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ABSTRACT

In this paper, we investigate the collapsing of some multi-
operand addition related operations into a single array. More
specifically we consider multiplication and Sum of Absolute
Differences (SAD) and propose an array capable of perform-
ing the aforementioned operations for unsigned, signed mag-
nitude, and two’s complement notations. The array, called a
universal array, is divided into common and controlled logic
blocks intended to be reconfigured dynamically. The pro-
posed unit was constructed around three main operational
fields, which are feed with the necessary data products or
SAD addition terms in order to compute the desired opera-
tion. It is estimated that a 66.6 % of the (3:2)counter array
is shared by the operations providing an opportunity to re-
duce reconfiguration times. The synthesis result for a FPGA
device, of the new structure, was compared against other
multiplier organizations. The obtained results indicate that
the proposed unit is capable of processing in 23.9 ns a 16 bit
multiplication, and that an 8 input SAD can be computed
in 29.8 ns using current FPGA technology. Even though the
proposed structure incorporates more operations, the extra
delay required over conventional structures is very small (in
the order of 1% compared to Baugh&Wooley multiplier).

Categories and Subject Descriptors

B.2 [High Speed Arithmetic]

General Terms

Design,Experimentation

Keywords

Binary Multiplication, Sum of Absolute Differences, Recon-
figurable Computing, Partial Reconfiguration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’05, May 4–6, 2005, Ischia, Italy.
Copyright 2005 ACM 1595930183/05/0005 ...$5.00.

1. INTRODUCTION
Universal units perform operations on the same hard-

ware for commonly used number notations (in this paper
assumed to be sign magnitude, two’s complement and un-
signed). For an example of such units designed to accommo-
date multiple instruction types for multiply operations see
[11]. Multimedia instruction set architectures (ISA), pro-
vide new demands on multi-operand addition related oper-
ations. They require square arrays to be added (see sum
of absolute values) in the design of a processor rather than
multiply arrays. Furthermore, slow dynamic reconfigura-
tions require that when designing multimedia reconfigurable
extensions [10] [4], special attention has to be paid to the
reconfiguration of arithmetic units dynamically. It is desir-
able that a part of hardware that is common to numerous
operations to be reconfigured in advance and those ”differ-
ences” rather than the entire unit is loaded for reconfigura-
tion. This work reintroduces universal units, to address ad-
ditional complexities imposed by multi-operand operations
that require rectangular arrays (see SAD implementations
e.g.[8],[5],[6],[12]). We consider multimedia reconfigurable
units, multiple number integer representations, multiplica-
tion and SAD performed by a single multi-operand hard-
ware structure. We assume unsigned, signed magnitude and
two’s complement number notation, and multiplier design
that can incorporate SAD producing a universal array that
is targeting partial dynamic reconfigurable units. The unit’s
features include the following:

• A 16 x 16 multiplier, and an 8 inputs pairs of SAD
operands in the same universal array.

• A performance of 23.9 ns for processing a 16 bit mul-
tiplication and a 29.88 ns 8 input SAD, for unsigned,
signed magnitude and two’s complement representa-
tions.

• It is estimated that 2/3 of the resources are shared
by all functionalities. This sharing could be of ben-
efit when reconfiguring dynamically based of frames
differences.

The paper is organized as follows. Section 2, outlines the
Reconfigurable-Universal-Sum-Absolute-Differences-Multiplier-
Array organization. Section 3 presents the experimental re-
sults of the mapped unit, as well as other well know mul-
tiplier organizations in order to be compared in terms of
area used and time delay. Finally, the article is concluded
in Section 4.



2. THE RECONFIGURABLE ARRAY
In this section we begin by providing a background for

SAD, and then presenting the proposed scheme by describ-
ing the array structure.

2.1 Background
We begin by introducing for a background purpose the

SAD operation. SAD is a common way to compute dif-
ferences between images to explore temporal redundancies.
Commonly the absolute difference is computed by perform-
ing a subtraction operation of two pels values, calculating
the absolute value of this result, repeating this calculus for
the entire pels of the chosen block, and finally adding the
obtained differences. The following equation computes the
SAD.

16∑

j=1

16∑

i=1

|IN1(x+ i, y+j)−IN2((x+r)+ i, (y+s)+j)| (1)

where, the tuple (x, y) represents the position of the current
block, and (r, s) denotes the displacement of IN2, relative
to reference block IN1. Given that SAD’s performance is
critical, multimedia instructions set have incorporated spe-
cial SAD instructions and numerous schemes have been pro-
posed to speed up SAD operations (for examples, take a look
at [1],[9],[13],[7] ).

In this presentation we assume the scheme proposed in
[12], because it can be used for merged operations. This is
true because it separates the multi-operand addition from
the determination of which operand should be subtracted
to produce in parallel the sum of absolute values. Details
follow in the matrix description.

2.2 The Reconfigurable Array Organization
In our presentation we assume 16 bit integer numbers.

With appropriate considerations our approach can be ex-
tended to any desired length. We derived a universal unit
for a multiplier and a multi-operand addition of non equal
lengths as depicted in figure 1.

As indicated early, we consider three number representa-
tions, unsigned, signed magnitude and two’s complement.
We note that when considering the array each symbol rep-
resents a (3:2)counter. The array is enumerated from 0 to
31 columns, with 0 to 14 rows, the first row, denoted by
the black circles (see figure 1), receives two products corre-
sponding to the first two bits of the multiplier, the rest 14
multiplier bits are accommodated in the remaining 14 rows
of the array. The array is logically divided in three sectors
denoted by the numbers 1, 2 and 3.

The universal multiplier part of the presented unit is con-
structed around a hardwired multiplier composed by the
following components:

1. Partial product (PC) generation; PC(j,i) = Xi ·Yj , for
a X = X(15)...X(0), and Y = Y(15)...Y(0).

2. The partial product addition, based on a (3:2)counter
organization, and

3. Final adder with some propagation technique.

The accommodation of multiple operation types into the
array is accomplished with changes in the sign value of the

operands and with the signed extension used to process the
two’s complement representation. Table 1 presents the var-
ious extensions needed to properly perform multiplication
for all the three notations. In unsigned and two’s comple-
ment notations, no changes are introduced in the most sig-
nificant bits achieved (via sign extension by 0). For signed
magnitude, the most significant bit, corresponding to the
sign position, is cleared and the sign of the final result is
updated with Xn−1 XOR Yn−1. The two’s complement no-
tation uses a sign extension along the section 3 as can be
seen in figure 1, whereas the unsigned and signed magnitude
are extended with a zero.

Table 1: Universal Multiplier Extensions

Xn−1 Yn−1 Extension
Unsigned Xn−1 Yn−1 0

Signed Magnitude 0 0 0
Two’s complement Xn−1 Yn−1 Sign = Y(m) · X(m−1)

∀ 0 ≤ m ≤ 15

The SAD calculation can be decomposed into two logical
steps. In order to perform a universal operation we need to
produce a positive result1 to achieve such a goal, we proceed
as follows:

1. We note that the SAD inputs are positive integers.
The first step determine which of the operands is the
greatest, so that the smallest is subtracted in the array
to produce the absolute values. The logic required to
perform this kind of distinction is haded on the carry
out of addition of one operand IN1 and the inverted
operand IN2. The carry out indicates if IN1 or IN2
is the greatest. This is true because of the following:

a: The sign bit for sign magnitude and two’s comple-
ment is 0, (inputs to SAD are positive) thus they
are equal.

b: For all the bits for the unsigned numbers and the
magnitude of the signed magnitude and two’s com-
plement numbers for the first operand IN1 to be
greater, then the second operand IN2 must be
that all most significant bits are equal (sign in-
cluded, see a:, this is to make equal length operands
and to have the same carry circuitry for all nota-
tions) and that there is a bit position on i such
that the bit value of IN1 is 1 and IN2 is 0. The
reason is the following: if the bit position is i,
then starting at position i and ending at position
0, IN1 = 2i is the worst case (the rest of the bit
starting at i-1 are all 0) and IN2 = 2i − 1 is the
best case (all remaining least significant bits are
1). Consequently, when inverting IN2 all most
significant bits starting from i + 1 have opposite
values for both IN1 and IN2 and at the bit po-
sition i, IN1i = 1 and IN2i = 1, implying that
at position i a carry will be generated and it will
be transmitted out, consequently carryout = 1.
If IN2 is greater, then IN1i = 0 and IN2i = 1.
Thus IN2i = 0 and a potential carry from the

1All representations have the same representation for pos-
itive numbers and unsigned notation numbers and can be
viewed as positive numbers with an implicit 0 sign-bit.
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Figure 1: The universal multiply SAD array

least significant bit is killed. Also because the
most significant bits starting at position i+1 have
opposite values there is no generated carry thus
(carryout = 0). If IN1 and IN2 are equal then
the carry out is zero.

2. The second step creates the array for multi-operand
additions starting from bit enumerated 16 to bit 31
inclusive, the IN1 and IN2 are placed from the carry
unit described above, corresponding to the sections 2
and 3 of figure 1. This part of the array receives 16
inputs of 16 bits width each one, in order to process
concurrently the half-block of a 4x4 SAD operations.
Equation 2, states with the index j the 16 inputs, and
i is used to denote the positional weight of the data
bits in each input.

IN(j,i) = IN(j,15)·····IN(j,1)IN(j,0) ∀ 1 ≤ j ≤ 16 (2)

Figure 2, details the different kinds of logical blocks used
in the implementation, some of those blocks utilize multi-
plexors to control the operation related data. As indicated
earlier each block in figure 1 is a (3:2)counter and the bar
presented in figure 2 represents a multiplexor. Furthermore,
it has to be noticed that the clear circle presented in the
first row of figure 1, represents the product X(0) · Y(0)

A concise description of logic block index ranges of the
elements presented in figure 2 are depicted on table 2; this
table presents a nested loop of △i for a △j variation, using
an index j for a row position, and index i is used to reference
the column variations.

Finally to describe the logical equations for the blocks in
figure 2, we consider that the counters have the followings
inputs I1(j, i), I2(j, i) and I3(j, i) for the ranges shown in
figure 1, and produce two outputs S(j, i) that correspond to
the sum, and C(j, i) for the carry output of the (3:2)counter,
signal ei controls the multiplexer in order to feed with cor-
rect data the (3:2)counters. The logic equations describing
the behavior of the logic blocks are as follows:

(a): ∀ 1 ≤ i ≤ 15 :
I1(0,i) = PC(0,i),
I2(0,i) = PC(1,i−1),
I3(0,i) = 0

(b): Let n = 2; ∀ 1 ≤ j ≤ 14 and ∀ n ≤ i ≤ 15 :
I1(j,i) = PC(j+1,i),
I2(j,i) = S(j,i),
I3(j,i) = C(j,i);
with n = n + 1 for each ∆ j

(c): ∀ 1 ≤ j ≤ 8 :
I1(j,16) = IN(j+3,0) · e0 + PC(j+1,15−j) · e1,
I2(j,16) = S(j,16),
I3(j,16) = 1 · e0 + C(j,16) · e1

(d): ∀ 9 ≤ j ≤ 14 :
I1(j,16) = IN(j+3,0) · e0 + PC(j+1,15−j) · e1,
I2(j,16) = S(j,16),
I3(j,16) = 0 · e0 + C(j,16) · e1

(e): Let n = 1; ∀ 2 ≤ j ≤ 14, and ∀ 1 ≤ i ≤ n :

I1(j,i+16) = IN(j+3,i) · e0 + PC(j+1,15−j+i) · e1+

PC(j+1,15−j+i) · e2 + PC(j+1,15−j+i) · e3

I2(j,i+16) = S(j,i+16),
I3(j,i+16) = C(j,i+16)

with n = n + 1 for each ∆ j

(f): ∀ 0 ≤ i ≤ 15 :

I1(0,i+16) = IN(1,i) · e0 + PC(i+1,15) · e1 + 0 · e2+

PC(0,15) · e3,

I2(0,i+16) = IN(2,i) · e0 + 0 · e1 + PC(i+1,15) · e2 +

PC(1,15) · e3



PC(1,i-1)    PC(0,i)   0

C(j+1,i+1)   S(j+1,i)

PC(j+1,i)  S(j,i)  C(j,i)

C(1,i+1)   S(1,i)

Counter(3:2) Counter(3:2)

  IN(j+3,0)  PC(j+1,15-j)

C(j+1,17)    S(j+1,16)

1  C(j,16) IN(j+3,0) PC(j+1,15-j) 0  C(j,16)

C(j,i+16)

S(j,i+16)

Counter(3:2)

IN(j+3,i)

Counter(3:2)

Counter(3:2)

IN(1,i)  PC(i+1,15)  0  PC(0,15)

IN(2,i)  0  PC(i+1,15)  PC(1,15)

IN(3,i)  0  0  0 

Counter(3:2)

IN(j+3,i)    0    0    PC(j+1,15)

  S(j,i+16)

 C(j,i+16)

C(j+1,i+17)    S(j+1,i+16)
C(1,i+17)    S(1,i+16)

C(j+1,i+17)    S(j+1,i+16)

Counter(3:2)Counter(3:2)

C(j+1,17)    S(j+1,16)

S(j,16)S(j,16)

     PC(j+1,15-j+i) 

PC is complemented in the last row; and Cin = 1 in the CPA for a negative two’s complement multiplier.
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Figure 2: (counters(3:2) of the universal array)

Table 2: Index ranges for Fig 2. (3:2)counters of the universal array

Counter Type Init Value △i △j Operation # CSA
(a) - 1 to 15 - MUL 15
(b) n = 2 n to 15 1 to 14 MUL 105
(c) - - 1 to 8 MUL-SAD 8
(d) - - 9 to 14 MUL-SAD 6
(e) n = 1 1 to n 2 to 14 MUL-SAD 91
(f) - 0 to 15 - MUL-SAD 16
(g) n = 1 n to 15 1 to 14 MUL-SAD 119

n = n + 1 for each △j

I3(0,i+16) = IN(3,i)

(g): Let n = 1; ∀ n ≤ i ≤ 15 and ∀ 1 ≤ j ≤ 14 :
I1(j,i+16) = IN(j+3,i) ·e0 +0 ·e1 +0 ·e2+PC(j+1,15) ·e3,
I2(j,i+16) = S(j,i+16),
I3(j,i+16) = C(j,i+16);
with n = n + 1 for each ∆j

The following must also be consider for the correct process-
ing of two’s complement representation:

PC(15, i) = PC(15, i) XOR PC(15, 15)

and Cin = 0 XOR PC(15, 15); this is necessary to to pro-
duce ”hot one” addition effect needed for two’s complement
correction.

3. EXPERIMENTAL RESULTS
The universal array and the carry unit were implemented

using VHDL, synthesized, functionally tested, and proved
with the ISE 5.2 Xilinx environment [2], for the VIRTEX II
PRO FPGA device. Furthermore, an unsigned array mul-
tiplier, and a Baugh and Wooley (BW) signed two’s com-
plement multiplier [3] were described and synthesized also
with the same tools for comparison reasons. For all im-
plementations we use a carry ripple adder. We have also
implemented and synthesized parallel additions and the use
of the fast carry support of the Xilinx technology. Table 3,
summarizes the performance in time of these structures.

Table 3: Universal array and other multiply Units.
(Time Delay)

Unit Logic Wire Total
Unsigned M. ‡ 14.589 ns 14.639 ns 29.282 ns

49.8% 50.2% 100%
Baugh Wooley ‡ 15.555 ns 15.826 ns 31.381 ns

49.6% 50.4% 100%
our proposal ‡ 15.877 ns 15.741 ns 31.618 ns

50.2% 49.8% 100%
our proposal§ 16.112 ns 13.603 ns 29,715 ns

with CLA 54.2% 45.8% 100%
our proposal 14.311 ns 9.568 ns 23.879 ns
(RCA-Xilinx) 59.9% 40.1% 100%

carry unit 2.576 ns 3.338 ns 5.914 ns
43.6 % 56.4 % 100 %

‡ : RCA as a final adder; LUT based implementation
§ CLA: Carry Lookahead Adder as final adder; LUT implementation



It can be noticed that the proposed array incorporates ad-
ditional logic and it is expected to perform somehow slower
than the other multiplier units. It is observed than both,
our proposal and Baugh&Wooley’s proposal for two’s com-
plement numbers, is a bit slower than the unsigned multi-
plier. There are negligible differences in timing between our
universal array and the Baugh&Wooley’s two’s complement
multiplier.

The time delay introduced by the multiplexors used to
feed the (3:2)counters in order to perform the four opera-
tions has a constant delay for all the block of the array;
therefore, from the obtained results it is evident that the
routing delay is still significant in reconfigurable devices.
Additionally, regarding the carry logic required for SAD, it
is observed that 5.914 ns are needed for the processing.

Concerning the silicon used by the proposed unit and the
other structures depicted on table 4,as expected, the added
functionalities of the proposed unit are larger.

Table 4: Universal array and other multiply Units.
(Hardware Use)

Unit # Slices # LUTs # IOBs
Unsigned M. ‡ 300 524 64

Baugh & Wooley ‡ 330 574 65
our proposal ‡ 686 1198 322
our proposal§ 711 1244 322

with CLA
our proposal 658 1170 322

with RCA-Xilinx
carry unit 35 61 64

‡: RCA as a final adder; LUT based implementation
§ CLA: Carry Lookahead Adder as final adder; LUT implementation

The carry unit consumes for routing the correct operands
into the universal array a considerable hardware as is de-
picted on table 4; the 16 data entry will consume 560 slices,
which represent an 81 % of the slices used in the proposed
unit. In spite of that, this constitutes only 1 % of the VIR-
TEX II PRO resources device.
Regarding dynamic reconfigurations it is of interest to par-
tially set the reconfiguration and then to reconfigure the dif-
ferences rather than the entire structure. Our calculations
indicate that a 66.6 % of the array is common. We estimated
the reconfiguration frames difference between the function-
alities could be around 50 % using partially reconfiguration,
improving in this way the over complete reconfigurations.

4. CONCLUSIONS
A detailed algorithmic description for the creation of a

universal unit for the processing of the Sum of Absolute
Differences and a multiplier operating with unsigned, signed
magnitude and two’s complement representation has been
presented. A brief analysis of the time cost associated to
the implementation indicates that the proposed approach
reveals a similar performance in terms of time delay when
compared with multiplication schemes.

The implementation of the proposed approach indicates
that a 49.8 % of delay is wire delay, showing that current
technology wires inflict a considerable amount of delay. The
proposed unit is capable to process an 8 pairs input SAD
operation in 29.8 ns; and takes 23.9 ns for a 16 bit mul-
tiplication using current FPGA technology. Our approach,

when compared to multiplier for two’s complement notation,
shows that it requires negligible extra delays for the univer-
sal array that computes the summation of absolute values
and multiplication for unsigned, two’s complement and sign
magnitude integer numbers. Our preliminary experimental
results, presents that instead of reconfigure the hole unit into
the FPGA device, we only need 50 % of the stream data,
using a difference based partial reconfiguration, diminishing
in this way the set up time of the functionalities between a
multiplier and an 8 input SAD operation.
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