spread, ∆, of the compression benchmarks, though, is the worst across

ImpBench and is slightly better for “fin” than it is for “mlzo” (0.367 and

0.383, respectively), which is especially discernible in Figs. 6.8b and 6.8c.

Wider spreads (i.e. smaller ∆’s) should imply a wider choice of (optimal) pro-

cessor configurations from which to pick, as shown in Figure 6.9. From the

same Figure we can see that, for the two compression algorithms, BTB sets and

240

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

10
0

10
1

10
2

80

90

100

110

120

130

140

150

CPI

P
o
w

e
r

all

misty

rc6

(a) CPI (-) – Power consumption, avg.

(mW)

80 90 100 110 120 130 140 150
10

−1

10
0

10
1

10
2

10
3

Power

A
re

a

all

misty

rc6

(b) Power consumption, avg. (mW) –

Area (mm 2)

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Area

C
P

I

all

misty

rc6

(c) Area (mm 2) – CPI (-)

Figure 6.10: Final (after 200 generations) Pareto-fronts for symmetric-

encryption benchmarks on 10− KB datasets.

BTB associativity vary inversely, resulting in the same overall range of BTB

sizes. However, as boxplots in the Figure reveal, “fin” displays significantly

wider ranges in D$ sizes than “mlzo”. This difference could account for the

difference in ∆’s since all other range differences between the two benchmarks

are small.

6.2.3.2 Symmetric encryption

In Figure 6.10 are plotted aggregate, “misty” and “rc6” Pareto fronts. Al-

though results are more ”noisy” than in the case of the compression bench-

6.2. IMPBENCH V1.1: REVISITING THE IMPLANT BENCHMARK SUITE241

marks, it is clear that both encryption benchmarks are closer to “all”, with

“rc6” practically being on top of it. This is supported by the GD values in Ta-

ble 6.6 which reveals that, in fact “rc6” and “misty” respectively display the

1st and 3rd smallest GD ’s overall. Inspection of all three plots of Figure 6.10

further reveals that “misty” consumes less power but requires more area than

“rc6” (and, thus, “all”) while scoring better performance than either of them.

This agrees with existing literature [134] and with the targeted applications of

MISTY1 which are low-power, embedded systems. Its increased area require-

ments w.r.t. “all” are manifest in Table 6.9 across the set and associativity

(median) sizes of both the I$ and D$ caches. On the other hand, “rc6” features

slightly reduced area w.r.t. “all”, mainly due to a lower (median) associativity

degree in both cache structures.

In terms of diversity of solutions, “misty” is somewhat more clustered than

“rc6” (see Figure 6.10a) and expectedly has a somewhat larger ∆. Yet, both

benchmarks display good spreads with “rc6” ranking overall 2nd best. This

essentially means that a number of diverse (optimal) processor configurations

exists for servicing either benchmark. In particular “rc6” is a highly scalable

application, which can lead to diverse processors while maintaining low area

requirements (as seen above). To be precise, Figure 6.9 reveals that “rc6”

leads to processors with at least ×4 smaller BTB, I$ and D$ structures without

sacrificing processor flexibility. For instance, the D$-set boxplot (Figure 6.9h)

of “rc6” indicates most popular sizes from 16 to 64 entries.

In terms of D$ miss latency, “rc6” is also more relaxed compared to “misty”.

It allows for latencies up to 8 cycles (which is similar to what the aggre-

gate run indicates) while “misty” can tolerate maximum miss penalties of

5 cycles (median). That “misty” can lead to overestimations in latency (and

overall performance) can also be clearly seen by its increased CPI w.r.t. “all”

in Figure 6.10c. To sum up, for the case of the encryption benchmarks, if

“misty” was selected alone to drive the exploration process, it would underes-

timate performance and power costs and overestimate area costs.

6.2.3.3 Data integrity

Figure 6.11 illustrates “checksum” and “crc32” Pareto fronts, along with ag-

gregate, “all” Pareto fronts. Compared to “all”, “checksum” is somewhat

slower and requires more area. “crc32” is even slower and results in processor-

area costs ×2 those of “all”. As an indication of the different area ranges in-

volved, from Figs. 6.9b and 6.9c, “all” leads the exploration to a median BTB

size of 2 KB while “checksum” to 3 KB and “crc32” to 4 KB . These observa-

242

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

10
0

10
1

10
2

60

80

100

120

140

160

180

CPI

P
o
w

e
r

all

checksum

crc32

(a) CPI (-) – Power consumption, avg.

(mW)

60 80 100 120 140 160 180
10

−1

10
0

10
1

10
2

10
3

10
4

Power

A
re

a

all

checksum

crc32

(b) Power consumption, avg. (mW) –

Area (mm 2)

10
−1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

Area

C
P

I

all

checksum

crc32

(c) Area (mm 2) – CPI (-)

Figure 6.11: Final (after 200 generations) Pareto-fronts for data-integrity

benchmarks on 10− KB datasets.

tions are corroborated by the GD of “checksum” being equal to 0.090 and that

of “crc32” being worse and equal to 0.111.

“crc32” is also more irregularly distributed than “checksum”, therefore its ∆

(0.285) is much worse than that of “checksum” (0.189) which is following

“all” more closely. Similarly to “rc6”, “checksum” offers a wide spectrum

of processor alternatives, while “crc32” results in more clustered solutions. It

should be noted that this clustering is not always a downside of a benchmark,

especially in cases where we are interested in neighboring alternatives in the

same design niche. It offers finer resolution within the area of interest.

The proximity of “checksum” to “all” is also reflected in Figure 6.9 on the

6.2. IMPBENCH V1.1: REVISITING THE IMPLANT BENCHMARK SUITE243

identical boxplots for the D$ miss latency and the RAS size. Yet, “check-

sum”’s simpler structure seems to favor the simpler branch-prediction tech-

nique ALWAYS TAKEN while the more complex “crc32” tends towards the

more powerful BIMODAL predictor. Overall, “checksum” appears capable

of substituting “all” in simulations but we should always account for the ob-

served increase in area and decrease in performance of the resulting processor

configurations. “crc32”, on the other hand, features the second worst GD after

“fin” and its ∆ is mediocre. Combined with its high area costs, it should not be

considered in most cases as a good, single substitute for “all”.

6.2.3.4 Real applications & stressmarks

In Figure 6.12, Pareto fronts for the real applications “motion” and “dmu4”

are compared with “all”. The plots reveal good fitting and dispersal of the

solutions for both benchmarks, and GD /∆ figures agree with these observa-

tions. Power and performance ranges are similar to “all”, yet area ranges are

significantly different. Although “motion” has a much simpler functionality

than “dmu4”, it incurs disproportional area costs: on average 32 KB for the

BPRED/BTB, 120 KB for the D$ and 5 KB for the I$, as opposed to “dmu4”

which promotes processors with small average sizes: 2 KB , 3 KB and 1.8 KB ,

respectively.

Regarding branch-prediction hardware, “motion” presents unexpected results,

too. It almost exclusively favors configurations equipped with a BIMODAL

branch predictor. Conversely, “dmu4” opts mainly for the simpler static pre-

dictors ALWAYS TAKEN and ALWAYS NOT-TAKEN. On the other hand,

“dmu4” appears to suffer more from increased D$ miss latencies, compared

to the average case. In effect, “all” evolves processor configurations with la-

tencies up to 8 cycles while “motion” drives latencies up to 10 cycles and

“dmu4” only up to 5 cycles. As opposed to the preceding benchmarks, in this

case, “motion” and “dmu4” display diverse properties which cannot be cov-

ered fully by either single one of them. This is to be expected for benchmarks

(in essence, kernels) emulating implant applications. If one real benchmark

had to be selected as representative for this group, “dmu4” would be the safer

choice.

In order to compare the characteristics of the real benchmarks, above, and

the newly-created stressmarks, we have plotted Figure 6.13, where the Pareto

fronts of all four programs are being shown. Plot 6.13a reveals that, in terms

of performance and power, “stressmotion” has a close distance to “motion”

albeit a slightly worse spread. In terms of hardware requirements, “stress-

244

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

10
0

10
1

10
2

80

90

100

110

120

130

140

150

CPI

P
o

w
e

r

all

dmu4

motion

(a) CPI (-) – Power consumption, avg.

(mW)

80 90 100 110 120 130 140 150
10

−1

10
0

10
1

10
2

10
3

10
4

Power

A
re

a

all

dmu4

motion

(b) Power consumption, avg. (mW) –

Area (mm 2)

10
−1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

Area

C
P

I

all

dmu4

motion

(c) Area (mm 2) – CPI (-)

Figure 6.12: Final (after 200 generations) Pareto-fronts for real applications

on 10− KB datasets.

motion” relaxes design requirements compared to “motion”: BPRED/BTB

4 KB , D$ 12 KB and I$ 2 KB on average. In an overall, though, by combining

“stressmotion” from Figure 6.13 with “all” from Figure 6.12, we can see that

“stressmotion” is actually closer to the aggregate Pareto line than “motion”,

as verified by the respective GD ’s. Essentially, “stressmotion” can track the

Pareto front better than the full “motion” benchmark, albeit with somewhat

more clustered solutions.

“stressdmu3”, on the other hand, follows “all” with somewhat less fidelity

than “dmu4” but displays a better spread. As Figure 6.13 indicates, both

“stressdmu3” and “dmu4” fronts are residing in the same locus of solutions.

6.2. IMPBENCH V1.1: REVISITING THE IMPLANT BENCHMARK SUITE245

10
0

10
1

10
2

80

85

90

95

100

105

110

115

120

CPI

P
o

w
e

r

dmu4

motion

stressdmu3

stressmotion

(a) CPI (-) – Power consumption, avg.

(mW)

80 85 90 95 100 105 110 115 120
10

0

10
1

10
2

10
3

10
4

Power

A
re

a

dmu4

motion

stressdmu3

stressmotion

(b) Power consumption, avg. (mW) –

Area (mm 2)

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

Area

C
P

I

dmu4

motion

stressdmu3

stressmotion

(c) Area (mm 2) – CPI (-)

Figure 6.13: Final (after 200 generations) Pareto-fronts for real applications

and stressmarks on their respective datasets.

Yet, “stressdmu3” achieves slightly lower performance and drives processor

resources slightly up compared to “dmu4”, as follows: BPRED/BTB 22.5 KB ,

D$ 15 KB and I$ 2 KB on average.

As far as branch-prediction requirements are concerned, GA evolutions reveal

the following: Since stressmarks run for a short period of time (one or a few

iterations only), branch-predictor distributions in the barcharts of Figure 6.9a

are relatively unaffected. The simpler scheme ALWAYS TAKEN is mostly ex-

panded but, other than that, both stressmarks bear distributions similar to “all”.

Conclusively, the new stressmarks track the true Pareto front closely, each ei-

ther scoring better in GD or ∆. It is interesting to notice that, while they have

246

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

not contributed to the true Pareto front (i.e. they have not been used in the

aggregated-benchmark simulations), the solutions they evolve are highly com-

parable and in the same locus as the aggregate solutions. This fact attests to

their prediction quality and, provided that attention is paid to the differences

they exhibit (as discussed above), they can offer reliable substitutes for the full

real applications.

6.2.4 Conclusions

The previous analysis has unveiled new information with respect to the cov-

erage of the design space and the hardware implications contributed by each

ImpBench component. In this context, results indicate that, from the lossless-

compression benchmarks, “mlzo” provides better GD and similar ∆ to “fin”.

On top of this, it also features faster simulation times (about ×3 faster, accord-

ing to Table 6.6). From the symmetric-encryption benchmarks, “rc6” displays

excellent characteristics, namely the smallest GD and the second best ∆, mean-

ing that it traces the aggregate Pareto front with high fidelity. According to Ta-

ble 6.6, it is also about double as fast as “misty”. Of the data-integrity bench-

marks, “checksum” performs consistently better than “crc32” and features the

overall shortest simulation time (0.80 sec) across all full benchmarks.

For the real-applications case, no single benchmark could be unanimously

ranked higher due, mainly, to the complex nature of the results. This actu-

ally shows the usefulness of both real benchmarks which, also, feature similar

simulation times (and the largest in the whole suite). Last, analysis of the

new stressmarks has revealed that, although they display some variability in

predicted processor specifications w.r.t. the full real applications, they both

track the true Pareto front closely. Careful use of the stressmarks can seriously

reduce simulation times up to ×30 (see Table 6.6), which is an impressive

speedup and a good tradeoff between DSE speed and accuracy.

The above results indicate highest-ranking benchmarks within the ImpBench

suite, however this is not to say that the poorest-performing ones are redun-

dant. The findings of the original analysis (in Section 4.6) indicate that each

benchmark in ImpBench exhibits diverse characteristics (e.g. µop mixes) and

should not be dropped from consideration when considering implant-processor

design. On the contrary, this study comes as a complement and extension of

the original ImpBench study.

6.3. EXPLORATION OF OPTIMAL SIMS PROCESSORS 247

6.3 Exploration of optimal SiMS Processors

In this third and last part of the current chapter, we finally put ImpEDE to the

use that it was originally intended for: We present the results of an automated,

DSE effort performed to identify optimal SiMS-processor candidates. We also

select a number of representative, real implant applications in the literature and

explore the possibility of covering them with a few of the identified processors.

Concisely, the contributions of this work are:

• To propose a new, realistic, worst-case workload mix for future implant

processors;

• Along with the previously generated DSE toolset and the new workload

mix, to provide a complete framework enabling the implant designer to

make informed decisions about resource allocation for future implant

design;

• To propose Pareto-optimal, alternative microarchitectural configurations

for the SiMS processor;

• To make a proof-of-concept, first attempt at fitting a single (or a few) of

the identified configurations to real implant applications.

It should be noted that this study focuses on the microarchitectural aspects

of the SiMS processor, thus no Instruction-Set-Architecture (ISA) analysis is

present. The work presented here is original in that it attempts to propose a

generic and low-power processor architecture while at the same time provid-

ing the performance needed by current and future applications in the field. A

systematic, structured approach to the problem, supported by the recent, rapid

advances in microelectronics technology [66], finally make such a venture re-

alistic.

6.3.1 Experimental setup

6.3.1.1 Exploration framework

In order to perform automated exploration, we have employed ImpEDE; an

overview of the framework can been seen in Figure 6.1. Within the framework,

performance (i.e. execution time) and power metrics are provided by utilizing

XTREM. A summary of the XTREM parameters, as configured for ImpEDE,

248

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

is included in Table 6.1. More advanced microarchitectural structures such as

caches and branch predictors have not been disabled in XTREM as they have

been shown (in Chapter 5) to be relevant within the implant context.

While XTREM has been very useful in our studies so far, it is not an ideal

simulator. One of the major drawbacks of using XTREM is that it models a

low-power, high-performance embedded processor – an overkill in the implant

application domain. Another shortcoming is that it does not simulate any (off-

chip) memory, thus making system-level simulations difficult. Also, our long

usage of XTREM has revealed a number of bugs and modeling inaccuracies

(see [28] for an extensive list), most of which have been solved by a newer

simulator XEEMU [60]. Therefore, an XEEMU porting for our framework is

in the process of being developed. In the meantime, XTREM has been main-

tained in our exploration chiefly for reasons of compatibility with previous

work, availability and ease of use. We have combined readouts from XEEMU

regarding memory power consumption and have updated the power metric in

our exploration in order to overcome some of the XTREM limitations.

For quantifying each chromosome’s area cost, we have used CACTI v3.2, a

well-known, cache-area estimation tool. The total area cost has been calculated

as the sum of the (fixed) net processor and (off-chip) memory area, based on

related literature; and the per-case cache (BTB, I$, D$ etc.) estimates derived

from CACTI simulations.

6.3.1.2 Worst-case workload mix

In order to drive the exploration process, the employed ImpEDE framework

has been supplemented by ImpBench-v1.1 components which are able to cap-

ture both the functional as well as timing behavior of profiled implant proces-

sors (see Table 6.5).

Given that implants constitute mission-critical devices and, to dull the effect of

any accuracy errors introduced in this DSE study, we are interested in identify-

ing and using a worst-case workload mix that will characterize future implant

processors. Such a mix has already been presented in Section 6.1.3.1. For

convenience, this mix is drawn in Figure 6.14 once more.

The rationale of synthesizing this particular implant application is as follows:

In order to provide a realistic, worst-case, SiMS-processor design, we have

selected, per ImpBench-v1.1 benchmark category, the fastest executing algo-

rithm; that is, miniLZO for compression, RC6 for encryption and checksum

for data integrity (refer to Table 6.5 for the various execution times). As a

6.3. EXPLORATION OF OPTIMAL SIMS PROCESSORS 249

Compression

(miniLZO)

Encryption

(RC6)

Data Integrity

(checksum)

logged raw

data (10KB)

Motion

Pressure

Activity factor

compressed

data (~2.2KB)

encrypted

data (~2.3KB)

data with

CRC32(~2.3KB)
TxD

10011100111001110011

10011

XXXX

CXXXX

XXX

XXX

Off-chip

memory

storage

00:00

00:04

00:06

00:07

00:08

MM:SS*

Application 1

(stressDMU3)

Application 2

(stressmotion)

Temperature
Drug release rate

*(indicative times)

Figure 6.14: Block diagram of simulated implant application with realtime

deadlines.

real-application benchmark, we have chosen both stressmarks stressmotion

and stressDMU3, which simulate a single-iteration, worst-case instance of the

regular benchmarks motion and DMU3, respectively. In combining the above

benchmarks in the mix, we have attempted to include the heaviest processing

tasks to be executed at the narrowest window possible.

Every processor configuration (or chromosome) evolved through ImpEDE is

made to execute this whole sequence of benchmarks, representing the busiest

(i.e. worst-case) iteration in the implant’s operational lifetime. The execution-

time metric is calculated as the accumulation of execution times of all involved

benchmarks while the power-consumption metric is calculated as the weighted

average of the power consumptions of all involved benchmarks with each one’s

execution time used as the weighting coefficient.

To push the worst-case, processor-design envelope further, and without loss of

generality, we use 10 − KB EMGII as the input dataset to the above bench-

250

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

marks. It features a realistic size and has been shown to evoke the longest

execution times among the available physiological datasets [27].

It should be noted, last, that all ImpBench benchmarks (and, thus, the ones cur-

rently used) are kernels simulating the processing load of an implant processor.

Therefore, they suffer from certain modeling limitations: they have no way (a)

of modeling the behavior of any implant peripherals (biosensors/bioactuators),

and subsequently (b) of accurate modeling any externally triggered (timing

or other) events, i.e. they have no sense of real time. This is a well-known

problem in benchmarking (event-driven) embedded systems. This has been

addressed by introducing extra code in the benchmarks to imitate the passage

of time and the occurrence of external events (e.g. timer/sensor interrupt).

This, of course, has to be done in a careful fashion as it can potentially pollute

simulation results in terms of timing behavior, executed instruction mix and so

on.

6.3.2 SiMS-processor DSE execution

With the above considerations, ImpEDE has been allowed to run over sig-

nificant periods of time in search of optimal SiMS-processor configurations.

Table 6.7 lists the results of this search. Each one of the 19 entries is a Pareto-

optimal, non-dominated solution to the problem. Performance, power and area

metrics are also reported for each entry.

6.3.3 Implant study cases

For selecting representative study cases of the implant application domain, we

draw upon the study cases of the survey performed in Chapter 2. The selected

applications will help provide diverse operational requirements for our targeted

SiMS processor(s).

6.3. EXPLORATION OF OPTIMAL SIMS PROCESSORS 251
cn

f
B

P
R

E
D

B
T

B
R

A
S

L
1
-I

$
L

1
-D

$
M

em
E

x
.

T
im

e
P

o
w

er
A

re
a

se
ts

a
ss

c
se

ts
b

l.
si

ze
a
ss

c
re

p
l

se
ts

b
l.

si
ze

a
ss

c
re

p
l

la
t

(-
)

(#
)

(#
)

(#
)

(#
)

(b
i
t
s

)
(#

)
(-

)
(#

)
(b
i
t
s

)
(#

)
(-

)
(#

cc
)

(s
ec

)
(m
W

)
(m
m
2
)

1
b
im

o
d

6
4

8
8

4
0
9
6

1
6

3
2

F
IF

O
4
0
9
6

1
6

1
F

IF
O

2
2
7
.4

6
5

1
7
.5

3
9

2
5
2
1
.3

6

2
b
im

o
d

1
2
8

8
2

2
5
6

1
6

1
6

L
R

U
4
0
9
6

8
2

L
R

U
1
6

3
7
.1

6
6

1
5
.3

6
8

3
9
4
.5

3

3
b
im

o
d

6
4

3
2

0
2
5
6

1
6

1
6

R
A

N
D

1
0
2
4

3
2

2
F

IF
O

1
1
.7

9
0

1
2
3
.1

4
3

4
0
0
.9

2

5
ta

k
en

1
1
0
2
4

3
2

3
2

R
A

N
D

1
6

1
6

1
6

F
IF

O
8

2
6
.1

4
3

1
3
.8

4
2

1
3
2
5
.3

9

6
n
o
tt

ak
en

8
1
0
2
4

1
6

4
F

IF
O

5
1
2

3
2

2
F

IF
O

1
1
.4

3
3

6
3
.2

1
7

3
2
7
.1

0

7
b
im

o
d

1
2
8

8
4

2
0
4
8

1
6

8
F

IF
O

4
0
9
6

3
2

1
L

R
U

1
1
.7

5
1

9
3
.2

0
0

6
5
9
.9

4

8
ta

k
en

0
1
6

3
2

8
R

A
N

D
5
1
2

3
2

4
R

A
N

D
8

2
.7

7
7

7
4
.8

6
0

2
9
9
.3

7

9
b
im

o
d

1
2
8

2
4

6
4

3
2

8
L

R
U

1
2
8

3
2

1
6

F
IF

O
8

2
.1

8
1

6
3
.2

8
8

3
2
7
.6

1
1
0

b
im

o
d

3
2

1
6

8
1
2
8

8
2

F
IF

O
1
6

3
2

8
R

A
N

D
1

4
.5

1
6

8
7
.8

8
7

2
4
3
.6

8

1
1

b
im

o
d

6
4

8
1

2
5
6

1
6

4
F

IF
O

6
4

3
2

1
6

F
IF

O
2

1
.9

5
1

9
3
.3

6
6

2
9
8
.7

9

1
2

n
o
tt

ak
en

4
1
6

8
2

F
IF

O
6
4

8
2

R
A

N
D

8
3
5
.5

7
1

8
8
.1

5
3

2
1
5
.3

0

1
3

b
im

o
d

6
4

4
2

8
1
6

1
F

IF
O

1
2
8

3
2

2
R

A
N

D
1
6

6
.8

3
4

6
9
.7

2
9

2
2
7
.7

1

1
4

n
o
tt

ak
en

2
6
4

1
6

2
L

R
U

1
6

3
2

1
6

F
IF

O
1
6

4
.6

0
5

6
7
.1

9
7

2
5
0
.9

9

1
5

n
o
tt

ak
en

2
1
6

8
4

F
IF

O
3
2

3
2

2
F

IF
O

4
6
.8

2
3

8
0
.9

4
7

2
1
8
.2

1

1
6

n
o
tt

ak
en

2
8

3
2

2
L

R
U

6
4

1
6

2
F

IF
O

1
2
4
.4

6
3

7
1
.6

8
1

2
1
8
.8

4
1
7

n
o
tt

ak
en

1
3
2

1
6

1
6

F
IF

O
1
6

3
2

4
L

R
U

8
2
.8

6
8

6
9
.7

8
1

2
3
8
.6

2

1
8

b
im

o
d

1
2
8

2
8

6
4

8
1
6

F
IF

O
1
6

3
2

1
6

F
IF

O
2

2
.2

2
2

9
0
.8

1
6

2
6
8
.3

6

1
9

b
im

o
d

3
2

1
8

6
4

1
6

1
6

L
R

U
1
2
8

3
2

3
2

F
IF

O
4

1
.9

2
2

7
4
.4

1
9

4
2
1
.3

0

2
0

n
o
tt

ak
en

1
1
2
8

1
6

4
L

R
U

6
4

3
2

4
R

A
N

D
1
6

3
.3

9
5

6
2
.3

3
6

2
3
6
.5

7

T
a
b
le

6
.7

:
Im

p
E

D
E

-e
vo

lv
ed

,
o
p
ti

m
a
l

p
ro

ce
ss

o
r

co
n
fi
g
u
ra

ti
o
n
s.

252

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

In order for a direct and fair comparison with the candidate SiMS processor(s),

we have to place the study cases in the same design space as the one traversed

by ImpEDE. That is, we need to know the worst-case execution time, the power

consumption and the area cost of each of the studied implantable systems.

This requirement limits the number of eligible systems to only 6, as shown

in Table 6.8. In spite of this, the scope of applications addressed is diverse

– spanning the muscular, neural, cardiac, gastric, atrial, and nervous systems.

An extensive description of the various devices can be found in [132], yet short

descriptions are given below for convenience.

Device #A, by Smith et al. [111, 112, 127], is used for functional neuromus-

cular stimulation (FNS). The authors are describing a flexible implantable-

stimulator and telemetry (IST) system which makes provisions for multiple

channels of stimulation, multiple channels of sensor or biopotential-electrode

sensing and power and bidirectional data communication between the implant

and an external control unit (ECU) over a transcutaneous, inductive RF link.

Device #B, by Eggers et al. [36, 37, 62], is a miniature, implantable, intra-

cranial pressure (ICP) measurement system for monitoring patients in the ER

(e.g. post-surgery patients). This essentially is a telemetry-powered, im-

plantable system consisting of an absolute-pressure sensor and two low-power

ASICs for pressure read-out and telemetric data/power transmission.

Rollins et al. [115] have developed an implantable radio-telemetry system

(device #C) for continuous monitoring of ECG signals over a period of weeks

to months for capturing all events preceding sudden-death incidents. The de-

sign of the system centers around two separate but inter-dependent units: the

implantable unit and a backpack which holds batteries for powering the im-

plant, a processor and a WLAN-card for forwarding the data wirelessly to a

base station for further archiving and analysis.

Valdastri et al. [140] present a new, versatile implantable system (device #D)

that provides multichannel telemetry of measured biosignals. The presented

system consists of the microcontroller-based implant which can monitor and

wirelessly transmit up to 3 channels to an external receiver and, in this case,

monitors gastric pressure in the stomach.

Au-Yeung et al. [7] have built an implantable device (#E) which is capable of

continuously monitoring the electrophysiological state of the heart atria and,

also, of delivering chronic and programmable atrial pacing. In effect, the pro-

posed system can induce standard AF, can measure the atrial effective refrac-

tory period (AERP), can deliver anti-tachycardia pacing (ATP) therapy and can

sense and telemeter atrial electrograms (AEGs).

6.3. EXPLORATION OF OPTIMAL SIMS PROCESSORS 253
ca

se
A

u
th

o
r

P
u

b
.

A
p

p
li

ca
ti

o
n

P
ow

er
S

en
so

r
S

am
p
l.

A
D

C
C

o
re

C
o
re

E
x
.T

im
e

P
o
w

er
c/

s
A

re
a

Y
ea

r
so

u
rc

e
co

u
n
t

ra
te

re
so

l.
ar

ch
.

fr
eq

.
W

o
rs

t-
ca

se
P

ea
k

T
o
ta

l
(-

)
(#

)
(H

z)
(b

it
s)

(-
)

(M
H

z)
(s

ec
)

(m
W

)
(m
m
2
)

A
S

m
it

h
et

al
.

[1
1
1

,
1
1
2

,

1
2
7
]

1
9
9
8

re
st

o
ra

ti
o
n

o
f

p
ar

a-

ly
ze

d
m

u
sc

le
,

M
E

S

R
F

-i
n
d
.

2
1
0
0

1
2

F
S

M
1

3
4
.1

3
3
3

9
6
.0

0
9
3
7
.5

0

B
E

g
g
er

s
et

al
.

[3
6
,3

7
,6

2
]

2
0
0
0

IC
P

-b
as

ed
d
ia

g
n
o
si

s

fo
r

b
ra

in
d
is

ea
se

s

R
F

-i
n
d
.

1
1
0
0

1
0

n
o

0
.1

2
5

8
1
.9

2
0
0

0
.2

4
5
8
.5

0

C
R

o
ll

in
s

et
al

.

[1
1
5
]

2
0
0
0

co
n
ti

n
u
o
u
s

E
C

G
fo

r

sp
o
n
ta

n
eo

u
s

ca
rd

ia
c

ar
rh

y
th

m
ia

s

b
at

te
ry

(e
x
t.

)
8

1
0
0
0

1
2

F
S

M
2

0
.8

5
3
3

3
4
.0

0
4
2
0
9
.6

7

D
V

al
d
as

tr
i

et
al

.

[1
4
0
]

2
0
0
4

g
as

tr
ic

-p
re

ss
u
re

m
o
n
-

it
o
ri

n
g

b
at

te
ry

1
2
5
0
0
0

1
0

8
-b

it
µ

C
4

0
.3

2
7
7

5
0
.4

0
1
6
2
.0

0

E
A

u
-Y

eu
n
g

et

al
.

[7
]

2
0
0
4

co
n
ti

n
u
o
u
s

A
E

G
,

d
e-

li
v
er

y
o
f

at
ri

al
A

T
P

b
at

te
ry

4
3
3
3

1
0

8
-b

it
µ

C
8

6
.1

5
0
2

1
1
5
.3

0
5
1
0
6
.0

0

F
L

ia
n
g

et
al

.

[8
4
]

2
0
0
5

E
N

G
R

F
-i

n
d
.

1
1
1
0
0
0

1
0

8
-b

it
µ

C
n
/a

0
.7

4
4
7

9
0
.0

0
1
3
5
0
.0

0

T
a
b
le

6
.8

:
S
tu

d
y

ca
se

s
o
f

re
a
l

im
p
la

n
ta

b
le

a
p
p
li

ca
ti

o
n
s

(t
a
ke

n
fr

o
m

th
e

su
rv

ey
re

su
lt

s
o
f

C
h
a
p
te

r
2
).

254

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

The developed system by Liang et al. [84] (device #F) allows recording and

telemetry of electroneurogram (ENG) signals to an external host computer.

The implant is built to receive power and ASK-modulated commands over

a wireless RF-link and to transmit physiological data back through passive

telemetry. The device consists of a µC with on-chip, 10 − bit ADC which

digitizes and forwards data acquired from an analog-sensing front-end through

cuff electrodes.

As illustrated in Table 6.8, actual implant chipset sizes have been employed for

the area metric. The term ‘chipset’ represents the dimensions of any design and

assembly type; ranging from fully integrated and multi-chip module (MCM),

to PCB-mounted. Figures were also available for the implant chip-only size (in

mm 2) - e.g. processor die but no supporting PCB - and for the implant package

size (in mm 3). However, the chipset area was finally preferred so as to allow

more direct and fair comparisons with the XTREM processor plus off-chip

memory. Memory is specifically included in this work as the initial analysis

(see Section 2.6.4) revealed rising trends in memory usage for future implants.

As far as power consumption is concerned, the most frequently reported figure

in the actual implantable systems is active (peak) power which was the power

measured during full load. This is the power simulated by XTREM as well,

since XTREM does not support any low-power or sleep modes of operation.

Therefore, peak power values as reported by XTREM, without any conversion,

have been used as the power metric.

Finally, for the performance metric, some estimations were required in order

to make the real and simulated systems commensurable. All case studies are

devices with periodic monitoring windows, thus exhibiting a specific sampling

rate, as shown in Table 6.8. The inverse of this rate (or frequency) signifies the

maximal amount of time the device has to read a sensor value and process it

before the next value arrives. In effect, this is the worst-case execution time of

the implant. Note that we might have used the ‘Core frequency’ as a measure

of the processing rate but this would be accurate only for designs with very

simplistic cores as in cases #A, #B and #C. For the rest of the cases whereby

a full µC is used, the core frequency is much higher (typically three orders of

magnitude) than the actual sampling frequency and, thus, does not reflect the

real-time deadlines of the implant.

However, the performance metric for the study cases (as the inverse of the

sampling rate) is not yet completely normalized with respect to that of our

processor configurations. As discussed in the previous section, our processor

configurations consume EMG input data of 10 KB . The study cases, on the

6.3. EXPLORATION OF OPTIMAL SIMS PROCESSORS 255

other hand, are assigned (by design) the task of consuming a single sample of

size equal to the ADC resolution used (e.g. 8 bits), from each sensor they

have on-board. Therefore, for each study case to collect 10 KB of sample data,

a longer execution time is needed which is inversely proportional to the number

of available sensors. The normalized, worst-case execution time is then given

by:

ETnorm =
10 KByte

F × N × S
, (6.3)

where F is the sampling frequency (in Hz) of the sensor(s), N is the ADC res-

olution (in bits) and S is the number of working sensors on the implant. This

is the execution time given in Table 6.8. It should be noted that formula (6.3)

does not account for any further processing of the data once acquired. On the

contrary, our evolved processor configurations perform significant processing

tasks, as discussed in Section 6.3.1.2. Therefore, by considering an ideal situ-

ation involving zero processing time for the real life comparison cases, while

keeping a non-zero processing time for our designs, we design our implant

processors for the worst-case.

6.3.4 Exploration results

In this section, we see how a single processor or family of processors can

be identified as “generic processor(s) for implants”. We denote this set of

processors as P. Once developed, this family should be able to replace a large

number of implant applications - i.e., there must be a processor p in the set P

that has equivalent or better design characteristics than the existing application

in question. For reasons of economy, P must be a minimal set.

As mentioned before, we consider 3 design characteristics – power, perfor-

mance and area. Therefore, we have a 3D design space, as shown in Fi-

gure 6.15a. In this Figure, our processor design points (denoted with numbers)

and the case-study points (denoted with letters) have been plotted. For clarity

purposes, 2D Figures 6.15b, 6.15c and 6.15d of the same 3D space have also

been plotted. The bounding boxes around the study cases represent 10% con-

fidence intervals to compensate for the uncertainty introduced when trying to

fit the study cases in the design space.

From the figures, we notice that implant devices #A and #E are dominated by

most of the candidate processor points in all three dimensions. Therefore we

can include any configuration from {6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19,

256

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

0

20

40

60

80

100

0

50

100

150

10
0

10
1

10
2

10
3

10
4

 B

Execution time (sec)

 2

 5

 1

 12
 16

 A

 C

 D

20 13

 14

 9 6

17

 15

 8

19

Power consumption (mW)

 10

18

 F

 11

 7

 E

 3

C
h

ip
s
e

t
A

re
a

 (
m

m
2
)

(a) 3D view

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

120

140

 1
 2

 3

 5

 6

 7

 8

 9

 10

 11

 12

 13
 14

 15

 16
17

18

19

20

 A

 B

 C

 D

 E

 F

Execution time (sec)

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

m
W

)

(b) Worst-case, single-loop execution

time - Average power consumption

0 20 40 60 80 100 120 140
10

0

10
1

10
2

10
3

10
4

 1

 2 3

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15 16

17

18

19

20

 A

 B

 C

 D

 E

 F

Power consumption (mW)

C
h

ip
s
e

t
A

re
a

 (
m

m
2
)

(c) Average power consumption - Total

chipset area

10
0

10
1

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100

 1

 2

 3

 5

 6 7 8 9
 10

 11

 12

 13
 14

 15

 16

17 18 19
20

 A

 B

 C D

 E

 F

Chipset Area (mm
2
)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

(d) Total chipset area - Worst-case,

single-loop execution time

Figure 6.15: Comparison of study cases and DSE results for 10 KB datasets

running on the selected benchmarks.

20}11 in order to cover applications #A (restoration of paralyzed muscle) and

#E (atrial electrogram and anti-tachycardia pacing).

The other devices are not so easily fitted without applying standard engineering

practices. For example, device #B, is largely dominated in terms of execution

time and area but not in terms of power. In fact, #B has the lowest power

profile (0.24 mW) by a wide margin across processor configurations and study

cases alike. Looking at the application details [37], we see that, #B is a min-

11As labeled in Figure 6.15.

6.3. EXPLORATION OF OPTIMAL SIMS PROCESSORS 257

imal functionality device measuring intra-cranial pressure and is powered by

an external power source (through RF induction). Therefore, power is not a

big issue for this application as it allows for a non-implanted power source –

which in practice can be replaced by a bigger power source if required without

compromising the implanted chip area. Therefore, any of the processors that

dominate #B across the other two dimensions may still be used to replace it

– with the provision of a bigger external power source, and keeping in mind

heat dissipation constraints. Therefore, #B (diagnosis of brain disease) can be

replaced by {10, 12, 13, 14, 15, 16, 17, 18, 20}.

Furthermore, we see that devices #C, #D and #F are highly performance ori-

ented. Out of these, device #D performs gastric-pressure monitoring at the

extremely high sampling rate of 25 kHz , the highest rate among all applica-

tions in the study. In practice, however, gastric pressure varies at a much lower

rate (making 1-5 second samples more than sufficient), making this a good ex-

ample of implant over-design. We see that configuration {2} dominates case

#D if this fact is taken into consideration, and can be a suitable replacement

in practice. On the other hand, devices #C and #F perform continuous-ECG

and ENG monitoring, which are indeed demanding applications in terms of

throughput and, therefore, cannot be accommodated by a lower sampling rate.

We observe that these devices are dominated by {1, 2, 5} and {2, 5} respec-

tively w.r.t. power and area. We see that configuration {2} is present in all

three replacement sets. Therefore, if {2} were available as a cost-effective,

generic, pre-tested and pre-approved component as envisioned, application #D

can be replaced without loss of functionality; #C, #F could be accommodated

by adding a hardware accelerator in order to deliver the required performance.

Such a hardware accelerator is feasible as long as it falls in the power and area

margin provided by {2} as compared to the application in question.

6.3.5 Discussion

From the above analysis, we can make the following observations: First off,

through this study we provide experimental evidence that existing implants are

very diverse but also seriously overdesigned embedded systems. They address

medical applications through ad-hoc device implementations which are lack-

ing a systematic design approach. A more structured and top-down approach

needs to be asserted if we want to exploit the benefits microelectronics tech-

nology has to offer these days.

One step towards this direction is the careful design of a generic processor fam-

ily P which can service a wide number of applications. This generic processor

258

CHAPTER 6. AUTOMATED EXPLORATION OF SIMS-PROCESSOR

MICROARCHITECTURES

family must have at least one processor from {10, 13, 14, 15, 17, 18, 20} in

order to satisfy applications #A, #E and #B; and configuration {2} in order to

satisfy #C, #D and #F. Out of the former set, we observe that {15} has the least

area and {20} the least power. Since area and power are both of primary con-

cern in a constrained implant, the generic-processor family may contain both

these processors. The implant designer may, then, choose either of these pro-

cessors depending on which of these two constraints is more pressing for the

(unknown) application in question. Therefore, the family of processors chosen

is {2, 15, 20}.

6.3.6 Conclusions

In this work, we have presented a complete approach towards systematic, edu-

cated and automated microarchitectural specification of processors for biomed-

ical, microelectronic implants. We have provided 19 Pareto-optimal processor

alternatives investigating a large set of hardware parameters such as I-cache

and D-cache geometries, branch-prediction policy and memory latency. To the

best of our knowledge, we have also provided the first comparison between

the suggested processor configurations and existing, documented implantable

devices across a wide range of applications. To manage this, we have estab-

lished means of direct comparison based on careful assumptions that take into

account the unavoidable inaccuracies of our tools. In doing so, we have pro-

posed processors that can operate under worst-case conditions, i.e. they are

suitably provisioned for the mission-critical implant applications.

6.4 Summary

In many ways, this chapter has been the epitome of the current thesis’ efforts in

proposing a new processor for biomedical, microelectronic implants. First off,

through development of the ImpEDE framework, we have offered to the com-

munity a freely available, new tool for performing DSE of implant processors

– and any other processors fitting our application field, for that matter. The

tool has been designed efficiently and a second, parallelized version allows for

significantly reduced simulation times.

Hands-on use of ImpEDE has, in turn, made us realize omissions in the pre-

viously established ImpBench suite and have extended the suite with modified

versions of the existing benchmarks. ImpEDE has, yet once more, been put to

good use in the first – to our knowledge – characterization of (ImpBench) com-

6.4. SUMMARY 259

ponents based on the different directions they push the GA-based processor

optimization process.

Last, a crucial goal of this thesis work has largely been achieved: We have em-

ployed ImpEDE to drive a full-blown design-space exploration for pinpointing

optimal SiMS-processor microarchitectural configurations. Nineteen evolved

solutions have been juxtaposed with six diverse, actual implantable devices

drawn from our previous implant survey. With performance, power, energy

and area constraints in mind, three of those optimal (SiMS) solutions have

been shown capable of seamlessly replacing the processing/controlling com-

ponents of all six considered implantable devices.

Note. The content of this chapter is based on collaborative work with D. Dave,

ir., and has resulted in the following papers:

D. Dave, C. Strydis, G. N. Gaydadjiev, ImpEDE: A Multidimensional

Design-Space Exploration Framework for Biomedical-Implant Proces-

sors, 21st IEEE International Conference on Application-specific Systems Ar-

chitectures and Processors (ASAP’10), pp. 39-46, Rennes, France, July 2010.

C. Strydis, D. Dave, G. N. Gaydadjiev, ImpBench Revisited: An Extended

Characterization of Implant-Processor Benchmarks, International Confer-

ence on Embedded Computer Systems: Architectures, Modeling and Simula-

tion (SAMOS X), pp. 126-135, Samos, Greece, July 2010.

C. Strydis, D. Dave, Identifying Optimal Generic Processors for Biomed-

ical Implants, 28th IEEE International Conference on Computer Design

(ICCD’10), pp. 494-501, Amsterdam, The Netherlands, October 2010.

7
Conclusions

T
HIS dissertation has served as the first attempt towards a new design

paradigm for biomedical implants and, in particular, the digital pro-

cessors thereof. In the process of specifying this paradigm, we have

become occupied with a range of diverse topics. Starting from an in-depth

survey, taxonomy and analysis of implantable devices, we have identified un-

derlying trends in the studied field and have used our findings (along with our

intuitions) to establish the SiMS project which effectively is the research plat-

form for this new implant-design paradigm. Of the whole platform, we have

singled out and occupied ourselves with the SiMS processor, an envisioned

universal, low-power and dependable processor for implant applications, and

a cornerstone piece in the SiMS ensemble at that. In the absence of any refer-

ence designs or design tools in this brave new world of implants, we have spent

considerable time detailing the specifics of a suitable exploration framework

for the SiMS processor. In the process, we have produced interesting scientific

results and have, in parallel, developed methods and tools which have been

iteratively refined and are, in themselves, significant contributions in the field.

Finally, we have performed a first, complete design-space-exploration study

and have procured a number of optimal SiMS-processor microarchitectures,

able to seamlessly serve an array of actual, reported implant applications.

The current chapter concludes this dissertation by giving a concise summary

of the research work performed. It, then, enumerates the major contributions

delivered and ends with a discussion of the still open issues of this work and

the author’s suggestions regarding future research directions in the field of

microelectronic implants from the viewpoint of SiMS.

261

262 CHAPTER 7. CONCLUSIONS

7.1 Outlook

Chapter 2 has presented a taxonomy and in-depth analysis of a large number of

implantable systems covering the 20-year-long period 1994–2005. Numerous

device parameters have been investigated, resulting in a detailed classifica-

tion. Interesting and, at times, counter-intuitive results have been drawn. One

such result is that, while modern microelectronic implants can be effectively

grouped in only two main categories in terms of functionality, with similar

power and other requirements, yet, most existing implants constitute ad-hoc

designs with minimal design reuse. Another surprising finding is the net in-

crease in the dynamic power consumption of implants. A third one is the drop

in reliability provisions over the years. Behind such effects we believe that lies

the fact that implant designs are slowly moving from FSM-based to software-

based systems. These and other lessons learned throughout the process of this

survey have convinced us of the imperative need to introduce a more structured

and conscious design paradigm for implants.

In Chapter 3 we have taken up this task of introducing for the first time the

novel SiMS concept. We have outlined the various aspects of the SiMS frame-

work and, then, moved to presenting the organization of our work on the SiMS

processor, the exploration of which is the main item of focus in this disserta-

tion. For this exploration, certain knowledge and tools were needed to be in

place. Accordingly, we have concluded the chapter by establishing all needed

background knowledge (combined with the knowledge acquired through the

survey in Chapter 2). An extensive list of related works on all topics pertain-

ing to the SiMS-processor exploration has been presented.

Chapter 4 has put all the background knowledge to good use: A cycle-accurate,

power- and performance-simulator (XTREM) has been selected and its suit-

ability for the purpose intended has been demonstrated. Through use of this

simulator, a large-scale investigation of suitable workloads for future implant

processors has been conducted. This investigation, apart from highlighting

best-suited benchmarks from various areas (compression, encryption etc.) and

across various metrics (performance, power, energy, memory footprint etc.)

has also offered ample hints towards the optimal design of the SiMS processor.

Furthermore, it has led to the creation of ImpBench, a novel benchmark suite

that aspires to be a reference platform for designing and comparing implant

processors. Last but not least, in this chapter a case study of the first, complete

and realistic application to be run on the envisioned SiMS processor has been

detailed.

7.1. OUTLOOK 263

In Chapter 5, with all needed tools (simulator, benchmarks, datasets) finally in

place, we have explored two particular microarchitectural aspects of the envi-

sioned SiMS processor, namely, the cache and branch-prediction subsystems.

The results have revealed that – contrary to general belief – incorporation of

such advanced structures in a minimalistic processor, such as the SiMS pro-

cessor, sometimes does introduce benefits. Except for the novel application

field, what makes this investigation more important is the fact that we studied

the effects of various configurations of the two subsystems (and their interplay)

with respect to the whole processor core. Total performance, power, energy

and area metrics have been utilized to get the complete picture when consid-

ering such subsystems in an implant processor (or any processor, for that mat-

ter). Last but not least, the needs of the aforementioned exploration processes

have led us to extend the XTREM-based simulation environment with CACTI

and other automation and support scripts. The new software ensemble allows

for automatic configuring, simulating, acquiring and aggregating the generated

data for the purposes of any processor microarchitectural exploration.

Last, Chapter 6 has taken this software ensemble a step further. By incorporat-

ing a Genetic Algorithm for automatically traversing the design space and by

better tuning of the components, we have developed the ImpEDE framework,

a freely available, new tool for performing DSE of implant processors – and

any other processors fitting our application field, for that matter. The tool has

been designed efficiently and a second, parallelized version allows for signif-

icantly reduced simulation times. Through use of ImpEDE we have taken a

second step forward by extending the ImpBench suite (v1.1) and by offering

a novel means of characterizing benchmark kernels, through the pattern they

exhibit when used to evolve optimal processor solutions. As the last step of

this chapter, and a culminating piece of work in this dissertation, we have em-

ployed ImpEDE to drive a full-blown design-space exploration for pinpointing

optimal SiMS-processor microarchitectural configurations. Nineteen evolved

solutions have been juxtaposed with six diverse, actual implantable devices

drawn from our previous implant survey. With performance, power, energy

and area constraints in mind, three of those optimal (SiMS) solutions have

been shown capable of seamlessly replacing the processing/controlling com-

ponents of all six considered implantable devices. The first attempt to specify

the SiMS-processor microarchitecture has born fruits.

264 CHAPTER 7. CONCLUSIONS

7.2 Contributions

The main contributions of this dissertation can be summarized as follows:

1. Holistic approach in analysis and taxonomy of implants and identifi-

cation of design trends: This is the first time that an associative analysis

of this magnitude takes place. The analysis in Chapter 2 is original in

that it suggests a holistic consideration of microelectronic implants and

is successful in that it reveals previously undetected, crucial trends.

2. Holistic approach in synthesis; definition of a new, top-down de-

sign paradigm for implantable systems (SiMS): This dissertation ad-

vocates a holistic approach in the conception and design of modern im-

plants. Operating under the assumption that implants will constitute an

important means towards improved, personal healthcare and, in view

of observed transitions, we have proposed the SiMS framework which

aspires to reduce implant-design risks, costs and time, and to make

implant-based treatment more accessible to the general public.

3. Evaluation of compression and encryption algorithms in the con-

text of implantable systems: An all-out evaluation of these algorithms

across a significant number of metrics has led to two benefits; first, this

study can be used to choose suitable algorithms for various fields of em-

bedded systems apart from implants (e.g. WSNs, mobiles). Second,

this study has offered insights on frequently seen instructions in the pro-

cessor. In effect, a better understanding of the architectural needs of

modern embedded systems can be gained, as was the case for implants.

4. Establishment of a new benchmark suite (ImpBench) and a de-

rived worst-case benchmark mix for evaluating different implant-

processor designs: The collection of benchmarks in ImpBench is the

first attempt to define a reference point in the chaotic field of implant

design. Future repeatable processor designs can quickly be evaluated

against ImpBench (and the worst-case benchmark mix if real-time dead-

lines are known) and can be modified early on in the design phase, with

minimal penalty.

5. Quantification of complex effects between the L1 I/D-caches and

the BRPED policy, from the processor point of view: The interplay

among the caches, the BPRED policy and the other components of the

processor exhibit non-linear phenomena. Under certain conditions, it

7.3. OPEN ISSUES AND FUTURE DIRECTIONS 265

has been shown that relatively expensive cache and/or BPRED configu-

rations can lead to globally better processors for implant applications.

6. Deployment of a new simulation and exploration frameworks (Imp-

EDE) primarily for exploring implant-processor characteristics

and, secondarily, for further characterization of benchmark col-

lections: The framework provides the processor designer with evolved

Pareto fronts through which informed decisions can be made about spe-

cific implant families after analyzing their particular tradeoffs and re-

quirements. A highly efficient, parallelized version of ImpEDE has also

been created to evolve the fronts and has as its objectives the optimiza-

tion of power, performance and area. In addition, the extensibility of our

framework has been illustrated by modifying it to include a case study of

a synthetic implant application with hard realtime deadlines. ImpEDE

can be used as efficiently in any other niche of embedded systems.

7. First, automatic, multiobjective design-space exploration of optimal

SiMS processor microarchitectures: This DSE has been a successful

proof-of-concept optimization attempt for the SiMS processor. We have

chosen processor configurations from the Pareto-optimal processor set

found by the DSE using real implants as case studies. We have found

that, even under the extremely biased constraints that we use, our SiMS

processors perform better than many of the real implants. This pro-

vides strong hints towards designing an implant processor that is generic

enough to cover most, if not all, implant applications.

7.3 Open Issues and Future Directions

When compared to other fields of computer engineering such as mobile tele-

phony and portable computing, the field of biomedical implants is still in its

infancy. This fact has been the major motivation and, at the same time, the

major hindrance in this dissertation work. To deal with the severe lack of prior

art in the field, at times we had to take some decisions based on experience

or intuition and to make some modeling assumptions, all detailed in the previ-

ous chapters. Such decisions have also been dictated by prosaic reasons such

as the limited capabilities provided by our simulation tools. We also had to

somewhat restrict our research-work goals in order to efficiently deal with a

few, specific problems and a field which is still largely uncharted.

For all the above reasons and given the limited resources and time frame at our

266 CHAPTER 7. CONCLUSIONS

disposal, a number of open issues in this dissertation work remain. In what

follows, we discuss these issues and offer future directions for research in the

field.

A first, future direction of this work is the extension of the implant survey

with more recent systems. Since 2005 (that the survey ends), a number of new

devices has probably been released. It would be interesting to see how these

newer systems look like and whether they fall on our predictions based on the

previous years.

ImpBench is a dynamic construct with a wide range of potential implant ap-

plications. Even so, in its present state it is far from complete. In the future,

more benchmarks should be added, subject to ongoing research in the field

and access to more resources (e.g. executed implant code). Among others,

we anticipate simple DSP applications as potential candidates. We believe that

more implant application- or domain-specific algorithms should be evaluated

(except for compression and encryption, that is), yet one should be careful

not to become too specific for fear of losing this much desired universal pro-

cessor approach. Also, more “real applications” like the ones (DMU, motion)

we already included should be added. Nevertheless, these are simply program

kernels that cannot interact with implant peripherals. So far, we have emulated

interaction with the outside world through the use of file I/O (e.g. DMU). It

would be interesting to establish benchmarks (and assorted simulation envi-

ronments) that do, somehow, interact with real-world interfaces.

Although reliability is one of the major reasons for the need to design proces-

sors specifically for implants, this dissertation does not directly address relia-

bility, due mainly to time limitations. In the future, we intend to expand our

DSE framework to also optimize for system reliability in order to ensure error-

free operation of critical implant applications. For this, we need to introduce

a fourth metric based on reliability, and expand our tools accordingly. Work

has already begun on porting XEEMU to our system as a more bug-free and

accurate replacement for XTREM. We would also like to expand the simulator

models with more parameters such as (off-chip) memory, effectively allowing

for SoC explorations. Finally, we would also like to include more real-life ap-

plications in our studies – however, this is influenced by the extremely limited

information released in this field.

The careful observer may have noticed that, although suggestions are made

on ISA optimizations for the SiMS processor in Chapter 4, nonetheless,

our subsequent optimizations are limited to microarchitectural optimizations

only. The reason for this is that modification of the processor ISA along

7.3. OPEN ISSUES AND FUTURE DIRECTIONS 267

with the assorted binary utilities and compiler was virtually impossible for

the XTREM simulator. Of late, we have become licensed users of the rapid

architecture-exploration tools called Processor and Compiler Designer, by

Synopsys. Through these tools, experimentation with multiple ISA variants

on a given processor becomes fast. Unfortunately, this tool was not available

at the onset of our SiMS-processor experiments and only lately has it been put

to good use.

Since the SiMS framework is – at least, at the moment of writing – envisioned

as a SoC, it becomes apparent that a sort of “implant interconnect” is also re-

quired. Outright properties of such an interconnect are expected to be low

power consumption, small area footprint, low pin count and, yet, commu-

nication robustness. Although some work could be borrowed from the field

of WSNs, nevertheless, there is currently no interconnect explicitly designed

to address implant SoCs. No interconnect scheme from any other field (e.g.

WSNs, automotives) can be adopted in the implant domain due to the latter’s

stringent mix of design requirements.

The long-term goal of the SiMS project is silicon, multi-sensor/-actuator,

single-chip, wireless medical systems. Such systems will be produced using

fully integrated CMOS processes. In addition, they will be capable of context-

sensitive behavior (thus, smart), due to their multi-parameter awareness and

communication abilities. The combination of the aforementioned issues with

the envisioned modular system approach, introduces even more research chal-

lenges.

Bibliography

[1] “EEMBC,” www.eembc.com.

[2] 3-WAY, BLOWFISH, DES, GOST, IDEA, RC5 source code,

www.cis.udel.edu/∼mills/database/schneier/.

[3] B. Abel-Smith and E. Mossialos, “Cost containment and health care reform: a study of

the european union,” Health Policy, vol. 28, no. 2, pp. 89–132, 1994.

[4] T. Akin and K. Najafi, “A wireless implantable multichannel digital recording system for

a micromachined sieve electrode,” in IEEE Journal of Solid-State Circuits, vol. 33, Jan.

1998, pp. 109–118.

[5] K. Arabi and M. Sawan, “A monolithic miniaturized programmable implant for neuro-

muscular stimulation,” in IEEE 17th Annual Conference Engineering in Medicine and

Biology Society (EMBS), Montreal, Quebec, Canada, 20-23 September 1995, pp. 1131–

1132.

[6] G. Ascia, V. Catania, and M. Palesi, “Parameterised system design based on genetic

algorithms,” in CODES ’01: Proceedings of the ninth international symposium on Hard-

ware/software codesign. New York, NY, USA: ACM, 2001, pp. 177–182.

[7] K. Au-Yeung, C. Johnson, and P. Wolf, “A novel implantable cardiac telemetry sys-

tem for studying atrial fibrillation,” in Physiological Measurement, 11 August 2004, pp.

1223–1238.

[8] T. Austin, E. Larson, and D. Ernst, “Simplescalar: an infrastructure for computer system

modeling,” IEEE Computer, vol. 35, no. 2, pp. 59–67, February 2002.

[9] T. Back, “Optimal mutation rates in genetic search,” in Proceedings of the Fifth Interna-

tional Conference on Genetic Algorithms, 1993, pp. 2–8.

[10] T. Bapty, S. Neema, J. Scott, J. Sztipanovits, and S. Asaad, “Model-integrated tools for

the design of dynamically reconfigurable systems,” ISIS, Vanderbilt University, Tech.

Rep., 2000.

[11] K. Barr and K. Asanovic, “Energy-aware lossless data compression,” ACM Transactions

on Computer Systems, vol. 24, no. 3, pp. 250–291, August 2006.

[12] S. Baskiyar, “A real-time fault tolerant intra-body network,” in Proceedings of the 27th

Annual IEEE Conference on Local Computer Networks (LCN’02), 6-8 November 2002,

pp. 235 – 240.

[13] R. Beach, F. Kuster, and F. Moussy, “Subminiature implantable potentiostat and modified

commercial telemetry device for remote glucose monitoring,” in IEEE Transactions on

Instrumentation and Measurement, vol. 48, Dec. 1999, pp. 1239–1245.

[14] E. G. Bekele and J. W. Nicklow, “Multi-objective automatic calibration of swat using

nsga-ii,” Journal of Hydrology, vol. 341, no. 3-4, pp. 165 – 176, 2007.

[15] J. Berkman and J. Prak, “Biomedical microprocessor with analog i/o,” in IEEE Interna-

tional Solid-State Circuits Conference - Digest of Technical Papers, 19 February 1981,

pp. 168–169.

[16] R. Braden, D. Borman, and C. Partridge, “Computing the internet checksum,” SIG-

COMM Comput. Commun. Rev., vol. 19, no. 2, pp. 86–94, 1989.

269

www.eembc.com
www.cis.udel.edu/~mills/database/schneier/

270 BIBLIOGRAPHY

[17] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-level

power analysis and optimizations,” SIGARCH Comput. Archit. News, vol. 28, no. 2, pp.

83–94, 2000.

[18] D. Burger and T. Austin, “The simplescalar tool set, version 2.0,” ACM SIGARCH Com-

puter Architecture News, vol. 25, no. 3, pp. 13–25, June 1997.

[19] Cell Relay Retreat: CRC-32 Calculation, Test Cases and HEC Tutorial,

http://cell.onecall.net/cell-relay/publications/software/.

[20] C.-C. Chang, S. Muftic, and D. Nagel, “Measurement of energy costs of security in

wireless sensor nodes,” in 16th International Conference on Computer Communications

and Networks (ICCCN), 2007, pp. 95–102.

[21] C. Cho, W. Zhang, and T. Li, “Informed Microarchitecture Design Space Exploration

Using Workload Dynamics,” in Proceedings of the 40th Annual IEEE/ACM International

Symposium on Microarchitecture. IEEE Computer Society, 2007, pp. 274–285.

[22] J. Christensen and T. Pallesen, “Institutions, distributional concerns, and public sector

reform,” European Journal of Political Research, vol. 39, no. 2, pp. 179–202, 2001.

[23] G. Contreras and M. Martonosi, “The XTREM Power and Performance Simulator for

the Intel XScale Core: Design and Experiences,” ACM Transactions on Embedded Com-

puting Systems, vol. 6, no. 1, pp. 1–25, February 2007.

[24] G. Contreras, M. Martonosi, J. Peng, R. Ju, and G.-Y. Lueh, “XTREM: A Power Simu-

lator for the Intel XScale Core,” in LCTES’04, 2004, pp. 115–125.

[25] P. Cross, R. Kunnemeyer, C. Bunt, D. Carnegie, and M. Rathbone, “Control, commu-

nication and monitoring of intravaginal drug delivery in dairy cows,” in International

Journal of Pharmaceuticals, vol. 282, 10 September 2004, pp. 35–44.

[26] T. Custers, O. A. Arah, and N. S. Klazinga, “Is there a business case for quality in the

netherlands? a critical analysis of the recent reforms of the health care system,” Health

Policy, vol. 82, no. 2, pp. 226–239, 2007.

[27] D. Dave, C. Strydis, and G. N. Gaydadjiev, “Impede: A multidimensional design-space

exploration framework for biomedical-implant processors,” in To appear in: Proceed-

ings of the 21th IEEE International Conference on Application-specific Systems, Archi-

tectures and Processors (ASAP’10), July 7-9 2010.

[28] D. Dave, “Automated implant-processor design: An evolutionary multiobjective explo-

ration framework,” Master’s thesis, TU Delft, 2010.

[29] N. de Vries, “Lossless data-compression kit, lds v1.3,”

www.nicodevries.com/nico/lds13.zip.

[30] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley &

Sons, LTD, 2001.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist multi-objective genetic

algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182–

197, 2000.

[32] D. DLima, C. Townsend, S. Arms, B. Morris, and C. C. Jr, “An implantable telemetry

device to measure intra-articular tibial forces,” in Journal of Biomechanics, vol. 38, Feb.

2005, pp. 299–304.

[33] W. Du, J. Deng, Y. Han, P. Varshney, J. Katz, and A. Khalili, “A pairwise key predis-

tribution scheme for wireless sensor networks,” ACM Transactions on Information and

System Security (TISSEC), vol. 8, pp. 228–258, May 2005.

http://cell.onecall.net/cell-relay/publications/software/
www.nicodevries.com/nico/lds13.zip

BIBLIOGRAPHY 271

[34] L. Eccles, “A brief description of ieee p1451.2,” in Proceedings of the Sensors Expo,

Oct. 1997, pp. 81–90.

[35] H. Ector and P. Vardas, “Heart disease and stroke statistics - 2008 update (at-a-glance

version),” American Heart Association, 2008.

[36] T. Eggers, C. Marschner, U. Marschner, B. Clasbrummel, R. Laur, and J. Binder, “Ad-

vanced hybrid integrated low-power telemetric pressure monitoring system for biomedi-

cal applications,” in IEEE Proceedings of Microelectromechanical Systems (MEMS’00),

Miyuzaki, Japan, 2000, pp. 329–334.

[37] ——, “Wireless intra-ocular pressure monitoring system integrated into an artificial

lens,” in Proceedings of the 1st Annual International IEEE-EMBS Special Topic Confer-

ence on Microtechnologies in Medicine & Biology, Lyon, France, 12-14 October 2000,

pp. 466–469.

[38] C. Enokawa, Y. Yonezawa, H.Maki, and M. Aritomo, “A microcontroller-based im-

plantable telemetry system for sympathetic nerve activity and ecg measurement,” in

Proceedings of the 19th Annual International Conference of the IEEE in Engineering

in Medicine and Biology Society (EMBS), vol. 5, Chicago, Illinois, USA, 30 October - 2

November 1997, pp. 2232–2234.

[39] M. Ericson, M. Wilson, G. Cote, C. Britton, W. Xu, J. Baba, M. Bobrek, M. Hileman,

M. Moore, and S. Frank, “Development of an implantable oximetry-based organ perfu-

sion sensor,” in Proceedings of the 26th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBS), vol. 2, San Francisco, California,

USA, 1-5 September 2004, pp. 2235–2238.

[40] S. Eyerman, L. Eeckhout, and K. De Bosschere, “Efficient design space exploration of

high performance embedded out-of-order processors,” in DATE ’06: Proceedings of the

conference on Design, automation and test in Europe. 3001 Leuven, Belgium, Belgium:

European Design and Automation Association, 2006, pp. 351–356.

[41] K. Fernald, T. Cook, T. M. III, and J. Paulos, “A microprocessor-based implantable

telemetry system,” in IEEE Computer, vol. 24, Mar. 1991, pp. 23–30.

[42] K. Fernald, B. Stackhouse, J. Paulos, and T. Miller, “A system architecture for intelli-

gent implantable biotelemetry instruments,” in Proceedings of the Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), vol. 11,

Nov. 1989, pp. 1411–1412.

[43] L. Ferrigno, S. Marano, V. Paciello, and A. Pietrosanto, “Balancing computational and

transmission power consumption in wireless image sensor networks,” in VECIMS’05,

July 2005, pp. 61–66.

[44] A. Flammini, P. Ferrari, E. Sisinni, D. Marioli, and A. Taroni, “Sensor interfaces: from

field-bus to ethernet and internet,” in Sensors and Actuators A: Physical, vol. 101, 2002,

pp. 194–202.

[45] B. Flick and R. Orglmeister, “A portable microsystem-based telemetric pressure and tem-

perature measurement unit,” in IEEE Transactions on Biomedical Engineering, vol. 47,

Jan. 2000, pp. 12–16.

[46] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria, “A design framework to efficiently

explore energy-delay tradeoffs,” in CODES ’01: Proceedings of the ninth international

symposium on Hardware/software codesign, New York, NY, USA, 2001, pp. 260–265.

272 BIBLIOGRAPHY

[47] G. Gaubatz, J.-P. Kaps, and B. Sunar, “Public key cryptography in sensor networksrevis-

ited,” in Lecture Notes in Computer Science, 2005, pp. 2–18.

[48] M. Geelnard, “Basic compression library, bcl v1.2.0,” http://bcl.comli.eu/.

[49] M. Geisler and D. Jeutter, “An implantable transcutaneously programmable and

rechargeable nerve regenerator with telemetry links,” in Proceedings of the 15st Annual

International Conference of the IEEE on Engineering in Medicine and Biology Society

(EMBS), 28-31 October 1993, pp. 1240–1241.

[50] M. Ghovanloo and K. Najafi, “A modular 32-site wireless neural stimulation microsys-

tem,” in IEEE Journal of Solid-State Circuits, vol. 39, December 2004, pp. 2457–2466.

[51] F. Gielen, “Deep brain stimulation: Current practice and challenges for the future,” in

Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering,

Capri Island, Italy, 20-22 March 2003, pp. 489–491.

[52] T. Givargis, F. Vahid, and J. Henkel, “Evaluating power consumption of parameterized

cache and bus architectures in system-on-a-chip designs,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 9, no. 4, pp. 500–508, Aug 2001.

[53] M. Gries, “Methods for evaluating and covering the design space during early design

development,” Integr. VLSI J., vol. 38, no. 2, pp. 131–183, 2004.

[54] J. Grossschadl, S. Tillich, C. Rechberger, M. Hofmann, and M. Medwed, “Energy evalu-

ation of software implementations of block ciphers under memory constraints,” in Con-

ference on Design, automation and test in Europe, 2007, pp. 1110–1115.

[55] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, “Mibench:

A free, commercially representative embedded benchmark suite,” IEEE International

Workshop on Workload Characterization, pp. 3–14, 2 December 2001.

[56] C. Harrigal and R. Walters, “The development of a microprocessor controlled im-

plantable device,” in IEEE Proceedings of the 1990 Sixteenth Annual Northeast Bio-

engineering Conference, Mar. 1990, pp. 137–138.

[57] C. Harrigal, R. Walters, and R. Reynolds, “An implanted device for stimulating para-

lyzed vocal chords,” in Proceedings of the Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBS), 29 October - 1 November 1992,

pp. 1368–1369.

[58] G. Hekstra, G. La Hei, P. Bingley, and F. Sijstermans, “TriMedia CPU64 design space

exploration,” in iccd. Published by the IEEE Computer Society, 1999, p. 599.

[59] J. Hennessy and D. Patterson, Computer Architecture - A Quantitative Approach, 4th ed.,

D. Penrose, Ed. Morgan Kaufmann, 2003.

[60] Z. Herczeg, A. Kiss, D. Schmidt, N. Wehn, and T. Gyimóthy, “XEEMU: An Improved

XScale Power Simulator,” Integrated Circuit and System Design - Power and Timing

Modeling, Optimization and Simulation (PATMOS’07), pp. 300–309, 2007.

[61] P. Hicks, M. Walnock, and R. Owens, “Analysis of power consumption in memory hi-

erarchies,” Low Power Electronics and Design, 1997. Proceedings., 1997 International

Symposium on, pp. 239–242, Aug 1997.

[62] K. Hille, J. Draeger, T. Eggers, and P. Stegmaier, “Technical construction, calibration

and results with a new intraocular pressure sensor with telemetric transmission [article

in german],” in Klinische Monatsblatter fur Augenheilkunde, vol. 218, May 2001, pp.

376–380.

http://bcl.comli.eu/

BIBLIOGRAPHY 273

[63] J. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–72, 1992.

[64] Intel XScale Core Developer’s Manual, Intel, December 2000.

[65] Intel XScale Microarchitecture for the PXA255 Processor: User’s Manual, Intel Corpo-

ration, March 2003.

[66] International Technology Roadmap for Semiconductors (ITRS), “Available:

www.itrs.net/common/2004update/2004update.htm,” 2004.

[67] T. Jansen and I. Wegener, “On the choice of the mutation probability for the (1+1) ea,”

Lecture notes in computer science, pp. 89–98, 2000.

[68] Y.-S. Jeong and S.-H. Lee, “Hybrid key establishment protocol based on ecc for wireless

sensor network,” Lecture Notes in Computer Science, vol. 4611, pp. 1233–1242, August

2007.

[69] D. Jimenez, S. Keckler, and C. Lin, “The impact of delay on the design of branch predic-

tors,” Microarchitecture, 2000. MICRO-33. Proceedings. 33rd Annual IEEE/ACM Inter-

national Symposium on, pp. 67–76, 2000.

[70] D. Jones, “Application of splay trees to data compression,” Communications of the ACM,

vol. 31, no. 8, pp. 996–1007, August 1988.

[71] M. Kamble and K. Ghose, “Analytical energy dissipation models for low power caches,”

Low Power Electronics and Design, 1997. Proceedings., 1997 International Symposium

on, pp. 143–148, Aug 1997.

[72] V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C. Cronquist, and M. Sivaraman, “Pico:

Automatically designing custom computers,” Computer, vol. 35, pp. 39–47, 2002.

[73] S. Kawahito, S. Ueda, M. Ishida, T. Nakamura, S. Usui, and S. Nagaoka, “A cmos inte-

grated circuit for multichannel multiple-subject biotelemetry using bidirectional optical

transmissions,” in IEEE Transactions on Biomedical Engineering, vol. 41, Apr. 1994,

pp. 400–406.

[74] W. Kickert, “Public governance in the netherlands: An alternative to anglo-american

managerialism,” Public administration, vol. 75, no. 4, pp. 731–752, 1997.

[75] I. Kim and O. de Weck, “Adaptive weighted sum method for multiobjective optimization:

a new method for Pareto front generation,” Structural and Multidisciplinary Optimiza-

tion, vol. 31, no. 2, pp. 105–116, 2006.

[76] N. Kimura and S. Latifi, “A survey on data compression in wireless sensor networks,” in

ITCC’05, 2005, pp. 8–13.

[77] H. Lanmüller, S. Sauermann, E. Unger, G. Schnetz, W. Mayr, M. Bijak, D. Rafolt, and

W. Girsch, “Battery-powered implantable nerve stimulator for chronic activation of two

skeletal muscles using multichannel techniques,” in Artificial Organs, vol. 23, May 1999,

pp. 399–402.

[78] H. Lanmüller, E. Unger, M. Reichel, Z. Ashley, W. Mayr, and A. Tschakert, “Implantable

stimulator for the conditioning of denervated muscles in rabbit,” in Proceedings of the 8th

Vienna International Workshop on Functional Electrical Stimulation, Vienna, Austria,

10-13 September 2004.

[79] Y. Law, J. Dourmen, and P. Hartel, “Survey and benchmark of block ciphers for wireless

sensor networks,” ACM Transactions on Sensor Networks, vol. 2, pp. 65–93, February

2006.

274 BIBLIOGRAPHY

[80] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for evaluating

and synthesizing multimedia and communications systems,” 30th Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 330–335, 1-3 Dec 1997.

[81] K. Lee, “Ieee 1451:a standard in support of smart transducer networking,” in Proceed-

ings of the 17th IEEE Instrumentation and Measurement Technology Conference (IMTC

2000), vol. 2, Jan. 2000, pp. 525–528.

[82] A. Lenstra and E. Verheul, “Selecting cryptographic key sizes,” Journal of Cryptology:

the journal of the International Association for Cryptologic Research, vol. 14, no. 4, pp.

255–293, 2001.

[83] R. Lerch, E. Spiegel, R. H. R. Kakerow, H. Kappert, H. Kohlhaas, N. Kordas, M. Buch-

mann, T. Franke, Y. Manoli, and J. Muller, “A programmable mixed-signal asic for

data acquisition systems in medical implants,” in IEEE International Solid-State Cir-

cuits Conference, vol. 38, Piscataway, New Jersey, USA, 1995, pp. 162–163.

[84] C. Liang, J. Chen, C. Chung, C. Cheng, and C. Wang, “An implantable bi-directional

wireless transmission system for transcutaneous biological signal recording,” Physiolog-

ical Measurement, vol. 26, pp. 83–97, February 2005.

[85] X. Luo, K. Zheng, Y. Pan, and Z. Wu, “Encryption algorithms comparisons for wireless

networked sensors,” in IEEE International Conference on Systems, Man and Cybernet-

ics, 2004, pp. 1142–1146.

[86] D. Maniezzo, K. Yao, and G. Mazzini, “Energetic trade-off between computing and com-

munication ressource in multimedia surveillance sensor network,” in 4th Int’ Workshop

on Mobile and Wireless Communications Network, 2002, pp. 373–376.

[87] A. Mason, N. Yazdi, N. Najafi, and K. Wise, “A low-power wireless microinstrumen-

tation system for environmental monitoring,” in The 8th International Conference on

Solid-State Sensors and Actuators, and Eurosensors IX (Transducers’95), vol. 1, 25-29

June 1995, pp. 107–110.

[88] G. Mavrotas, “Effective implementation of the [epsilon]-constraint method in multi-

objective mathematical programming problems,” Applied Mathematics and Computa-

tion, vol. 213, no. 2, pp. 455 – 465, 2009.

[89] Z. McCreesh and N. Evans, “Radio telemetry of vaginal temperature,” in Proceedings

of the 16th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBS), vol. 2, 1994, pp. 904–905.

[90] Z. McCreesh, N. Evans, and W. Scanlon, “Vaginal temperature sensing using uhf radio

telemetry,” in Medical Engineering & Physics, vol. 18, 1996, pp. 110–114.

[91] Medtronic - Cardiology product list, www.medtronic.com/physician/cardiology.html.

[92] G. Memik, W. H. Mangione-Smith, and W. Hu, “Netbench: a benchmarking suite for

network processors,” in IEEE/ACM international conference on Computer-aided design

(ICCAD’01), Piscataway, NJ, USA, 2001, pp. 39–42.

[93] T. Miller, B. Bhuva, R. Barnes, J. Duh, H. Lin, and D. V. den Bout, “The hector micro-

processor,” in Proceedings of the IEEE International Conference on Computer Design

(ICCD), 1986, pp. 406–411.

[94] M. Min, T. Parve, V. Kukk, and A. Kuhlberg, “An implantable analyzer of bio-impedance

dynamics - mixed signal approach,” in IEEE Instrumentation and Measurement, Bu-

dapest, Hungary, 21-23 May 2001, pp. 38–43.

www.medtronic.com/physician/cardiology.html

BIBLIOGRAPHY 275

[95] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, “Rapid design space exploration of

heterogeneous embedded systems using symbolic search and multi-granular simulation,”

in LCTES/SCOPES ’02: Proceedings of the joint conference on Languages, compilers

and tools for embedded systems. New York, NY, USA: ACM, 2002, pp. 18–27.

[96] P. Mohseni and K. Najafi, “Wireless multichannel biopotential recording using an inte-

grated fm telemetry circuit,” in Proceedings of the 26th Annual International Conference

of the IEEE in Engineering in Medicine and Biology Society (EMBS), San Francisco, CA,

USA, 1-5 September 2004, pp. 4083–4086.

[97] J. Mouine, K. Ammar, and Z. Chtourou, “A completely programmable and very flexible

implantable pain controller,” in Proceedings of the 22nd Annual EMBS International

Conference, Chicago IL., USA, Jul. 2000, pp. 603–622.

[98] J. Moyne, N. Najafil, D. Judd, and A. Stock, “Analysis of sensor/actuator bus interop-

erability standard alternatives for semiconductor manufacturing,” in Proceedings of the

Sensors Expo Conference, May 1995.

[99] N. Najafi and K. Wise, “An organization and interface for sensor-driven semiconduc-

torprocess control systems,” in IEEE Transactions on Semiconductor Manufacturing,

vol. 3, Nov. 1990, pp. 230–238.

[100] M. Nelson, “Ddj data compression contest results,” Dr. Dobb’s Journal, vol. 16, no. 11,

pp. 62–64, November 1991.

[101] M. Nelson and J.-L. Gailly, The Data Compression Book, 2nd Edition. San Mateo, CA:

M&T Brooks, 1995.

[102] H. Nys, L. Stultiens, P. Borry, T. Goffin, and K. Dierickx, “Patient rights in EU Mem-

ber States after the ratification of the Convention on Human Rights and Biomedicine,”

Health Policy, vol. 83, no. 2-3, pp. 223–235, October 2007.

[103] M. Oberhumer, “LZO v2.0.2,” www.oberhumer.com/opensource/lzo/.

[104] H. Ohta and M. Matsui, A Description of the MISTY1 Encryption Algorithm, United

States, 2000.

[105] D. Parikh, K. Skadron, Y. Zhang, and M. Stan, “Power-aware branch prediction: Char-

acterization and design,” IEEE Transactions on Computers, vol. 53, no. 2, pp. 168–186,

2004.

[106] H. Park, H. Nam, B. Song, and J. Cho, “Design of miniaturized telemetry module for bi-

directional wireless endoscopy,” IEICE Transactions on Fundamentals on Electronics,

Communications and Computer Sciences, vol. 6, pp. 1487–1491, June 2003.

[107] J. Park, S. Choi, H. Seo, and T. Nakamura, “Fabrication of cmos ic for telemetering

biological signals from multiple subjects,” in Sensors and Actuators, A: Physical, vol. 43,

1994, pp. 289–295.

[108] S. Pasricha and A. Veidenbaum, “Improving branch prediction accuracy in embedded

processors in the presence of context switches,” Computer Design, 2003. Proceedings.

21st International Conference on, pp. 526–531, Oct. 2003.

[109] J. Pauley, M. Reite, and S. Walker, “An implantable multi-channel biotelemetry system,”

in Electroencephalography and Clinical Neurophysiology, vol. 37, Jan. 1974, pp. 153–

160.

[110] A. Pimentel, L. Hertzberger, P. Lieverse, P. van der Wolf, and F. Deprettere, “Exploring

embedded-systems architectures with artemis,” Computer, pp. 57–63, 2001.

www.oberhumer.com/opensource/lzo/

276 BIBLIOGRAPHY

[111] S. Pourmehdi, P. Strojnik, P. Peckham, J. Buckett, and B. Smith, “A custom-designed

chip to control an implantable stimulator and telemetry system for control of paralyzed

muscles,” in Proceedings of the 6th Vienna International Workshop on Functional Elec-

trical Stimulation, Vienna, Austria, 2224 September 1998.

[112] ——, “A custom-designed chip to control an implantable stimulator and telemetry sys-

tem for control of paralyzed muscles,” in Artificial Organs, vol. 23, May 1999, pp. 396–

398.

[113] F. Pramassing, D. Puttjer, R. Buss, and D. Jager, “Intraocular vision aid (ios): Optical

signal transmission and image generation,” in World Congress on Medical Physics and

Biomedical Engineering, Chicago, USA, 2000.

[114] A. R. Price, I. I. Voutchkov, G. E. Pound, N. R. Edwards, T. M. Lenton, and S. J. Cox,

“Multiobjective tuning of grid-enabled earth system models using a non-dominated sort-

ing genetic algorithm (nsga-ii),” in E-SCIENCE ’06: Proceedings of the Second IEEE

International Conference on e-Science and Grid Computing. Washington, DC, USA:

IEEE Computer Society, 2006, p. 117.

[115] D. Rollins, C. Killingsworth, G. Walcott, R. Justice, R. Ideker, and W. Smith, “A teleme-

try system for the study of spontaneous cardiac arrhythmias,” in IEEE Transactions on

Biomedical Engineering, vol. 47, Jul. 2000, pp. 887–892.

[116] C. Sadler and M. Martonosi, “Data compression algorithms for energy-constrained de-

vices in delay tolerant networks,” in SenSys’06, November 2006, pp. 265–278.

[117] S. Salmons, G. Gunning, I. Taylor, S. Grainger, D. Hitchings, J. Blackhurst, and J. Jarvis,

“Asic or pic ? implantable stimulators based on semi-custom cmos technology or low-

power microcontroller architecture,” in Medical Engineering & Physics, vol. 23, 2001,

pp. 37–43.

[118] R. Sanders and M. Lee, “Implantable pacemakers,” in Proceedings of the IEEE, vol. 84,

Mar. 1996, pp. 480–486.

[119] M. Sawan, S. Robin, B. Provost, Y. Eid, and K. Arabi, “A wireless implantable electrical

stimulator based on two fpgas,” in Proceedings of the IEEE International Conference on

Electronic Circuits and Systems (ICECS), vol. 2, Piscataway, New Jersey, USA, 1996,

pp. 1092–1095.

[120] M. Schwarz, L. Ewe, R. Hauschild, B. Hosticka, J. Huppertz, S. Kolnsberg, W. Mokwa,

and H. Trieu, “Single chip cmos imagers and flexible microelectronic stimulators for a

retina implant system,” in Sensors and Actuators A: Physical, vol. 83, 22 May 2000, pp.

40–46.

[121] J. Sears and J. Naber, “Development of a biotelemetric heart valve monitor using a 2.45

ghz transceiver, microcontroller, a/d converter, and sensor gain amplifiers,” in Proceed-

ings of The First Joint BMES/EMBS Conference, vol. 2, Atlanta, GA, USA, 13-16 Octo-

ber 1999, p. 794.

[122] W. Shiue and C. Chakrabarti, “Memory exploration for low power, embedded systems,”

in DAC’99, 1999, pp. 140–145.

[123] M. Shults, R. Rhodes, S. Updike, B. Gilligan, and W. Reining, “A telemetry-

instrumentation system for monitoring multiple subcutaneously implanted glucose sen-

sors,” in IEEE Transactions on Biomedical Engineering, vol. 41, Oct. 1994, pp. 937–942.

[124] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark, “Branch prediction, instruction-

window size, and cache size: performance trade-offs and simulation techniques,” Com-

puters, IEEE Transactions on, vol. 48, no. 11, pp. 1260–1281, Nov 1999.

BIBLIOGRAPHY 277

[125] SKIPJACK, LOKI91 source code, www.mirrors.wiretapped.net/security/cryptography/algorithms/skipjack/.

[126] S. Slijepcevic, M. Potkonjak, V. Tsiatsis, S. Zimbeck, and M. Srivastava, “On communi-

cation security in wireless ad-hoc sensor networks,” Enabling Technologies: Infrastruc-

ture for Collaborative Enterprises (WET ICE’02), pp. 139–144, 2002.

[127] B. Smith, Z. Tang, M. Johnson, S. Pourmehdi, M. Gazdik, J. Buckett, and P. Peckham,

“An externally powered, multichannel, implantable stimulator-telemeter for control of

paralyzed muscle,” in IEEE Transactions on Biomedical Engineering, vol. 45, 1998, pp.

463–475.

[128] SPEC CPU2006, www.spec.org/cpu2006/.

[129] N. Srinivas and K. Deb, “Multiobjective optimization using nondominated sorting in

genetic algorithms,” Evolutionary Computation, vol. 2, pp. 221–248, 1994.

[130] K. Stangel, S. Kolnsberg, D. Hammerschmidt, B. Hosticka, H. Trieu, and W. Mokwa,

“A programmable intraocular cmos pressure sensor system implant,” in IEEE Journal of

Solid-State Circuits, vol. 36, Jul. 2001, pp. 1094–1100.

[131] L. Stotts, K. Infinger, J. Babka, and D. Genzer, “An 8 bit microcomputer with analog

subsystems for implantable biomedical application,” in IEEE Journal of Solid-State Cir-

cuits, 1989, pp. 292–300.

[132] C. Strydis, G. Gaydadjiev, and S. Vassiliadis, Implantable microelectronic devices: A

comprehensive review, ser. M.Sc. Thesis. Computer Engineering, Delft University of

Technology, July 2005.

[133] ——, “Implantable microelectronic devices: A comprehensive review,” Computer Engi-

neering, Delft University of Technology, CE-TR-2006-01, December 2006.

[134] C. Strydis, D. Zhu, and G. Gaydadjiev, “Profiling of symmetric encryption algorithms

for a novel biomedical-implant architecture,” in ACM International Conference on Com-

puting Frontiers (CF’08), Ischia, Italy, 5-7 May 2008, pp. 231–240.

[135] C. Strydis and G. N. Gaydadjiev, “Profiling of lossless-compression algorithms for

a novel biomedical-implant architecture,” in Proceedings of the 6th IEEE/ACM/I-

FIP international conference on Hardware/Software codesign and system synthesis

(CODES+ISSS’08), Atlanda, Georgia, USA, 19-24 October 2008, pp. 109–114.

[136] C.-L. Su and A. M. Despain, “Cache design trade-offs for power and performance opti-

mization: a case study,” in ISLPED ’95: Proceedings of the 1995 international sympo-

sium on Low power design, New York, NY, USA, 1995, pp. 63–68.

[137] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli, “Design space exploration of network

processor architectures,” Network Processor Design: Issues and Practices, vol. 1, pp.

55–89, 2002.

[138] P. Troyk, I. Brown, W. Moore, and G. Loeb, “Development of bion tm technology for

functional electrical stimulation: bidirectional telemetry,” in Proceedings of the 23th An-

nual International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBS), vol. 4, Istanbul, Turkey, 25-28 October 2001, pp. 1317–1320.

[139] University of Michigan, Sim-Panalyzer 2.0, www.eecs.umich.edu/∼panalyzer/.

[140] P. Valdastri, A. Menciassi, A. Arena, C. Caccamo, and P. Dario, “An implantable teleme-

try platform system for in vivo monitoring of physiological parameters,” in IEEE Trans-

actions on Information Technology in Biomedicine, vol. 8, September 2004, pp. 271–278.

www.mirrors.wiretapped.net/security/cryptography/algorithms/skipjack/
www.spec.org/cpu2006/
www.eecs.umich.edu/~panalyzer/

278 BIBLIOGRAPHY

[141] S. Vassiliadis, J. Phillips, and B. Blaner, “Interlock collapsing alu’s,” IEEE Transactions

on Computers, vol. 42, no. 7, pp. 825–839, July 1993.

[142] D. A. V. Veldhuizen and G. B. Lamont, “Evolutionary computation and convergence to

a pareto front,” in Genetic Programming 1998: Proceedings of the Third Annual Con-

ference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H.

Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds. University of Wisconsin, Madison,

WI, USA: Morgan Kaufmann, 22-25 Jul. 1998.

[143] R. Venugopalan, P. Ganesan, P. Peddabachagari, A. Dean, F. Mueller, and M. Sichitiu,

“Encryption overhead in embedded systems and sensor network nodes: modeling and

analysis,” in International Conference on Compilers, Architecture and Synthesis for Em-

bedded Systems, 2003, pp. 188–197.

[144] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. Shantz, “Energy analysis of public-key

cryptography for wireless sensor networks,” in 3rd IEEE International Conference on

Pervasive Computing and Communications, 2005, pp. 324–328.

[145] L. Wang, P. Hammond, E. Johannessen, T. Tang, A. Astaras, S. Beaumont, A. Murray,

J. Cooper, and D. Cumming, “An on-chip programmable instrumentation microsystem

for gastrointestinal telemetry applications,” in Proceedings of the 26th Annual Interna-

tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBS),

San Francisco, California, USA, 1-5 September 2004, pp. 2109–2112.

[146] W. Wang, G. Yan, F. Sun, P. Jiang, W. Zhang, and G. Zhang, “A non-invasive method for

gastrointestinal parameter monitoring,” in World Journal of Gastroenterology, vol. 11,

28 January 2005, pp. 521–524.

[147] J. Warren, R. Dreher, R. Jaworski, J. Putzke, and R. Russie, “Implantable cardioverter

defibrillators,” in Proceedings of the IEEE, vol. 84, 1996, pp. 468–479.

[148] D. Wheeler and R. Needham, “Correction to XTEA,” Computer Laboratory, University

of Cambridge, Tech. Rep., October 1998.

[149] K. Wise and N. Najafi, “The coming opportunities in microsensor systems,” in Digest

of Technical Papers, International Conference on Solid-State Sensors and Actuators

(TRANSDUCERS ’91), San Francisco, California, USA, 24-27 August 1991, pp. 2–7.

[150] T. Wolf and M. Franklin, “Commbench-a telecommunications benchmark for network

processors,” in IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS’00), Washington, DC, USA, 2000, pp. 154–162.

[151] S. Woods, “The ieee-p1451 transduced to microprocessor interface,” in Sensors Maga-

zine, June 1996, pp. 43–48.

[152] P. Wouters, M. D. Cooman, D. Lapadatu, and R. Puers, “A low power multi-sensor

interface for injectable microprocessor-based animal monitoring system,” in Sensors and

Actuators A: Physical, vol. 41-42, 1994, pp. 198–206.

[153] A. H. Wright, “Genetic algorithms for real parameter optimization,” in Foundations of

Genetic Algorithms. Morgan Kaufmann, 1991, pp. 205–218.

[154] Y. Xie, G. Loh, B. Black, and K. Bernstein, “Design space exploration for 3D architec-

tures,” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 2,

no. 2, pp. 65–103, 2006.

[155] N. Yazdi, A. Mason, N. Najafi, and K. Wise, “A low-power generic interface circuit

for capacitive sensors,” in Digest of Technical Papers, Solid-State Sensor and Actuator

Workshop, Jun. 1996, pp. 215–218.

BIBLIOGRAPHY 279

[156] ——, “A smart sensing microsystem with a capacitive sensor interface,” in Digest of

Technical Papers, IEEE International Symposium on Circuits and Systems, vol. 4, May

1996, pp. 336–339.

[157] ——, “A generic interface circuit for capacitive sensors in low-power multi-parameter

microsystems,” in Sensors and Actuators A: Physical, vol. 84, 2000, pp. 351–351.

[158] A. Youssif, N. Ismail, and F. Torkey, “Comparison of branch prediction schemes for

superscalar processors iceec 2004,” Electrical, Electronic and Computer Engineering,

2004. ICEEC ’04. 2004 International Conference on, pp. 257–260, Sept. 2004.

[159] J. Zhang, K. Zhang, Z. Wang, and A. Mason, “A universal micro-sensor interface chip

with network communication bus and highly programmable sensor readout,” in The 2002

45th Midwest Symposium on Circuits and Systems (MWSCAS-2002), vol. 2, Aug. 2002,

pp. II–246 – II–249.

[160] J. Zhang, J. Zhou, P. Balasundaram, and A. Mason, “A highly programmable sensor

network interface with multiple sensor readout circuits,” in Proceedings of IEEE Sensors,

vol. 2, Oct. 2003, pp. 748–752.

[161] C. Zierhofer, I. Hochmair-Desoyer, and E. Hochmair, “Electronic design of a cochlear

implant for multichannel high-rate pulsatile stimulation strategies,” in IEEE Transactions

on Rehabilitation Engineering, Mar. 1995, pp. 112–116.

List of Publications

International Conferences

1. C. Strydis, D. Dave, Identifying Optimal Generic Processors for

Biomedical Implants, 28th IEEE International Conference on Com-

puter Design (ICCD’10), Amsterdam, The Netherlands, October 2010,

pp. 494-501.

2. C. Strydis, D. Dave, G. N. Gaydadjiev, ImpBench Revisited: An Ex-

tended Characterization of Implant-Processor Benchmarks, Inter-

national Conference on Embedded Computer Systems: Architectures,

Modeling and Simulation (SAMOS X), Samos, Greece, July 2010, pp.

126-135.

3. D. Dave, C. Strydis, G. N. Gaydadjiev, ImpEDE: A Multidimensional

Design-Space Exploration Framework for Biomedical-Implant Pro-

cessors, 21st IEEE International Conference on Application-specific

Systems Architectures and Processors (ASAP’10), Rennes, France, July

2010, pp. 39-46.

4. C. Strydis, G. N. Gaydadjiev, Evaluating Various Branch-Prediction

Schemes for Biomedical-Implant Processors, 20th IEEE International

Conference on Application-specific Systems, Architectures and Proces-

sors (ASAP’08), Boston, MA, USA, July 2009, pp. 169-176.

5. C. Strydis, G. N. Gaydadjiev, The Case for a Generic Implant Pro-

cessor, 30th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC’08), Vancouver, Canada, Au-

gust 2008, pp. 3186-3191.

6. C. Strydis, Suitable Cache Organizations for a Novel Biomedical Im-

plant Processor, 26th IEEE International Conference on Computer De-

sign (ICCD’08), Lake Tahoe, California, USA, October 2008, pp. 591-

598.

7. C. Strydis, D. Zhu, G. N. Gaydadjiev, Profiling of Symmetric-

Encryption Algorithms for a Novel Biomedical-Implant Architec-

ture, ACM International Conference on Computing Frontiers (CF’08),

Ischia, Italy, May 2008, pp. 231-240.

281

282 LIST OF PUBLICATIONS

8. C. Strydis, G. N. Gaydadjiev, Profiling of Lossless-Compression

Algorithms for a Novel Biomedical-Implant Architecture, 6th

IEEE/ACM/IFIP international conference on Hardware/Software code-

sign and system synthesis (CODES’08), Atlanta, Georgia, USA, October

2008, pp. 109-114.

9. C. Strydis, C. Kachris, G. N. Gaydadjiev, ImpBench: A Novel Bench-

mark Suite for Biomedical, Microelectronic Implants, IEEE Inter-

national Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation (IC-SAMOS VIII), Samos, Greece, July 2008,

pp. 86-95.

Local Conferences

1. C. Strydis, G. N. Gaydadjiev, S. Vassiliadis, A New Digital Architec-

ture for Reliable, Ultra-Low-Power Systems, ProRISC 2006, Veld-

hoven, The Netherlands, November 2006, pp. 350-355.

2. C. Strydis, G. N. Gaydadjiev, S. Vassiliadis, A Generic Digital Archi-

tecture & Compiler for Implantable Devices, Architectures and Com-

pilers for Embedded Systems (ACES 2005), Ter Elst, Edegem, Belgium,

September 2005.

Reports

1. C. Strydis, G.N. Gaydadjiev, S. Vassiliadis, Implantable Microelec-

tronic Devices: A Comprehensive Review, Technical Report (CE-TR-

2006-01), Delft, The Netherlands, December 2006.

Samenvatting

G
ezondheidszorg in de 21e eeuw verandert snel. Met name in on-

twikkelde landen, vindt deze verandering plaats van een publieke

naar een meer gepersonaliseerde gezondheidszorg. Daarbij nemen

de kosten van de gezondheidszorg wereldwijd elk jaar toe. Om betere cont-

role te krijgen over deze kosten, kan en moet beter gebruik van technologie

worden ingezet. Op het moment profiteren implantaten al van de verbluffende

miniaturisatie technologie, waardoor ze steeds kleiner worden, minder energie

verbruiken en de transistors beter kunnen presteren. Deze voordelen bren-

gen echter wel kosten met zich mee. Verder worden in implantaten vaak nog

de volgende negatieve verschijnselen geobserveerd: toenemend energie ver-

bruik, afwezigheid van het ontwerp voor betrouwbaarheid en hoge specificiteit

waarmee het apparaat kan worden gebruikt. Met het oog op de hiervoor ge-

noegende verschijnselen en in de vooronderstelling dat implantaten een belan-

grijke rol zullen blijven spelen in de ontwikkeling van een betere, meer geper-

sonaliseerde gezondheidszorg, zijn wij van mening dat een nieuw paradigma

voor het ontwerp van implantaten noodzakelijk is. In dit proefschrift wordt

het concept van Smart implantable Medical Systems (SiMS) gedefinieerd.

SiMS is een systematische aanpak om biomedische onderzoekers en, hopelijk,

de industrie te voorzien van een gereedschapskist met kant-en-klare subon-

derdelen van implantaten en modellen. Hiermee kunnen implantaten worden

gemaakt met een hoge kwaliteit, voor verschillende medische toepassingen.

Het SiMS concept moet echter wel aan een aantal essentiële eigenschappen

voldoen, namelijk: hoge betrouwbaarheid, modulair ontwerp, zo min mo-

gelijk energieverbruik en miniatuur formaat. Na het SiMS concept te hebben

gedefinieerd, zal dit proefschrift de voordelen van de microarchitecturale de-

tails van het meest belangrijke SiMS deel onderzoeken: de SiMS processor.

In tegen stelling tot de huidige stand van zaken binnen de technologie, zou

deze nieuwe processor een universeel en goedkoop zijn, met laag energiever-

bruik. Verder zou deze processor inzetbaar zijn in een brede verscheidenheid

aan medische toepassingen.

283

Curriculum Vitae

Christos Strydis was born on January 15, 1981 in Athens,

Greece. In 1998, he received his high school degree and,

by national examinations, was accepted in the Electron-

ics & Computer Engineering (ECE) Bachelor program

of the Technical University of Crete, Greece. He ma-

jored in Computer Engineering and did his thesis work on

Bluetooth-related, embedded systems, for which he was

also awarded the 3rd place in the annual ”Ericsson Awards

of Excellence”, Hellas.

In June 2003, he received his 5-year-long diploma with honors and a top-5%

ranking in his undergraduate class of 75. In September 2003 he was accepted

in the Masters program of the Department of Electrical Engineering, Mathe-

matics and Computer Science, Delft University of Technology, with a major in

Computer Engineering and a minor in Biomedical Engineering. He became a

member of the Computer Engineering (CE) Laboratory chaired by late Prof. S.

Vassiliadis and displayed an active interest on biomedical, microelectronic im-

plants, on which topic he also performed his M.Sc. thesis work and graduated

his degree with a CGPA of 8.0/10.0 (Honors).

In September 2005, and under the advisory of Assistant Prof. G.N. Gaydadjiev,

Christos started his Ph.D. work on processor architectures for microelectronic

implants. The research work was funded by the ICT Delft Research Center

(DRC-ICT) of the Delft University of Technology and the results of this work

are presented in the current dissertation.

Christos is a reviewer for many international conferences and journals, has su-

pervised a number of M.Sc. students to their successful graduation and has

served as proceedings co-chair for the SAMOS conference. His research in-

terests include implant-processor design, low-power and dependable computer

architectures, and neuroprosthetic applications thereof.

285

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Background
	Problem overview
	Socioeconomic trends
	Implant-device trends

	Motivation
	Dissertation challenges & contributions
	Dissertation organization

	A survey on microelectronic implants
	Survey goals
	Survey scope
	Survey structure
	An implant primer
	Survey setup
	Major categories
	Minor categories
	ELECTROMECHANICAL FEATURES
	POWER FEATURES
	GENERAL IMPLANT FEATURES
	PROCESSING/CONTROLLING-CORE FEATURES
	MISCELLANEOUS IMPLANT FEATURES

	Discussion
	Statistical tests
	Testing independence of two categorical variables
	Testing whether categorical variables change over time
	Exploring the relation of a scale variable over time
	Exploring the relation of a scale variable over time over groups
	Comparing a scale variable over groups

	Survey results
	Implant applications & functionality
	Electromechanical features
	Power features
	General implant features
	PCC features
	Miscellaneous implant features

	Summary

	The SiMS concept & background
	Motivating a new generation of implants
	Socioeconomic trends
	Technological trends
	Survey-based implant trends

	Smart implantable Medical Systems (SiMS)
	The SiMS concept
	SiMS digital processor
	Typical SiMS workloads
	SiMS HLL Compiler
	SiMS peripherals
	SiMS wireless transceiver
	SiMS chip interfaces
	Miscellaneous SiMS components
	SiMS relevance
	Minimizing risks and costs
	Prior art on generic implant designs

	Technical background
	Work organization
	Processor simulators
	Evaluation of suitable implant benchmarks
	Compression algorithms
	Encryption algorithms

	Investigating benchmark suites for implants
	Processor microarchitecture exploration
	Evaluation of L1 I-/D-cache organizations
	Evaluation of branch-prediction schemes

	Automated, multiobjective DSE for implant processors

	Summary

	SiMS-processor simulation environment
	XTREM processor simulator
	Hardware-modeling details
	Program-execution details
	Sampling details

	Implant workloads
	Workload characteristics
	Identifying generic workloads
	Real implant applications
	Data reduction & compression
	Data & command encryption
	Data & command integrity

	Workload acquisition

	Input datasets
	Profiling of encryption algorithms
	Selection criteria of ciphers
	Experimental setup
	Simulator configuration
	Encryption datasets
	Encryption algorithms

	Profiling analysis
	Power consumption
	Energy expenditure
	Encryption rate
	Executable-binary size
	Security margin

	Results & discussion

	Profiling of compression algorithms
	Selection criteria of compression algorithms
	Experimental setup
	Simulator configuration
	Compression datasets
	Compression algorithms

	Profiling analysis
	Compression ratio
	Compression rate
	Average & peak power consumption
	Overall energy budget
	Executable-binary size

	Results & discussion

	ImpBench: A novel benchmark suite for implants
	The need for a new benchmark suite
	The ImpBench components
	Experimental setup
	Benchmark characterization
	Performance, caches and branch prediction
	Dynamic & static benchmark size
	Instruction distribution
	Power consumption

	Summary

	A SiMS case study
	Implant characteristics
	Crafting a realistic application
	Experimental setup
	Profiling analysis
	Discussion

	Summary

	SiMS-processor microarchitecture evaluation
	Evaluation of cache organizations
	Experimental setup
	Input datasets
	Benchmarks
	Simulation testbed

	Profiling analysis
	Cache sizes
	Cache associativity

	Conclusions

	Evaluation of branch-prediction schemes
	Experimental setup
	Considered branch-prediction schemes
	Evaluation study
	Conclusions

	Summary

	Automated exploration of SiMS-processor microarchitectures
	ImpEDE: A DSE tool for implant processors
	Framework organization
	Genetic algorithm: NSGA-II
	Processor & cache simulators
	Biomedical benchmarks & input datasets
	Parallelization & optimization

	Framework fine-tuning
	Chromosome encoding & XTREM errata
	Population size
	Number of Generations
	Mutation
	Crossover probability

	Selected results & validation
	Implant-processor results
	Framework expansion

	Conclusions

	ImpBench v1.1: Revisiting the implant benchmark suite
	ImpBench v1.1 overview
	Experimental setup
	Benchmark characterization
	Lossless compression
	Symmetric encryption
	Data integrity
	Real applications & stressmarks

	Conclusions

	Exploration of optimal SiMS Processors
	Experimental setup
	Exploration framework
	Worst-case workload mix

	SiMS-processor DSE execution
	Implant study cases
	Exploration results
	Discussion
	Conclusions

	Summary

	Conclusions
	Outlook
	Contributions
	Open Issues and Future Directions

	Bibliography
	List of Publications
	Samenvatting
	Curriculum Vitae

