Matrix Register File and Extended Subwords:
Two Techniques for Embedded Media Processors

Asadollah Shahbahrami

Ben Juurlink
shahbahrami@ce.et.tudelft.nl benj@ce.et.tudelft.nl

Stamatis Vassiliadis
stamatis@ce.et.tudelft.nl

Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology, The Netherlands
Phone: +31 15 2787362, Fax: +31 15 2784898.

ABSTRACT

In this paper we employ two techniques suitable for embed-
ded media processors. The first technique, extended sub-
words, uses four extra bits for every byte in a media reg-
ister. This allows many SIMD operations to be performed
without overflow and avoids packing/unpacking conversion
overhead because of mismatch between storage and compu-
tational formats. The second technique, the Matrix Register
File (MRF), allows flexible row-wise as well as column-wise
access to the register file. It is useful for many block-based
multimedia kernels such as (I)DCT, 2 x 2 Haar Transform,
and pixel padding. In addition, we propose a few new media
instructions. We employ Modified MMX (MMMX), MMX
with extended subwords, to evaluate these techniques. Our
results show that MMMX combined with an MRF reduces
the dynamic number of instructions by up to 80% compared
to other multimedia extensions such as MMX.

Categories and Subject Descriptors: C.1.2 [Processor
Architectures|: Multiple Data Stream Architectures, SIMD

General Terms: Design, Performance.

Keywords: Embedded media processors, multimedia ker-
nels, register file, sub-word parallelism.

1. INTRODUCTION

Many microprocessor vendors have developed multimedia
instructions in order to exploit the computational character-
istics of multimedia applications. The unbalance between
the wide data paths of contemporary General-Purpose Pro-
cessors (GPPs) and the relatively narrow data types found
in multimedia algorithms has led to SIMD-like instructions
that operate concurrently on, e.g., eight bytes or four 16-bit
values packed in a 64-bit register. Examples of such multi-
media instruction set extensions are MMX [17] and SSE [18].

When employing n-way parallel SIMD instructions, the
ideal speedup is n. Usually, however, the attained speedup

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CF’05, May 4-6, 2005, Ischia, Italy.

Copyright 2005 ACM 1-59593-018-3/05/0005 ...$5.00.

171

is much smaller. This is due to several reasons. First, the
way multimedia data is stored in memory (the storage for-
mat) is usually too small to represent intermediate results.
Data, therefore, needs to be unpacked to a larger computa-
tional format before it can be processed and the results have
to be packed again before they can be written back to mem-
ory. Obviously, this means loss of performance due to the
extra cycles required for unpacking and packing. Further-
more, it also implies a loss of parallelism due to the reduction
of the vector length. Table 1 shows the percentage of SIMD
data rearrangement operations that are used in Berkeley
Multimedia Kernel Library (BMKL) [19]. As you can see
in this table, Intel MMX/SSE executes 12.6% of these in-
structions (overhead instructions), and Motorola AltiVec ex-
tension executes the largest percentage of these operations
(17%) because, not only it’s wider register width but also
it uses overhead instructions to simulate unaligned access
to memory. The instructions represent the overhead neces-
sary to put data in a format suitable to SIMD operations, it
is called overhead instructions, such as packing/unpacking
and data re-shuffling instructions.

Second, many block-based multimedia algorithms process
data along the rows as well as along the columns. This im-
plies that in order to employ SIMD instructions, the matrix
needs to be transposed frequently. Transposition takes a sig-
nificant amount of time, however. For example, transposing
an 8 X 8 matrix consisting of single-byte elements requires
56 MMX/SSE instructions to be executed. If the elements
are two bytes wide, then 88 instructions are required.

Providing smaller code size is one important factor in ef-
ficient use of processors’ resources like the instruction fetch
and decode stage, in embedded systems. Because of this fac-
tor, embedded processors can have higher performance and
consume low-power. For this, in addition to algorithmic and
code optimization, data optimization and rearrangement is
another important issue for providing smaller code size and
efficient processing of a continuous stream in embedded me-
dia processors. The performance can be improved by chang-
ing the data organization or by changing the way data is
processed. One way, for data optimization for kernels work
on rows (such as DCT/IDCT, horizontal padding, subsam-
ple horizontal, vector/matrix, and matrix/matrix) is use of
a matrix transposition. But, as we already indicated trans-
position is expensive and takes a significant amount of time,
the challenge is to transpose the matrix efficiently [8].

In this paper we employ two techniques proposed to over-
come these limitations. The first technique, called extended
subwords, uses registers that are wider than the size of a

Multimedia Extension Data

Rearrangement Operations

SIMD Integer
Arithmetic Operations

SIMD Floating Point
Arithmetic Operations

VIS 9.7% 13.6% 0%
AltiVec 17% 11.8% 6.9%
MMX/SSE 12.6% 18.8% 9.3%

Table 1: Percentage of overhead instructions, SIMD integer arithmetic instructions, and floating point arith-

metic instructions in the BMKL kernels [19].

packed data type in memory. Specifically, for every byte
of data, there are four extra bits. This allows many com-
putations to be performed without overflow. The second
approach, called the Matriz Register File (MRF), allows
load and store instructions to access the register file along
the rows as well as along the columns. In other words, it al-
lows to view the register file as a matrix, where each register
corresponds to the a row of the matrix and corresponding
subwords in different registers correspond to a column. In
addition, we have designed a few new media instructions
which we have found very useful but are lacking in, for ex-
ample, MMX and SSE.

We have enhanced MMX with extended subwords and
the matrix register file. The resulting architecture is called
Modified MMX (MMMX). Our results show that the com-
bination of these approaches reduces the dynamic number
of instructions of many multimedia kernels by up to 80%.

This paper is organized as follows. Section 2 describes
the proposed architecture, i.e., extended subwords, the ma-
trix register file, and the instruction set architecture. Sec-
tion 3 evaluates the proposed architecture by comparing the
dynamic number of instructions required by MMMX im-
plementations of several kernels to the dynamic instruction
count of MMX/SSE implementations. Related work is de-
scribed in Section 4. Finally, we draw some conclusions in
Section 5.

2. PROPOSED ARCHITECTURE

In this section we describe extended subwords, the matrix
register file, and the proposed instruction set.

2.1 Extended Subwords

Image and video data is typically stored as packed 8-bit
elements, but intermediate results usually require more than
8-bit precision. As a consequence, most 8-bit media in-
structions will be wasted on many multimedia kernels. The
packed 16-bit data type, however, is often larger than nec-
essary for many image and video applications, and reduces
the amount of parallelism that can be exploited.

In previous work [12], we have proposed Modified MMX
(MMMX). MMMX features registers that are wider than the
size of a packed data type in memory. Specifically, for every
byte of data there are four bits of extra precision. Load in-
structions automatically unpack data and store instructions
implicitly pack data. We have shown that four extra bit for
every byte in a register is sufficient for many multimedia ker-
nels. This is also supported in [6], where it was shown that
a 12-bit data format is sufficient for 85.7% of the processing
in MPEG-4 encoding.

In MMMX, there are eight multimedia registers as in
MMX. However, these registers are 96 bits wide instead of
64 bits. Figure 1 illustrated that a 96-bit ALU can be par-
titioned into eight 12-bit ALUs. Such a partitioned ALU

172

Operand 1, each subword is 12-bit Operand 2, each subword is 12-bit

each subword is 12-bit

Figure 1: A 96-bit partitioned ALU.

7 76 75 74 73 72 71 70

o b
il bl

Y 2 - R N
6 3

mmi[e | I I I I

most significant subword select row- or

12-bit column-wise access

x| x|

6 7 62 61 6 0

select row- or
I ise access

e
e
gl
-iE
-iE

Write
data

L R]

07
0

m7[_ x

;_BL,
‘Lr/‘ I I I

o
el
gl
]
g

l select row- or

I ise access

least significant subword
m

Figure 2: A matrix register file with 12-bit sub-
words. For simplicity, write and clock signals have
been omitted.

can perform eight 12-bit, four 24-bit, two 48-bit, or a single
96-bit operation. The cost of implementing a partitioned
ALU is very small.

2.2 Matrix Register File

The ability to efficiently rearrange subwords within and
between registers is crucial for the performance of many me-
dia kernels. Matrix transposition, in particular, which is
needed in many block-based algorithms, is a very expensive
operation. To implement this operation in MMX/SSE re-
quires many overhead instructions. To overcome this prob-
lem we propose to employ a Matrix Register File (MRF)
which allows data loaded from memory to be written to a
column of the register file as well as to a register (which
corresponds to row-wise access).

Figure 2 illustrates an MRF with 12-bit subwords. For
simplicity, write and clock signals have been omitted. Data
loaded from memory can be written to a row (correspond-
ing to a conventional media register) as well as to a column
(corresponding subwords in different registers). Seven 2:1
12-bit multiplexers are needed per register/row to select be-
tween row-wise and column-wise access. For example, for
register mmO we need to be able to select between the most
significant subword of the data for column-wise access and
another subword in case of row-wise access. Multiplexers
are not needed for the subwords on the main diagonal.

Only load instructions can write to a column of the MRF.
Thus a transposition of a matrix stored in the register file

s10 = To+x7
S11 = X1+ e
S12 = X2+ X5
$13 = T3+ T4
S14 = X3 — X4
S15 = X2 — X5
S16 = X1 — Te
S17 = X0 — X7

Figure 3: First stage of the LLM algorithm for com-
puting an 8-point DCT.

can be accomplished using a normal store followed by a
column-wise load. Alternatively, we can use a column-wise
store followed by a normal load. However, the first method
requires fewer instructions if the matrix to be transposed
is stored in memory in row-major order and needs to be
processed column-wise.

As an example of where column-wise access to the register
file is very useful, Figure 3 depicts the first stage of the LLM
algorithm [15] for computing an 8-point DCT. An 8 x 8 2D
DCT can be accomplished by performing a 1D DCT on each
row followed by a 1D DCT on each column. Elements of each
loop iteration are adjacent in memory (in a row-major stor-
age format), the efficiency of using SIMD approach for the
1D column DCT, is more better than 1D row DCT. Because
in 1D column DCT, each byte (x;,4 = 0,1,...7) is stored in
one subword of one register. This has been depicted in first
subword of registers mm; (0 < i < 7) in Figure 2. While,
in 1D row DCT, all of bytes of one row z; (0 < ¢ < 7)
are stored in one register. This has been depicted in mm0
register in Figure 2.

In order to exploit this parallelism using SIMD instruc-
tions, the elements xo,x7, 1,6, T2, 5 and x3, x4 have to
be in corresponding subwords of different registers. This im-
plies that the high and low double words of the quadword
have to be split across different registers and that the order
of the subwords in one of these registers has to be reversed.
An alternative way to realize a 2D DCT is by transpos-
ing the matrix so that all the x;’s of different rows are in
one register. In other words, we perform several 1D DCTs
in parallel rather than trying to exploit the data-level par-
allelism (DLP) present in a 1D DCT. If the transposition
step can be implemented efficiently, this method is more
efficient than the first one. Moreover, it allows to exploit
8-way SIMD parallelism if the subwords can represent the
intermediate results.

We note that matrix transposition not only arises in the
DCT but also in many other kernels such as the IDCT, hor-
izontal padding, and horizontal subsampling. Furthermore,
the matrix has to be transposed twice in order to exploit
8-way parallelism in these kernels. In addition to, using
this technique, in some applications which use both rows
and columns algorithms, we just use column’s algorithm.
For example, padding technique has four stage using matrix
transpose. Matrix transposition is done twice and vertical
padding algorithm is done twice as well.

2.3 Instruction Set Architecture

In this section we briefly describe the MMMX instruction
set. Most MMMX instructions are direct counterparts of
MMX and SSE instructions. For example, the MMMX in-
structions fadd{12,24,48} mm,mm/mem64 correspond to the

173

each subword is 12-bit

fsum12 4 ¥ ¥

L [2aon | 246t | 24bit | 24-bit |
fsum24 \4)/ \4 »/
fdiff24

3 | 48-bit | 48-bit |
fsum48
fdiff48)

L 96-bit |

op. = addition (+) or difference (-)

Figure 4: Reducing eight 12-bit subwords to a single
96-bit sum or 96-bit difference using the instructions
fsum{12,24,48} and fdiff{12,24,48}, respectively.

MMX instructions padd{b,w,d} mm,mm/mem64. MMMX, how-
ever, does not support variants of these instructions that
automatically saturate the results of the additions to the
maximum value representable by the subword data type.

As explained before, load instructions automatically un-
pack the subwords and store instructions automatically pack
and saturate. For example, the £1d8ul2 instruction loads
eight unsigned 8-bit elements from memory and zero-extends
them to a 12-bit format in a 96-bit MMMX register. Vice
versa, the instruction £st12s8u saturates the 12-bit signed
subwords to 8-bit unsigned subwords before storing them to
memory.

We found that in many media kernels all elements packed
in one register need to be summed and in some kernels only
adjacent elements need to be added or subtracted. Rather
than providing different instructions for summing all ele-
ments and adding adjacent elements, we decided to support
adding adjacent elements only but for every packed data
type. Whereas summing all elements would probably trans-
late to a multi-cycle operation, adding adjacent elements
is a very simple operation that can most likely be imple-
mented in a single cycle. Figure 4 illustrates how eight
12-bit subwords can be reduced to a single 96-bit sum or
96-bit difference using the instructions fsum{12,24,48} and
£diff{12,24,48}, respectively. The fsum instructions are
used to synthesize the special-purpose SSE sum-of-absolute-
differences (SAD) instruction, which is not present in MMMX
because it is redundant [12].

The instructions fmadd241, fmadd24h are used for multi-
plication and addition of two registers with some coefficients.
Because using the MRF and the wider registers together in
implementation of video and image kernels, we found that
the multiplication and addition of two registers with third
operand is very important for reducing the number of in-
structions. Of course, we can replace these instructions with
fmadd24 (multiplies the eight signed 12-bit of the destina-
tion operand by the eight signed 12-bit of the source operand
and each two high-order 12-bit are summed and stored in
the two upper 24-bit of the destination operand and the two
low-order 12-bit are summed and stored in the two lower 24-
bit of the destination operand), funpckh24, and funpackl24
instructions that there are in MMMX ISA. Figure 5 depicts
the structure of fmadd241, fmadd24h instructions.

each subword is 12-bit
‘a7la6 ‘ a5‘a4 ‘aS ‘a2 ‘a1 ‘ao‘

R2 67| b6] b5 [b4 [b3 [b2]b1 [b0 |

Coefficients ¢7 c6 ¢5 c4 c3 c2 c1 c0

fmadd24l R1, R2, Coefficients

each subword is 24-bit
R1 [a3*c6+b3*c7 | a2*c4+b2°c5 [a1*c2+b1*c3 | a0*cO+b0*c

fmadd24h R2, R1, Coefficients
each subword is 24-bit

R2[a7°c6+b7"c7 | a6*ca+b6c5 | a5*c2+b5*c3 | ad"c0+b4*ct |

Figure 5: Structure of fmadd241 and fmadd24h instruc-
tions.

3. INITIAL EVALUATION

In this section we evaluate MMMX with and without
the MRF by counting the dynamic number of instructions
needed to realize several multimedia kernels using MMX as
well as MMMX instructions. We need to employ this eval-
uation method because we do not yet have a simulator for
MMMX. Nevertheless, it is a valid initial comparison be-
cause we do not replace instructions by more complex ones.
In fact, MMX/SSE include multi-cycle instructions such as
SAD instruction which MMMX does not support, because
they can be synthesized using simpler, more general instruc-
tions. We study only kernels as opposed to entire applica-
tions. This is because they represent a major portion of
many multimedia applications.

3.1 DCT

The Discrete Cosine Transform (DCT) and its inverse
(IDCT) are widely used in image and video compression
applications. JPEG and MPEG partition the input image
into 8 x 8 blocks and perform the 2D DCT on each block.
The input elements are either 8- or 9-bit and the output is
an 8 x 8 block of 12-bit data between -2048 and 2047.

Our implementations are based on the LLM algorithm [15],
which is performed on every row and column. The MMX/SSE
implementation of the 2D DCT is due to Slingerland and
Smith [19]. Because the input data is either 8- or 9-bit,
they have used 16-bit functionality (4-way parallelism). For
MMMX without the MRF, we have restructured the algo-
rithm in order to be able to employ 8-way parallel SIMD
instructions. Specifically, we have combined stages so that
more DLP is exposed. As explained in Section 2.2, for
MMMX with the MRF we perform several 1D row DCTs
in parallel instead of parallelizing each 1D row DCT. This
requires, however, that the matrix is transposed prior to the
row and column DCTs.

Table 2 depicts the dynamic number of instructions re-
quired by the MMX implementation, the MMMX imple-
mentation without using the MRF, and the MMMX with
the MRF. The number of instructions needed to realize the
row DCTs and the column DCTs are presented separately.
In addition, the columns labeled “Overhead instructions”
present the dynamic number of data rearrangement instruc-
tions required in each implementation. This column is miss-
ing for MMMX with the MRF, because this implementation
does not require any of these instructions.

174

Table 2 shows that to perform the row DCTs, MMX re-
quires 462 instructions and MMMX without MRF requires
334 instructions. This is because we restructured the algo-
rithm to expose more SIMD parallelism, as described above.
Furthermore, because MMMX supports 12-bit subwords, it
reduces the number of overhead instructions from 168 to 48.
After the row DCTs, the points are at most 12 bits wide.
Because there is not a 4-way 16-bit multiplication operation
in MMX (full, meaning that all 32 bits of the results are
produced), the authors of [20, 19] have used the multiply-
add instruction pmaddwd with two sub-words set to 0. This
implies that only two points are processed in a single SIMD
operation. MMMX, on the other hand, can process four
points simultaneously. This explains why MMMX reduces
the dynamic number of instructions for the column DCTs
by approximately a factor of 2.

The MRF significantly reduces the dynamic number of in-
structions to perform the row DCTs from 462 to 120. Here
we do not need any rearrangement instructions to bring el-
ements which need to be added together in corresponding
subwords of different registers. Moreover, we can employ
8-way parallel SIMD instructions. The dynamic number of
instructions required to perform the column DCTs is un-
changed w.r.t. MMMX without the MRF'. In total, the dy-
namic number of instructions needed for performing a 2D
DCT on an 8 x 8 block is reduced from 909 to 553 using
MMMX without the MRF (corresponding to a 39% reduc-
tion) and from 909 to 339 using MMMX with the MRF (63%
reduction).

3.2 IDCT

The IDCT is the inverse of the DCT and can be accom-
plished using the same algorithm except that the process is
reversed. Table 3 shows that MMMX (without the MRF)
reduces the dynamic number of instructions from 685 to 641
(by 6%) compared to MMX. The reason that this reduction
is smaller than for the DCT is that the input data is 12-
bit and intermediate results are larger than 12-bit. MMMX
is, therefore, mostly unable to exploit the 12-bit function-
ality. Combining MMMX with the MRF provides a much
larger performance benefit. MMMX with the MRF reduces
the dynamic number of instructions by 36% compared to
MMX. This reduction is mostly due to the fact that the
overhead instructions required to transpose the matrix have
been completely eliminated.

3.3 Repetitive Padding

One important new feature in MPEG-4 is padding, defined
at all levels in the Core and Main Profiles of the standard.
Profiling results, reported in, e.g., [2, 3, 21], indicate that
padding is a computationally demanding process.

MPEG-4 defines the concept of a Video Object Plane
(VOP); an arbitrarily shaped region of a frame which usually
corresponds to an object in the visual scene. In MPEG-4,
motion estimation is defined over VOPs instead of frames
and for more accurate block matching MPEG-4 adopts the
padding process. The padding process defines the color val-
ues of pixels outside the VOP. It consists of two steps. First,
each horizontal line of a block is scanned. If a pixel is out-
side the VOP and between an end point of the line and an
end point of a segment inside the VOP, then it is replaced
by the value of the end pixel of the segment inside the VOP.
Otherwise, if the pixel is outside the VOP and between two
end points of segments inside the VOP, it is replaced by the

2D DCT MMX MMMX without MRF | MMMX with MRF
Dynamic # Overhead | # Dynamic # Overhead # Dynamic
Instructions Instructions | Instructions Instructions Instructions
Row DCTs 462 168 334 48 120
Column DCTs 447 64 219 0 219
| Total | 909 232 | 553 48 | 339 |

Table 2: The total dynamic number of instructions and the dynamic number of overhead instructions required
to compute the 2D DCT of an 8 x 8 block for MMX and for MMMX without and with the MRF.

2D IDCT MMX MMMX without MRF | MMMX with MRF
Dynamic # Overhead | # Dynamic # Overhead # Dynamic
Instructions Instructions | Instructions Instructions Instructions
Row IDCTs 415 118 381 152 178
Column IDCTs 270 10 260 0 260
| Total | 685 128 | 641 152 | 438 |

Table 3: The total dynamic number of instructions and the dynamic number of pack/unpack and data
rearrangement instructions required to compute the 2D IDCT of an 8 x 8 block for MMX and for MMMX

without and with the MRF.

average of these two end points. In the second step each
vertical line of the block is scanned and the same procedure
as described above is applied. Figure 6 illustrates horizontal
and vertical repetitive padding for an 8 x 8 pixel block. In
this figure VOP boundary pixels are indicated by a numer-
ical value, interior pixels are denoted by an X, and pixels
outside the VOP are blank.

We have implemented the algorithm described in [1], where
special instructions have been proposed for both horizontal
as well as vertical repetitive padding. If column-wise access
to the register file is supported, however, then both steps
can be performed identically in an efficient manner, and
separate instructions for horizontal and vertical repetitive
padding are not needed.

Table 4 depicts the dynamic number of instructions re-
quired by MMX and by MMMX without and with the MRF
to perform repetitive padding on an 8 x 8 block and on a
16 x 16 block. For an 8 x 8 block, the MMX program requires
2 x (56 + 85 + 139) = 560 instructions; 56 instructions are
needed to transpose the matrix, 85 instructions are needed
for the first phase of the algorithm and 139 for the second
phase. It can be seen that MMMX without the MRF does
not decrease the dynamic number of instructions but ac-
tually slightly increases it. This reason is that the MMX
(SSE extension to MMX) code employs the special-purpose
packed average pavgb instruction which MMMX does not
support. This is because with extended subwords the pavgb
instruction offers little extra functionality because it can
be synthesized using the more general-purpose instructions
fadd12 and fsari12 (fat shift right arithmetic). Combining
MMMX with the MRF, however, reduces the dynamic num-
ber of instructions to 2 X (86 + 140) = 460 (86 for the first
phase and 140 for the second phase. This corresponds to
a reduction of 18% and is completely due to the fact that
we do not need to transpose the matrix using data overhead
instructions.

When the block size is 16 x 16, the results have to be
multiplied approximately by a factor of 4, because we have
to perform repetitive padding on four blocks of size 8 x 8
and four times we have to transpose a matrix of size 8 x 8.
The following equation shows that a matrix A of size N X N,

175

where N = 2™, can be transposed by splitting the matrix
into four sub-matrices asj, ¢,7 = 1,2, of size N/2 x N/2 and
by transposing the sub-matrices recursively.

T T

A= ailr ai2 AT _ |@11 a21
-) - T T |-

a1 a2 ajo 29

3.4 2 x2 Haar Transform

The 2 x 2 Haar transform is needed to decompose an im-
age into four different bands. A 2D Haar transform can be
performed by first performing a 1D Haar transform on each
row followed by a 1D Haar transform on each column. The
2 x 2 Haar transform is given by the following equation.

(E94)

20 + 21 + (22 + x3)
20+ z1 — (22 + 23)

2Xx2 Haar 1D —row Haar
—

z0+z1 z0-— =zl
2+ x3 22— z3|’

transform of transform

20 — 21 + (22 — 23)
20 — 21 — (22 — 23)

1D —column Haar
transform ’

The MMX code for the inner loop of the 2 x 2 Haar trans-
form is depicted in Figure 7. The punpcklbw and punpckhbw
instructions (instructions 9, 10, 12, and 13) expand the data
to two bytes. Because both operands are in the same reg-
ister and because MMX does not have an instruction that
adds or subtracts adjacent elements, the instruction pmaddwd
with some multiplicands set to 1 and others to -1 is used for
the final addition or subtraction. The MMMX code for the
2 x 2 Haar transform is depicted in Figure 8.

As Table 5 depicts for an image of size N x M, the dy-
namic number of instructions required by MMX is (7 +
43 x M/8) x N/2. For MMMX without the MRF it is
(7423 x M/8) x N/2, and for MMMX with the MRF it
is (7460 x M/8) x N/8. For large images, MMMX without
the MRF decreases the dynamic number of instructions by
47% and combining MMMX with the MRF reduces it by
65%. This reduction is due to two reasons. First, 8 pix-
els can be processed in parallel because 12 bits is sufficient
for adding or subtracting 4 pixels. Second, as described in
Section 2.3, MMMX includes instructions for adding and
subtracting adjacent elements in a register.

93)93|93|93 93|93 |93

93(93|93/93|93| 93|93

93

o

93

93

93

93|93 | 93 93 | 93| 93| 93| 93| 93 93

X|7s Horizontal x| 7575 75| 7575 75| 75 Vertical x |75 75| 75| 75| 75| 75| 75
—>) > —» e

X | X 105 Padding X | X 105[105[105[105|105/105 Padding X | X |105[105105(105105/105

X|X |85 31 [250 X | X | 85| 58| 58] 58] 31 |250| X | X |85|58|58| 58| 31250

X | X 7 |42|91] X | X X |X | x |7 [42]91| x| X X | X 7 42191 | X | x

X| X X X |X |X |X XX [X[X|[X[X|X|X X | X XX [X [X [X

Figure 6: Repetitive padding for VOP boundary blocks.

| Padding | 8 x 8 blocks [16 x 16 blocks |
MMX 560 2200
MMMX without MRF 572 2228
MMMX with MRF 460 1780

Table 4: Dynamic number of instructions required for performing repetitive padding on 8 x 8 and 16 x 16
blocks using MMX and MMMX with and without the MRF.

1 LHBO1 dw 1, 1,1, 1
2 LHB23 dw 1, -1, 1, -1
3 .row_loop:

4 movq mmO , [esi]

5 movq mml , [esi+ ebx]
6 pxor mm7 , mm7

7 movq mm4 , mmO

8 movq mm5 , mml

9 punpcklbw mmO , mm7

10 punpckhbw mm4 , mm7

11 movq mm2 , mmO

12 punpcklbw mml , mm7

13 punpckhbw mm5 , mm7

14 paddw mmO0 , mml

15 psubw mm2 , mml

16 movq mml , mmO

17 pmaddwd mmO , LHBO1
18 movq mm3 , mm2

19 pmaddwd mm2 , LHBO1
20 movq mm6 , mm4

21 pmaddwd mml , LHB23
22 paddw mm4 , mmb5

23 pmaddwd mm3 , LHB23

Figure 7: 2 x 2 Haar transform on an image of size
N x M using MMX code.

1 row_loop:

2 £f1d8ul2 mmO , [esil]
3 f1d8ul2 mml , [esi+ ebx]
4 f1d12 mm2 , mmO
5 fadd12 mmO , mml
6 fsubl2 mm2 , mml
7 f1d12 mml , mmO
8 fsumil2 mmO

9 fdiff12 mmil

10 f1d12 mm3 , mm2
11 fsumi2 mm?2

12 fdiff12 mm3

Figure 8: 2 x 2 Haar Transform on an image of size
N x M using MMMX code.

© 00N U W

Ju—
o

176

int16 Vec[N];

int16 Mat[N][M];

int16 Res[M];

int32 Accl4];

for (i=0 i<M; i+=4) {
Acc[0..3]=0;

for (j=0; j<N; j+=2)
Acc[0..3] += Mult4x2(&Vec[jl, &Mat[jl[il);
Res[i..i+3] = Acc[0..3];
}

Figure 9: Pseudo C code for vector matrix multiply.

Additionally, the MRF reduces the dynamic number of in-
structions more because it eliminates the need to explicitly
transpose the matrix using rearrangement instructions. An
additional advantage of the implementation that employs
the MRF is that the four bands are stored in consecutive
memory locations, in contrast to the other two implementa-
tions in which the four bands are stored in separate buffers.

3.5 Vector/Matrix and Matrix/Matrix
Multiply

The native vector/matrix and matrix/matrix multiply al-
gorithms traverse the matrices in columns. Matrices are typ-
ically stored in row order leaving the column elements scat-
tered in memory. Therefore, the straightforward approach
applying SIMD techniques to the inner loop is not feasible.
In [10] two methods has been explained for implementation
of vector/matrix multiply using MMX technology. The first
method is, the matrix is split into elements of 4 x 2, and
the input vector is also split into elements of two. The C
algorithm of this method is depicted in Figure 9.

This algorithm works on four columns of the matrix in
parallel (Multdx2 function) and accumulates results in a
set of four accumulators. This algorithm has many draw-
back [10], for an example, the code shows poor cache uti-
lization, that has been optimized with second algorithm. In
second method, the outer loop of algorithm (Figure 9) is
unrolled four times. This algorithm works on 16 columns
of the matrix in each iteration. Each iteration of the outer
loop calculates 16 results. Some part of this algorithm us-
ing MMX code is depicted in Figure 10. We compare our

Kernel MMX

MMMX without MRF

MMMX with MRF

Dynamic Instructions

#

Dynamic Instructions | # Dynamic Instructions

[2 X 2 Haar Transform | (7+43-M/8)-N/2

(T+23-M/8) - N/2__| (7+60-M/3)-N/8_|

Table 5: Dynamic number of instructions required for performing 2 x 2 Haar transform using MMX, and
MMMX with and without the MRF for an image of size N x M.

1 row_loop:

2 mov ebx , N

3 mov esi , Vec

4 pxor mm2 , mm2

5 pxor mm3 , mm3

6 col_loop:

7 movd mm7 , [esi]

8 punpckldg mm7 , mm7

9 movq mm0 , [edx+0]
10 movq mm6 , [edx+2*ecx]
11 movq mml , mmO

12 punpcklwd mmO , mm6

13 punpckhwd mml , mm6

14 pmaddwd mmO , mm7

15 pmaddwd mml , mm7

16 paddd mm2 , mmO

17 paddd mm3 , mml

18 1lea edx , [edx+4*ecx]
19 add esi , 4

20 sub ebx , 2

21 jnz col_loop

Figure 10: MMX code for Multfxz2 function.

MMMX code with this MMX code, because this second al-
gorithm rather than first algorithm based on speed and the
number of instructions is better.

As Table 6 depicts the dynamic number of instructions
using MMX code for a vector of size 1 x N, and a matrix
of size N x M is 16 + (39 + 48 x N/2) x M/16. For 16-
bit input data, the MMMX code with MRF, can reduce
the dynamic number of instructions 25% than the MMX
code. For 12-bit input data, using 12-bit functionality in
the MMMZX code is possible, so in this case, 59% of the
number of dynamic instructions is decreased using MMMX
with MRF than MMX code. One reason for this reduction is
that the MMX codes use 21 times punpck/pack instructions
in each loop iteration.

The number of dynamic instructions for implementation
of the matrix/matrix multiply kernel for two matrices of
size P x N and N x M using MMX and MMMX with MRF
code for 16-bit data is 17+ ((39 4+ 48 - N/2) - M /16 + 4) - P,
6+ ((20418-N/4)-M/4+4)- P, respectively. Table 6 depicts
the number of dynamic instructions for different codes and
different input data. Reduction of 24%, and 58% in the
dynamic number of instructions for 16- and 12-bit input
data is obtained using the MMMX with MRF code than
MMX code, respectively. One reason for this reduction is,
there is no difference between MMX code for 12- and 16-bit
input data.

3.6 Subsample Horizontal/Vertical

There are usually two subsample kernels, horizontal and
vertical. In the vertical sub-sampling kernel, twelve pix-
els are weighted with coefficients and their products are

177

summed together to create a composite pixel. Processing
more than two pixels using the MMX architecture for this
kernel is difficult. Because adding of two pixels is 9-bit and,
we have to use 16-bit representation for it. Table 7 de-
picts the dynamic number of instructions for vertical filter
kernel. As this table illustrates the dynamic number of in-
structions using MMX and MMMX without and with MRF
code for an image of size N x M is 20+ (N/2-143+5)- M /4,
20+ (N/2-126+5)- M /16 , and 20+ (N/2-120+5) - M /16,
respectively. In the horizontal sub-sampling kernel, seven
pixels are weighted with coefficients and their products are
summed together to create a composite pixel. The number
of instructions has been shown in Table 7. If we transpose
the matrix of image for horizontal filtering and use 12-bit
architecture, the number of instructions will be reduced.
Reduction of 80% and 78% in the number of dynamic in-
structions can be achieved using MMMX with and without
MRF than MMX code in implementation of subsample ver-
tical kernel, respectively. Also reduction of 80% and 45% in
the number of dynamic instructions can be achieved using
MMMX with and without MRF than MMX code in imple-
mentation of subsample horizontal kernel, respectively.

4. RELATED WORK

Extended subwords have been previously proposed in [20],
where they are called fat subwords. A register file architec-
ture that provides both row- and column-wise accesses has
been proposed in [11]. We build on these previous works but
significantly extend on them. Specifically, our main contri-
butions are:

e In [20] extended subwords have been proposed but not
evaluated. Our work shows that extended subwords
can be employed for many important multimedia ker-
nels and that this technique significantly reduces the
number of instructions that need to be fetched, de-
coded, and executed.

We combine extended subwords with the MRF. Our
results show that using either of these techniques is
insufficient to eliminate all overhead instructions (see
Figure 11).

We have designed a few new instructions (see Sec-
tion 2.3) which have been found very useful for several
kernels and allow to eliminate all overhead instructions
for the considered kernels.

We briefly summarize other related approaches. In [14],
new subword permutation instructions across multiple reg-
isters have been presented, which can perform all permuta-
tions of a 2 x 2 matrix. MIPS’ MDMX [9] uses a predefined
set of eight 8-bit and eight 16-bit wide shuffles to imple-
ment partial shuffle operations. The Mix instruction in HP’s
MAX [13] can perform any permutation of the four 16-bit
elements within a 64-bit register. Motorola’s AltiVec [7]

Kernels

MMX

MMMX without MRF

MMMX with MRF

Dynamic Instructions

Dynamic Instructions

Dynamic Instructions

Vector/Matrix Multiply
Input data less than or
equal 16-bit

16 + (39 + 48 - N/2) - M/16

16 + (39 + 48 - N/2) - M /16

5+ (20 + 18- N/4) - M/4

Vector/Matrix Multiply
input data is less
than or equal 12-bit

16 + (39 + 48 - N/2) - M/16

5T (10 + 15 - N/2) - M/8

5+ (47 + 39 N/8) - M/8

Matrix/Matrix Multiply
Input data is less
than or equal 16-bit

17+ ((39 + 48 - N/2)-
M/16 +4) - P

17+ ((39 + 48 - N/2)-
M/16 +4) - P

6+ ((20 + 18- N/4)-
M/4+4)-P

Matrix/Matrix Multiply
Input data is less
than or equal 12-bit

17+ ((39 + 48 - N/2)-
M/16 +4) - P

6+ (10 + 15 N/2):
M/8+4)-P

6+ ((47 + 39 - N/8)-
M/8+4)- P

Table 6: Dynamic number of instructions required for performing vector/matrix and matrix/matrix multiply
using MMX and MMMX with and without the MRF for a vector of size 1 x N, and a matrix of size N x M.

Kernels

MMX

MMMX without MRF

MMMX with MRF

Dynamic Instructions.

Dynamic Instructions

Dynamic Instructions

Subsample Vertical

20 + (N/2 - 143 + 5) - M/4

20 + (N/2-126 + 5) - M/16

20 + (N/2-120 + 5) - M/16

Subsample Horizontal

17+ (301 + 96 - M/4) - N

17+ (465 + 96 - M) - N

23+ N +40-M - N/64+

(72-N/16+7) - M

Table 7: Dynamic number of instructions required for performing subsample horizontal /vertical using MMX
and MMMX with and without the MRF for an image of size N x M.

includes a three operand instruction (vperm) for data rear-
rangement. Oliver et al. [16] propose to include a subword
permutation unit (SPU) in the execution pipeline. This
SPU allows data permutation operations to be performed
before other operations by removing permutation instruc-
tions from the instruction stream and instead having the
SPU controller schedule the rearrangement instructions.

In [4] a memory-to-memory architecture for two-dimensional

vectors is proposed. Control registers are used to specify
the size of data in memory and the size of data during com-
putation. If the computational format is larger than the
storage format, the input data is automatically unpacked
before being processed. A related proposal is the Matrix
Oriented Multimedia (MOM) extension [5]. MOM contains
instructions that can be viewed as vector versions of SIMD
instruction, i.e., they operate on matrices and each matrix
row corresponds to a packed data type. MOM supports a
matrix transpose instruction that transposes an 8 x 8 matrix
with a latency of 8 + C' cycles but this operation cannot be
pipelined.

5. CONCLUSIONS

In this paper we have evaluated two techniques proposed
to reduce data reorganization overhead. The first technique,
extended subwords, uses four extra bits for every byte in a
media register. This allows many SIMD operations to be
performed without overflow and avoids packing/unpacking
conversion overhead because of mismatch between the stor-
age and computational formats. The second technique is the
Matrix Register File (MRF'), which allows flexible row-wise
as well as column-wise access to the register file. This elim-
inates the expensive transposition steps which are required
for many kernels that process two-dimensional images.

MMX has been enhanced with extended subwords and the
resulting architecture is called Modified MMX (MMMX).
We have implemented many important multimedia kernels

178

using MMX, MMMX without the MRF, and MMMX with
the MRF. Our results, which are summarized in Figure 11
and Figure 12, show that many kernels can be implemented
efficiently using MMMX enhanced with the MRF. Combin-
ing MMMX with the MRF reduces the dynamic number
of instructions by up to 80% compared to MMX. Although
MMMX without the MRF also reduces the dynamic number
of instructions in most cases, it still incurs much data conver-
sion and reorganization overhead. As demonstrated in Fig-
ure 11, the coalescence of both techniques completely elim-
inates the conversion and reorganization overhead. Hence,
using this modified architecture (MMMX with MRF), effi-
cient use of SIMD architectures, increasing parallelism, and
reducing the dynamic number of instructions which are most
important factors in design of embedded multimedia proces-
sors are achieved.

Future work includes developing a detailed simulator of
MMMX or another multimedia instruction set extension en-
hanced with extended subwords in order to evaluate the pro-
posed techniques and other techniques more elaborately.

6. REFERENCES

[1] M. Berekovic, H. J. Stolberg, M. B. Kulaczewski, and
P. Pirsch. Instruction Set Extensions for MPEG-4
Video. Journal of VLSI Signal Processing, 23:27-49,
1999.

H. C. Chang, L. G. Chen, M. Y. Hsu, and Y. C.
Chang. Performance Analysis and Architecture
Evaluation of MPEG-4 Video Codec System. In IEEE
Int. Symp. on Circuits and Systems, volume 2, pages
449-452, May 2000.

H. C. Chang, Y. C. Wang, M. Y. Hsu, and L. G.
Chen. Efficient Algorithms and Architectures for
MPEG-4 Object-Based Video Coding. In Proc. IEEE
Workshop on Signal Processing Systems, 2000.

[4] D. Cheresiz, B. Juurlink, S. Vassiliadis, and H. A. G.

‘DMMX

B MMMX without MRF [ll MMMX with MRF

1.20

d instructior

110

1.00

h

0.90

0.80

0.70

0.60
0.50

0.40

0.30

0.20

d dynamic # of

0.10

N 0.00 T T T T

| I

E

2D DCT 2D IDCT Pixel Padding (8 2x2 Haar
x8)

Pixel Padding
(16 x 1 Transform

Vector/Matrix
multiply (data <=

16-bit)

Kernels

VectorMatrix Ver- Hor-
multiply (data <= multiply (data <= multiply (data <= tical izontal
12-bit) 16-bit) 12-bit)

Figure 11: Comparison between the dynamic number of overhead instructions required to perform several
kernels using MMX and using MMMX with and without the MRF. The results are normalized w.r.t. the
number of such overhead instructions required using MMX.

[Ommx

[MMMX without MRF [ll MMMX with MRF

110

1.00

0.90

0.80
0.70

0.60

0.50
0.40
0.30
0.20
0.10
0.00

Normalized dynamic # of instructions

2DDCT 2D1DCT Pixel Padding (8 x Pixel Padding (16 2 x 2 Haar Trans-
8 x16)

Vector/Matrix mul-
tiply (data <= 16-
bit)

Kernels

Vector/Matrix mul-
tiply (data <= 12-

i =

Matrix/Matrix mul- Matrix/Matrix mul- Subsample Ver-
tiply (data<=16- tiply (data<=12- tical
bit) bit) bit)

Subsample Hor-
izontal

Figure 12: Comparison between the dynamic number of instructions required to perform several kernels
using MMX and using MMMX with and without the MRF. The results are normalized w.r.t. the number of
instructions required using MMX.

5

[6]

(7]

8]

[9]

(10]

Wijshoff. The CSI Multimedia Architecture. IEEE
Trans. on VLSI Systems, 13(1):1-13, January 2005.
J. Corbal, M. Valero, and R. Espasa. Exploiting a
New Level of DLP in Multimedia Applications. In
Proc. Int. Symp. on Microarchitecture, 1999.

A. Dasu and S. Panchanathan. Reconfigurable Media
Processing. Parallel computing, 28(7), 2002.

K. Diefendorff, P. K. Dubey, R. H., and H. Scales.
AltiVec Extension to PowerPC Accelerates Media
Processing. IEEE Micro, pages 85-95, March-April
2000.

B. Hanounik and X. Hu. Linear-Time Matrix
Transpose Algorithms Using Vector Register File with
Diagonal Registers. In Proc. 15th Int. on Parallel and
Distributed Processing, April 2001.

MIPS Technologies Inc. MIPS Extension for Digital
Media with 3D. www.mips.com.

Intel. An Efficient Vector/Matrix Multiply Routine
using MMX Technology. Technical report, Intel
Developer Services, 2004.

Y. Jung, S. G. Berg, D. Kim, and Y. Kim. A Register
File with Transposed Access Mode. In Proc. Int. Conf.
on Computer Design, pages 559-560, September 2000.
B. Juurlink, A. Shahbahrami, and S. Vassiliadis.
Avoiding Data Conversions in Embedded Media
Processors. In Proc. 20th Annual ACM Symp. on
Applied Computing, 2005. To appear.

R. B. Lee. Subword Parallelism with MAX-2. IEEFE
Micro, pages 51-59, August 1996.

179

[14] R. B. Lee. Subword Permutation Instructions for

(15]

(16]

(19]

20]

(21]

Two-Dimensional Multimedia Processing in
MicroSIMD Architectures. In Proc. of IEEE Int.
Conf. on Application-Specific Systems Architectures
and Processors, pages 9-23, July 2000.

C. Loeffler, A. Ligtenberg, and G. S. Moschytz.
Practical Fast 1-D DCT Algorithms With 11
Multiplications. In Proc. Int. Conf. on Acoustical and
Speech, volume 2, pages 988-991, 1989.

J. Oliver, V. Akella, and F. Chong. Efficient
Orchestration of Sub-Word Parallelism in Media
Processors. In Proc. Symp. on Parallel Algorithms and
Architecture, 2004.

A. Peleg, S. Wiljie, and U. Weiser. Intel MMX for
Multimedia PCs. Communications of the ACM, pages
25-38, January 1997.

S. K. Raman, V. Pentkovski, and J. Keshava.
Implementing Streaming SIMD Extensions on the
Pentium 3 Processor. IEEE Micro, pages 47-57,
July-August 2000.

N. Slingerland and A. J. Smith. Design and
Characterization of the Berkeley Multimedia
Workload. Multimedia Systems, 8:315-327, 2002.

N. Slingerland and A. J. Smith. Measuring the
Performance of Multimedia Instruction Sets. IEFE
Trans. on Computers, 51(11):1317-1332, Nov. 2002.
S. Vassiliadis, G. Kuzmanov, and S. Wong. MPEG-4
and the New Multimedia Architectural Challenges. In
Proc. 15th Int. Conf. on Systems for Automation of
Engineering and Research, pages 24-32, Sep. 2001.

