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Abstract

Multi-Processor Systems on Chip (MPSoC) run multiple independent ap-

plications, often developed by different parties. The applications share the

hardware resources, e.g. processors, memories and interconnect. The sharing

typically causes interference between the applications, which severely compli-

cates system integration and verification. Even if the applications are verified

in isolation, the system designer must verify the combined behaviour, leading to

an explosion in design complexity. Composable MPSoCs have no interference

between applications, thus allowing independent design and verification. For an

MPSoC to be composable, all the hardware resources must offer composabil-

ity. A particularly challenging resource is the processors, often purchased as

off-the-shelf intellectual property.

In this work we present the design and implementation of CompOSe, a light-

weight (only 1500 lines of code) composable operating system for MPSoCs.

CompOSe uses fixed-size time slices, coupled with a composable scheduler, to

enable composable processor sharing. Using instances of ARM7, ARM11 and

the Xilinx MicroBlaze we experimentally demonstrate the ability to provide

temporal composability, even in the presence of dynamic application behaviour

and multiple use cases. We do so using a diverse set of processor architectures,

without requiring any hardware modifications. We also show how CompOSe

allows slack to be distributed within and between applications through a novel
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two-level scheduler and slack-distribution system.

Keywords: Composable, Operating System, Multi-Processor, System on Chip

1. Introduction

Embedded systems are seeing an increasing number of applications inte-

grated on a single chip [1, 2, 3, 4, 5]. A large part of the applications are from

the signal-processing domain [1, 4], which is also the focus of this work. Ap-

plications in this domain, e.g. a modem, filter or decoder, typically consist of

tasks that communicate in a streaming fashion by performing actions on in-

put data and producing output data. Three such applications are illustrated in

Figure 1. The applications are realised by hardware and software Intellectual

Property (IP), e.g. processing elements and application code, and are often

developed independently, both by in-house design teams and by Independent

Software Vendors (ISV).

With growing application heterogeneity, the application requirements are

becoming more multifaceted [6], with non-functional aspects like timeliness and

security growing in importance. For example, many signal-processing applica-

tions have firm or soft real-time requirements, either to satisfy standards (e.g.

certification) such as WiMAX and WLAN, or to deliver a certain level of user-

perceived quality, e.g. in a video or audio decoder. The real-time requirement

could relate to a target on deadline miss-rate, or strict periodicity like a audio

or video ADC or DAC. The requirements and verification methodology thus de-

pend on each application. Moreover, the applications are started and stopped

at run time, creating a large number of use-cases, making the system-level con-

straints increasingly complex.

During the design process, the tasks of the applications are mapped to pro-

cessing elements, typically heterogeneous, as illustrated in Figure 2. The tasks

communicate through the interconnect and possibly also use it to access mem-

ory for private data/instructions. The multi-processor platform shown in Fig-

ure 2(b) allows for distributing the tasks (within and between applications)
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Figure 1: Application model.

across processors to deliver sufficient performance or reduce power consump-

tion.

To reduce cost, hardware resources are shared by the applications within

and between use-cases, as illustrated by one of the processing elements and the

interconnect in Figure 2(c). However, sharing of resources causes problems with

verification of functional and non-functional requirements of the application

behaviours, as the behaviour of one application depends on all other applications

in a circular (monolithic) fashion. This pushes the responsibility of application

verification to the system integrator, making it one of the major challenges in

SoC design.

To tackle the growing design and verification complexity, a divide-and-conquer

approach, i.e. composability, is required. Composability takes the verification

responsibility away from the system integrator and leaves it with the applica-

tions designers and developers by providing a virtualised platform per applica-

tion [7, 8]. Thus, a composable platform ensures that the behaviour of one

application is independent of all other applications. Traditionally, composabil-

ity placed strict limitations on the applications [9, 2], unsuitable for e.g. the

consumer-electronics domain. Recently, it has been shown in [10, 7, 11] how

the on-chip interconnect and memories can be shared in a composable (and pre-

dictable) fashion. However, without a composable operating system it is only

possible to run one application per processor (and still achieve system-level
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Figure 2: Different mappings for two applications onto three Processing Elements (PE).

composability). Although this is reasonable for a very simple RISC or VLIW

processor, recent processors from e.g. ARM, such as the ARM11 are much too

powerful to have one such processor per application.

Run-time scheduling (also known as on-line scheduling [12]) is offered by

many (probably hundreds) of different operating systems and hypervisors, and

some even offer bounds on the temporal behaviour. However, they all lack com-

posability, due to e.g. priority-based scheduling and cache pollution. Moreover,

real-time operating systems are typically focused on one processor and do not

address the interfacing between tasks distributed across multiple processors and

the communication and synchronisation between processors and memories. To

achieve composable MPSoC also the processor I/O must be considered.

In this work, our main contribution is the design and implementation of a

composable operating system for MPSoCs. To share processors in a composable

fashion we ensure that tasks execute without any interference, i.e. that the time

and processor state when an application is scheduled are independent of other

applications. This requires:

1. pre-emption-based (enforced) sharing so that tasks are not required to be

well behaved or well characterised.

2. a context switch mechanism that runs in constant time, even in the pres-

ence of instructions that take several cycles to complete (most notably

I/O).

3. composable inter-application scheduling and cache management.
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We show how to achieve the three aforementioned requirements in a lean

(less than 1500 lines of code) operating system called CompOSe. It uses a novel

concept based on scheduling of fixed-size service units, implemented by means

of pre-emptive scheduling (item 1 and 2) and uses a budget-enforcing scheduler

(item 3). CompOSe also offers a two-level scheduler to enable different task

schedulers per application and a slack manager to maximally benefit from any

unused capacity. The functionality of CompOSe, and the ability to deliver

temporal composability at clock cycle resolution, is demonstrated using gate-

level simulation (on a multi-processor system) and actual hardware (on a single-

processor system). We show experiments using ARM7, ARM11 and MicroBlaze

processors to demonstrate the concepts behind CompOSe on a diverse set of

processor architectures, both with and without caches.

The remainder of the paper is structured as follows. We start by introducing

related work in Section 2. Next, the the application software and hardware

platform is described in Section 3, including an introduction to composability

in MPSoCs. As the major contribution of this paper, a detailed description

of the proposed processor tile and composable operating system is given in

Sections 4 and 5. Experimental results, using different processor architectures,

abstraction levels and system instances, are presented in Section 6, followed by

conclusions in Section 7.

2. Related work

Many scheduling algorithms have been proposed and commercially used

in embedded operating systems. In Symbian [13], for example, the (preemp-

tive) scheduler uses priority levels and Round Robin inside each level. The

priority-based arbitration inherently couples the applications, making it non-

composable. Other common scheduling algorithms like Rate-Monotonic Schedul-

ing (RMS) [14] and Earliest Deadline First (EDF) [15] make a large number of

assumptions on the tasks, e.g. that there are no task dependencies, and also as-

sume a (correct) characterisation with respect to deadlines and execution times.
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In the domain of signal-processing applications this information is not always

available and tasks often have data-dependent input and output behaviour, caus-

ing significant variation in their execution times and execution rates. Moreover,

even in the presence of a correct characterisation there are significant varia-

tions in the schedule caused by the other applications making these approaches

non-composable.

Hypervisors, on the other hand, are used to virtualise processors, including

memory accesses, file systems, interrupts, I/O etc. They are typically designed

to run several independent operating systems and applications without placing

any restrictions on the latter. However, commercially available hypervisors focus

on the functional behaviour and offer limited support for real-time applications.

VirtualLogix VLX [16] and Open Kernel L4 [17], for example, use priority-based

arbitration and can thereby give real-time bounds to one of the virtualised op-

erating systems. In those approaches, the temporal behaviour depends on all

higher priority operating systems (and thus applications). Although these hy-

pervisors provide many important aspects of application isolation, there is no

commercial hypervisor that offers temporal composability, and the real-time

analysis of any general application in isolation is rendered invalid by resource

sharing. Unlike any commercial hypervisor, our goal is to ensure that applica-

tions sharing a processor do not affect each other even on the clock-cycle level.

Our work is, however, less general and does not virtualise interrupts and conse-

quently does not allow the applications to use such functionality.

The operating system introduced in [18] aims to enable real-time guarantees

without restricting the applications running on the processor. A budget sched-

uler guarantees every task a minimum amount of time in a maximum interval.

This is to be compared with the fixed amount of time offered by CompOSe.

For well-behaved and well-characterised applications the minimum time enables

bounds on the temporal behaviour, e.g. throughput, latency and periodicity,

by means of dataflow analysis [19]. With dataflow models, the bounds are suffi-

cient to provide independent application analysis, but assumes that the model

is conservative and that the implementation of the tasks is correct and bug
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free. In general, the provision of a minimum budget is not sufficient to ensure

that the applications do not affect each other as the time intervals at which the

application is scheduled depends on the other applications.

In addition to the challenges involved in sharing a single processor between

multiple tasks, an operating system for an MPSoC must also address commu-

nication and synchronisation. Neither of the aforementioned operating systems

and hypervisors account for blocking I/O operations (e.g. a read to an off-chip

SDRAM), and either assume single-cycle memory access latencies or completely

ignores the impact on the execution time of the applications and the scheduler.

This work extends [20], and unlike [18] our emphasis is on composability

rather than predictability. We do not require known (and correct) worst case

execution times, and also have weak requirements on the task semantics in terms

of input and output behaviour. Much like the aforementioned hypervisors the

aim is to separate applications logically and thereby enable a divide-and-conquer

design methodology. In [20] code and data of tasks are assumed to fit in the

local tile memory, whereas this work shows how it is possible to also incorporate

caches in the processor tile architecture. Compared to [20] this work gives more

implementation details and shows how the concepts of CompOSe can be applied

to a diverse set of processor architectures.

3. Background

In this section we elaborate on the application software and hardware plat-

form targeted for our composable operating system. We start in Section 3.1

with a description of the existing (composable) hardware platform and continue

in Section 3.2 by detailing the assumptions on the application software. We

end the background description with an outline of the overall design flow in

Section 3.4.

3.1. Hardware platform

The platform used in this work is an extensions of the CoMPSoC architecture

introduced in [7]. CoMPSoC uses the Æthereal Network on Chip (NoC) [21],
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which offers composability and predictability for every logical connection be-

tween pairs of memory-mapped initiator and target ports, e.g. the six ports

shown in Figure 2. The composable and predictable services also extend to the

shared memories (target ports) [11], thereby isolating all the communication

between the IPs (ports) in the system. However, the CoMPSoC platform, as

described in [7] does not address sharing of the processor tiles, including both

the processor itself and its initiator port(s). Both are essential in providing a

complete composable platform, and the latter involves the architecture of both

the processor tile and the NoC. Next we look at these two issues in more detail.

In contrast to the VLIW processors used in [7], we use the ARM7TDMI

(hereafter ARM7), ARM1176JZF-S (hereafter ARM11) and the Xilinx MicroB-

laze, further discussed in Section 4. These processors all support pre-emption

through (precise) interrupts and thus allow us to enforce context switches, some-

thing that is central to the functionality of CompOSe. While the ARM7 and

MicroBlaze have no caches (in our implementation), the ARM11 architecture

uses a read-only instruction cache and write-back data cache, with software

control for invalidation and flushing. The NoC does not provide any hardware

cache coherency due to its inherent scalability issues and performance implica-

tions. As a consequence, cache control is critical for CompOSe and one of the

challenges addressed in this work.

Composable sharing of a processor is not restricted to the processor core

(pipeline, register file, etc), but also the I/O interface. For all commercial pro-

cessors we are aware of, the initiator interface is single threaded (although pro-

tocol standards like AXI and OCP allow multi-threading). As a consequence,

synchronisation operations and load/store operations to remote memories, i.e.

another tile or an external memory, cannot be interrupted. There is conse-

quently a strong dependency between the operating system and the NoC, and

both the processor tile and operating system must take this into account in

order to deliver composability.
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3.1.1. Composability

Composability removes inter-application interference, but not necessarily all

variation caused by the platform itself. Thus, even though CoMPSoC offers

composability, variations in the application behaviour may occur due to e.g.

clock domain crossings, analog-to-digital converters at the inputs, the alignment

of arbiters of different resources, out-of-order execution and caches. Moreover,

the application itself may have input-data dependencies or timing-dependent

behaviour (e.g. drop frame if approaching deadline) causing variations. All the

aforementioned effects may cause variations in the temporal behaviour, but they

are not dependent on the other applications and the platform is still composable.

We refer to [7] for a more extensive discussion on the more subtle aspects of

composability.

In our experiments, as later shown in Section 6, we use a deterministic

simulator in the evaluation of the MPSoC netlists. Thus, the aforementioned

variations are the same for repeated runs. This allows us to verify composability

by looking at the difference between traces on a cycle level, although in practise

this may be impossible to achieve.

3.2. Application software

We assume that the applications can be represented as task graphs with

explicit communication and synchronisation. Most applications in the multi-

media domain lend themselves to implementation as tasks that communicate

using FIFO buffers on a per-token basis. Traditionally, a task is implemented as

a never-ending loop that reads input data, performs computation and produces

output. In our case, the input and output operation is (preferably) left for

the operating system, and the task is not a loop, but rather a function that

executes and returns (for each invocation), as exemplified in Listing 1. This

code implements a task with two inbound FIFOs using a token size of 12 bytes,

and one outbound FIFO with a token size of four bytes. As we shall see in

Section 5, the I/O is handled by CompOSe, but takes place in task time rather

then operating system time. This ensures the overhead of the operating system
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void Task1(const int in1[3], const int in2[3], int out [1]){

out = process(in1 , in2);

}

Listing 1: Task code

is kept to a minimum.

The proposed task semantics give the operating system information about

the input and output dependencies of the task (the enabling condition), and

also provides information about task completion when the function returns.

This is not a requirement, but as we shall see in Section 5.3, these two points

are essential in enabling the operating system to distribute slack and thus take

full advantage of CompOSe.

Note that there is no need for execution time characterisation from the

operating systems point of view. If a particular application requires real-time

guarantees it is left to the specific application developer to verify that these

guarantees are satisfied on the virtual processor assigned to the application in

question. The on-chip interconnect and the memory controllers are predictable

offer formal models to facilitate end-to-end verification [22, 23].

3.2.1. Limitations

One of the main limitations we impose on the applications is that they must

not use interrupts. This is due to the fact that the number of interrupts and the

time incurred serving interrupts is difficult to bound. Rather than virtualising

interrupts, we currently chose to allow only one interrupt that is used by the

operating system itself to limit the length of the time slices allocated to tasks.

This limitation is discussed further in Sections 4 and 5. Many applications in

the signal-processing domain are not inherently relying on interrupts, and we

therefore leave composable virtualisation of interrupts for future work.

In addition to interrupts, the applications must not employ any kind of

resource locking, e.g. slave locking in AXI [24], of slaves shared between appli-

cations. A shared resource that is locked violates composability unless assump-
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tions are placed on the application’s use of the lock (and this contradicts our

design goals). To facilitate communication and synchronisation without using

locks we use a library for inter-task communication that uses polling. Next, we

describe this library in more detail.

3.3. Inter-task Communication

CompOSe is targeted at MPSoCs, with multiple copies of CompOSe run-

ning on different processor. Each processor runs an independent instance of

CompOSe, and to enable distribution of one application across multiple pro-

cessors, the platform must therefore offer some form of inter-task and possibly

inter-processor communication. Although our hardware platform supports any

memory-mapped communication, thus giving the programmer full flexibility, we

have adopted C-HEAP [25] as our communication API. In C-HEAP, all com-

munication takes place via dedicated buffers, using acquire and release calls in

the application code, thus making all inter-task communication explicit, in line

with the task semantics described in Section 3.2. The use of an API also makes

the application code more portable and simplifies potential reuse.

The advantage of C-HEAP compared to other communication protocols is

that it does not use atomic operations such as slave locking or semaphores that

do not scale well and complicate the provision of composability. C-HEAP also

does not use interrupts. A C-HEAP FIFO is implemented as a circular buffer in

shared memory, which allows run-time configuration of the FIFO size. Copies

of the FIFO administration, e.g. read and write pointers, are kept in the local

memories of both the producer and consumer to avoid polling remote memory

locations, which would incur the interconnect latency and decrease performance.

If size permits, the FIFO communication buffers are placed in the local

memory of the processing element running the consumer task. Thereby, all

inter-tile communication is using posted (non-blocking) writes and completely

avoids reading from remote memories. This is crucial for a NoC-based MPSoC

with distributed memories as the read latencies to remote memories are tens to

hundreds of cycles. If a FIFO is too large to fit in the local memories of the
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processors tiles, e.g. the reference frames in a video decoder, the FIFO data

can be mapped to one of the dedicated memory tiles, as shown in Figure 2.

The FIFO administration is still mapped in the local memories, to keep the

administration close to the processor for low latency reads. Using distributed

memories, however, requires a memory consistency model that guarantees that

the administration is updated only after a token is actually produced and in the

FIFO memory. Furthermore, when remote memories are used to store the FIFO

data and the processors access the contents more than once, e.g. when decoding

an image, it is beneficial to use the data cache for increased performance. This

raises the issue of cache coherency. The on-chip interconnect used in this work

offers release consistency but no hardware cache coherency [7, 26]. We return

to discuss how to solve the issues of memory consistency and cache coherency

when discussing the implementation of CompOSe in Section 5.

3.4. Design flow

Although CompOSe is centred around composable sharing of a single pro-

cessor, it is aimed at MPSoCs and applications distributed across multiple pro-

cessing elements and memories. A major design flow challenge is the application

mapping and scheduling, and although it is outside the scope of this work, Com-

pOSe plays a central role in this problem as: 1) the applications must conform

with the application model in Section 3.2, and 2) the tools in the design flow

should be able to reason about the outcome of scheduling decisions.

Looking at the two problems in turn, the applications could be provided by

parallelisation tools like [27, 28] or by hand, as done in [29]. Many algorithms in

the signal-processing domain are conveniently described in a form very suitable

for the application model of CompOSe, and automatic parallelisation is an active

research area.

Once the applications are provided, the mapping and scheduling can be

done by a tool aimed at dataflow models, e.g. [30]. Even in the absence of

execution times, deadlock freedom can be proven by [31] and buffers (in the

network and between the tasks) sized accordingly. CompOSe does not enforce a
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predictable processor architecture (or application), but in the presence of worst-

case execution times, the aforementioned dataflow tools can also reason about

the end-to-end temporal performance together with models of the NoC [22].

4. Processor tile

The primary goal of CompOSe is composability and the key idea to achieve

it is: 1) the use of Time Division Multiplexing (TDM) with fixed-size (con-

stant duration) service units, coupled with 2) a context-switching mechanism

that guarantees a well-defined zero state that is independent of the applications

running on the processor, e.g. with no outstanding I/O and cold caches.

To achieve fixed-sized service units, the tasks have to be interrupted at fixed

moments in time. Consider processor p2 in Figure 2(c). If the task a2 of ap-

plication a would be able to monopolise the processor for a variable duration,

the composability would be compromised, i.e. the temporal behaviour of ap-

plication b would depend on how much a executes. Note that the inability to

bound the time to serve the timer interrupt is equivalent with an application

monopolising the processor.

In addition to the tasks, the operating system should also execute in constant

time. Naturally, the operating system execution time depends on the number of

applications and task it has to schedule. Thus, if the operating system execution

time is not forced to take a constant (worst-case) duration, the starting times,

and implicitly the temporal behaviour of an application would depend on the

presence or absence of other applications in the system, again compromising

composability.

In this section we discuss the various options how to construct a processor tile

well-suited for achieving this functionality. First, in Section 4.1, we discuss the

options to generate and interface with a timer as required by CompOSe. Second,

we look at the possibilities of clock-gating during idle periods in Section 4.2.

Third, in Section 4.3 we look at how to limit the number of outstanding I/O

transactions and bound their worst-case finishing time. Finally, we discuss the
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implications of adding caches to the processor tile in Section 4.4.

As shown in Figure 3, we exemplify multiple points in this design space, with

the ARM11 tile (Figure 3(a)) having an internal timer, instruction and data

caches, no clock-gating, and no Direct Memory Access (DMA) functionality;

and the MicroBlaze tile (Figure 3(b)) having an external timer, no caches, clock-

gating-based delay and DMAs for external I/O transactions.

4.1. Timers

To track the length of the service-unit time slots, CompOSe needs a timer.

In the general case this is implemented with a dedicated external timer accessed

via a memory-mapped peripheral bus or instruction-mapped accelerator port,

as exemplified by the MicroBlaze in Figure 3(b). This approach is generally

applicable to any processor architecture, and as discussed in Section 4.2, the

processor can enter a low-power state during idle periods without stopping the

timer.

The ARM11, shown in Figure 3(a) has an internal cycle counter that can be

used as a timer. The cycle counter is a programmable 32-bit counter, counting

upwards on every clock cycle and on overflow the output-pin nPMUIRQ is pulled

low. No additional hardware is used and it is easy to manipulate the instruction-

mapped timer. However, it is no longer possible to enter a low-power state (or

gate the clock) as this stops the timer, resulting in a complete processor stop.
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In both approaches, the timer generates an interrupt signal that is connected

back to the processor. In the case of the ARM11 to the nFIQ port and for the

MicroBlaze to the IRQ.

4.2. Halting

As we shall see in Section 5, a critical step in achieving constant time service

units is to delay further execution until the worst-case duration is reached. The

easiest way to achieve this, which is also implemented in the ARM instance

of CompOSe is to simply idle and execute NOP in a loop. The idling is also

generally applicable to any processor tile architecture. In the presence of an

external timer, as we have seen in the previous section, it is possible to extend

the functionality with a Voltage Frequency Control Unit (VFCU). This is im-

plemented in our MicroBlaze tile, as shown in Figure 3(b). The VFCU provides

the processor clock and is able to (un)gate the clock at a future moment in time,

or to immediately gate the clock [20]1.

4.3. Communication latency

A bounded interrupt latency requires interruptible instructions in the pro-

cessor’s pipeline or a bounded, preferably short, maximum time to finish in-

flight instructions. Thus, the maximum delay till serving an interrupt is the

maximum time it takes to execute an instruction, which is in the order of a

few cycles, except for synchronisation operations and load/store operations to

remote memories, i.e. another tile or an external memory. We avoid the con-

ventional synchronisation operations to exclude the implications of an interrupt

being raised during those. Instead, synchronisation is implemented by polling

checks for data and space according to Section 3.3. The I/O operations to

remote memories, however, remain an issue.

Our platform is built around a composable and predictable on-chip intercon-

nect and memory hierarchy according to Section 3.1. It is thus possible to find

1The VFCU is also able to change the clock frequency, but this functionality is outside the

scope of this work.
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an upper bound for the delay of any load/store operation. The bound does,

however, depend on all applications sharing the processor, interconnect, and

memories, and their resource allocations. Moreover, such a bound is quite con-

servative (thousands of cycles) which incurs a large performance penalty. For

every context switch we have to budget for the worst-case outstanding I/O.

To reduce the impact of external I/O, each processor tile has a local instruc-

tion and data (also communication) memory. The operating system and its

data structures, and the FIFO administration used in the communication API

are thus always accessible from local memory, reducing the worst-case time to

a few cycles. For the ARM11 the operating system is in a single cycle tightly

couple memory (ITCM and DTCM) and for the MicroBlaze we use a local data

memory (dmem) with similar functionality.

To reduce the bound on the interrupt latency it is possible to make all

load/store operations local with the introduction of a DMA block [20]. Hence,

instead of a potentially long load/store operation, the processor initiates a DMA

transfer between the local and external memories, and polls until the DMA

finishes the transfer. The processor is interruptible after each polling (local

read) operation, thus the interrupt latency is kept short and is independent

of the resource allocation of any other application. However, as all external

memory access must take place via the DMA, the task data and instructions

must fit in the local memory. Additionally, the DMA requires explicit access

to remote memories, e.g. through the use of the API introduced in Section 3.3.

By embedding the interaction with the DMA in the communication API its use

is transparent to the application programmer.

The DMA offers improved performance, but places strict requirements on

the communication model and requires the tasks to fit in the local memories. It

is also possible to not use a DMA and thus avoid the aforementioned restrictions.

The drawback is reduced performance, due to the potentially large bound on

outstanding transactions. As a major advantage, the absence of the DMA allows

a more flexible placement of data and instructions and also enables the use of

caches, about which more presently.
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4.4. Caches

Caches have the ability to significantly improve processor performance. How-

ever, caches present a problem to CompOSe as the applications affect the cache

state as they execute, but must not interfere with each other. From a compos-

ability point of view, we distinguish between two types of cache interference [32]:

• Intra-task (intrinsic) interference occurs when a task overwrites its own

cache lines, mainly because of the relatively small size of the cache as

compared with the tasks memory demands. Intra-task interference occurs

on both single- and multi-tasking execution platforms.

• Inter-task (extrinsic) interference occurs when in a multitasking environ-

ment context switches swap out cache contents of previous applications,

often resulting in a burst of cache misses.

Both intra- and inter-task interference make it hard to calculate worst-case

execution times. To achieve composability, however, there is no need to bound

execution times, and only the inter-task interference must be removed. In ad-

dition to the issues concerning composability, the inclusion of caches also raise

the issue of cache coherency. CompOSe is tailored for a NoC-based MPSoC

platform without hardware support for cache coherency. As a consequence that

responsibility is shifted to the software. We show in Section 5.2 how composable

cache sharing and software cache coherency is accomplished in CompOSe.

5. CompOSe

After having described the hardware architecture, we now describe the im-

plementation of our proposed operating system. Note that each processor runs

an independent instance of CompOSe, without any knowledge of the other pro-

cessors in the system. Thanks to the NoC, each processor can run on its own

clock and be completely decoupled from other processors and memories. Each

scheduler takes local decisions, and is not aligned or synchronised with any other
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scheduler in the system. All task communication and synchronisation is using

C-HEAP and is composable thanks to the NoC.

We start by describing the data structures used by CompOSe in Section 5.1

and continue by looking at the functionality in Section 5.2.

5.1. Data structures

The key data structure elements of CompOSe are shown in Figure 4. At the

top we have the Processor Control Block (PCB), followed by the Application

Control Block (ACB), Task Control Block (TCB) and FIFO Control Block

(FCB). The data structure for each processor is dynamically allocated on the

heap (in the local memory of the processing element) during system initialisation

(or reconfiguration). Note that there is no system level in the data structure.

In other words, each processor is unaware of tasks or applications running on

other processors, even tasks belonging to the same application. Consider for

example Figure 2(c) where the p1 is only aware of a1 despite a2 being part of

the same application (a).

As seen in Figure 4 the application-level scheduler is hardcoded to TDM,

with the period, slot length and schedule being part of the PCB. The PCB

also holds the slack-distribution matrix, about which more in Section 5.3. The

PCB also points to a circular linked list of applications. On the application

level we see that each ACB has a function pointer, thus allowing it to have

a per-application choice of task scheduler. Note, however, that the scheduler

runs in the operating system execution time unit, which we return to in the

following section, and must hence be trusted (and characterised). The ACB also

holds information about all the FIFOs and tasks that reside on the processor in

question.

The TCB contains pointers to instructions, stack and heap start of the task

(in remote and possibly cached memory). Each TCB also points to its input

and output FIFOs, so that CompOSe knows what conditions must be satisfied

for the task to run. In addition to the tasks created by the user, there is always

a default task, os idle, that is connected to each application. This task, when
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Figure 4: Data structure organisation.

invoked, immediately finishes (by returning). As we will see, the idle task is

important for the slack management.

It is possible for a host processor to create and modify the data structure

by manipulating the memory locations directly. We have also implemented a

reconfiguration application that executes on each processor and receives recon-

figuration messages from one or more hosts (currently for the ARM platforms

only). We discuss this further in Section 6.

5.2. Functionality

In this section we describe the functionality of CompOSe and how it makes

use of the processor tile and data structures. The core of CompOSe is the

functional loop shown in Figure 5. As seen in the figure, it consists of two major

parts, the Operating System (OS) unit and the service unit. The operating

system unit is responsible for saving the context of the previous task on its

stack, to schedule a new application and along with it a new task. The service

unit is where the task is allowed to execute. In the following sections we traverse

the complete cycle and explain the individual steps.
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Figure 5: Functional flowchart.
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5.2.1. Interrupt handling

An interrupt from the system timer marks the start of a new cycle, marked

with (1) in Figure 5. The processor switches to the corresponding execution

mode, stores the current program counter, disables further interrupts and starts

execution from the relevant exception vector. On our platform the execution

mode entered is the fast interrupt mode for the ARM7 and ARM11. This is due

to the system timer implementation explained in Section 4.1. The MicroBlaze

uses normal IRQs. The exception vector contains a branch instruction forcing

the program counter to the beginning of the os contxtsw function.

5.2.2. Context saving and task reset

In os contxtsw (2), the context of the interrupted task is saved onto its

stack and the stackpointer saved in the TCB. The task is reset to its original

state (3), if it is marked as finished. The original state is defined as the state

that the task was in when the system was first started. This implies resetting

all the task registers, which are now located on its stack.

5.2.3. Application and task scheduler

Next, the application-scheduler selects an application (4), using the TDM

schedule of the PCB. The curr app pointer in the PCB, is updated to point

out the scheduled application. When the application-level scheduler has decided

what application to run next, the task-level scheduler takes over (5).

The task scheduler is a per-application selectable algorithm that can use any

scheduling strategy. The task- scheduler is specified via a function pointer, and

takes a pointer to the calling application as argument. Three algorithms are

implemented; Round-Robin, TDM and Credit Controlled Static Priority [33].

Round-Robin, TDM are compared in Section 6. When deciding on a task,

the scheduler only considers tasks that are eligible to execute, i.e. tasks that

have data available in all input FIFOs and space available in all output FIFOs.

A task without FIFOs is always considered eligible. Note that all the available

schedulers guarantee a minimum rate. A task that is eligible will consequently be
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scheduled eventually (in contrast to purely priority-based arbitration). Progress

is thereby guaranteed on the task level (as well as on the message and packet

level in the interconnect), thus ensuring deadlock freedom if all buffers are sized

properly [7, 31].

5.2.4. Clean cache

If the processor is using caches, they have to be dealt with to achieve com-

posability. The easiest way of including caches, and the method CompOSe

implements, is to clean and invalidate the instruction cache, data cache and

Translation Look-aside Buffer (TLB) (6). This gives the tasks cold (empty)

caches upon each activation, thus removing any influence of previous applica-

tions. It does, however, result in a burst of cache misses, lowering the execution

speed. More complex ways to achieve composability while the caches are ac-

tivated include cache partitioning [34] and cache locking. The official ARM

compiler does not support cache partitioning, and cache locking restricts the

number of tasks to the number of cache-ways (on our chosen ARM11 that gives

a maximum of four tasks). Moreover, when the task does not entirely fit in the

cache, intra-task interference will take place and the application composability

is lost.

To reduce the performance impact of the cache invalidation we make it

conditional and do not clean the caches if the previous application scheduled is

the same as the next one. This removes the bursts of cache misses in this case,

while keeping the composability among applications.

5.2.5. Constant execution time

As mentioned, constant operating system execution time (7) is crucial for

achieving composability. This worst-case operating system duration must ac-

commodate all time required to service the interrupt, reset the task, run the

application scheduler, run the task scheduler.

A possible way to remove the variation in duration, is to halt or clock gate

the processor after the operating system execution, up to its worst-case duration.
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Figure 6: MicroBlaze service units and task switching time line

This is the approach used for our MicroBlaze processing element. When a halt

instruction is not available, the processor can poll on a timer as in Listing 2.

In both cases, i.e. end of halt instruction or the timer value reached, there

are still variations due to the fact that the reading of the timer, and the loop

that performs the check does not run in zero (or even constant) time. The

processor might leave the loop up to seven cycles after the desired value has

been reached. This polling window is not dependent on the application, but

rather the uncertainty of the platform and does not have to be eliminated to

achieve composability. However, to verify our implementation we choose to also

remove this effect and thus enable us to demonstrate composability by looking

at the cycle-level behaviour, as shown in Section 6.

It is very important that the code is located in a memory with zero wait-

states and that the targeted processor executes NOP instructions in a single

cycle. It is also important that the system timer runs at the same speed as the

processor, otherwise the cycle accurate control is lost.

In case the timer is external and the processor clock can be controlled (e.g.

in the MicroBlaze tile) instead of polling on the timer, the operating system

variations can be removed by gating the clock of the processor till an absolute

moment in time. Figure 6 presents the time line with the main events in task

switching (using the enumeration from Figure 5: (1) timer interrupt raise, (7)

waiting up to operating system worst-case duration, and (8) program timer for

next interrupt, as described in the functional flow.

As the last step of the operating system unit the timer is programmed for
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// Wait for timer to reach r1

LDR r1 , =0x2000

loop

BL read_timer

CMP r0 , r1 // timer value is returned in r0

BLS loop

// Do NOP instruction to hide the polling window.

SUB r1 , r0 , r1

MOV r1 , r1 , LSL #2

ADD pc , pc , r1

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

// Write next interrupt to timer

BL reset_timer

BL os_get_time_base

BL init_timer

// Next tasks service unit starts now

Listing 2: Timer poll
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Figure 7: Schedule with internal and external slack.

the next interrupt (8) and the execution continues with the service unit.

5.3. Slack management

One of the drawbacks with the fixed-size time slices (central to the ability

to provide composability) is that slots might be left unused. For this reason,

we provide slack management as an optional addition to CompOSe. At the

start of the service unit, the slack manager is invoked (9) if the next task is

os idle. In CompOSe we distinguish between two types of slack: internal and

external. Internal slack arises when a task finishes its work (firing) before the

end of a service unit. In Figure 7 a2 in application a finishes in the middle of

the service unit, leaving the processing element idle until the next scheduling

decision. External slack, on the other hand, is introduced when an application is

scheduled, but has no eligible tasks to execute. As a prerequisite, the operating

system must be aware of the eligibility, i.e. firing rules of the task. Figure 7

also illustrates this case, where a complete service unit is spent idle due to the

lack of input data or output space for a2.

CompOSe is able to detect and distribute the external slack using a slack

distribution graph, as shown in Figure 8. The slack distribution graph de-

fines which application can give slack which to other applications, and it is

determined at application initialisation, with information from the application

designer. A key observation for slack management in a composable system is

that interference is an unidirectional relation. The application that offers its

unused resources is not affected by other applications. Conversely, the execu-

tion of the application that receives the slack suffers from interference from the

slack-donating applications. Hence it is possible to have a system where some
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Figure 8: Slack distribution graph and slack matrix with Round-Robin (RR) tokens.

applications are composable (i.e. have no interference from other applications),

and other applications are not composable, as they receive slack.

The distribution of internal slack to another task (potentially belonging to

another application) would imply an extra scheduling and slack management

decision (OS invocation) at task iteration finish. To respect the fixed size time

slots, this OS invocation should not take place if the internal slack is not larger

than the OS slice. However, the amount of internal slack is known only at run

time, thus managing the internal slack may complicate the application timing

analysis for which the number of OS invocation should be known as design

time. Moreover, extra OS invocations lead to extra overhead. Hence CompOSe

does not manage internal slack similarly to the external slack. However, for a

processor with an external timer and controllable clock frequency unit (as in our

MicroBlaze based platform) the processor can be clock gated to utilise internal

slack to save power.

As a result of the slack manager CompOSe may schedule an eligible task in

the current service unit instead of idling.

5.3.1. Buffer management and task execution

Before executing the task, CompOSe potentially copies input data from re-

mote locations to local buffers (10). This step is optional and is a user choice.

It is possible to use remote buffers cached (we invalidate cache lines when ac-
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quiring data) or non-cached, but the best performance is achieved if the buffers

fit in local memory and no additional copying is necessary.

Once the input data is available, the task is restored (11) and execution from

its previous state (12). This is where the actual user task code is run.

If the task returns before the timer interrupt, then CompOSe optionally

copies the output data from local memory to the physical location of the output

FIFOs. Once the data is written to the target memory, the local and remote

FIFO administration is updated. If both the data and the remote administration

are in the same memory the ordering of data and synchronisation transaction

is guaranteed. This is, however, not the case when data and synchronisation

have different QoS budgets in the interconnect [35]. For this purpose we include

an ARM Data Memory Barrier (DMB) operation in the release call, or a read

back of the last written value for processors without such functionality. This

ensures that all outstanding explicit memory transactions (i.e. to the FIFO

buffer) complete before any following explicit memory transactions begin (i.e.

to the FIFO administration). As our platform implements cache coherency in

software we also flush cache lines when data is released. The implementation is

hidden in the communication API, and is transparent to the user.

Once the I/O is complete CompOSe continues to wait for the interrupt (14)

marking the end of the service unit.

6. Experimental results

In this section we put CompOSe to the test and demonstrate three differ-

ent instances using a range of processors and tile architectures, as introduced

in Section 4. First, in Section 6.1 we present an ARM7 single-processor sys-

tem illustrating the effects of choosing different task-level schedulers. Next,

we continue with an ARM11 multi-processor system with caches in Section 6.2

and show how CompOSe delivers composability on a cycle level. Finally in

Section 6.3 we show similar results for an FPGA implementation built around

MicroBlazes.
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Figure 9: Two applications mapped on to the ARM7 processor.

6.1. Single-processor board implementation

The microcontroller used in this experiment is a NXP LPC2129, including

one ARM7 core together with a variety of peripherals, e.g. 256 KB on-chip

Flash ROM and 16 KB RAM, vectored interrupt controller, real-time clock

and general purpose I/O pins. The rather big ROM in the LPC2129 can hold

task code together with the complete CompOSe. This memory is not single

cycle, thus by scatter gathering time critical code (the operating system and

the schedulers) are executed from RAM. The initialisation code copies the time

critical code from ROM into RAM before calling main.

A small CompOSe console application has been developed. It allows editing

of the application schedule, and also the slack-matrix. The console application

uses a serial-port connection for communication with the outside world, allowing

a PC to be used as a host. The console application can be mapped into a free

TDM slot without interfering with any other applications, but we choose to

make it a strict best-effort application and let it run purely on slack. For this

to work there has to be a sufficient amount of slack that the console application

can utilise.
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void Task1(int out [1]){

int workload = read_adc ();

out = workload;

LED = 1;

// Simulated work

while(workload > 0){ workload --};

LED = 0;

}

Listing 3: Task code

6.1.1. Scheduler comparison

Here, two simple task-schedulers are presented, using two applications as

illustrated in Figure 9. Application 1 is a LED application where the first

task reads a potentiometer, letting the value change the workload, as shown in

Listing 3. The on-board LED corresponding to the task is switched on and upon

completion the LED is switched off again. The workload is communicated to

the following task in the pipeline that switches on the corresponding LED and

passes the value along to the next task, etc. Application 2 is a simple sound

generator that toggles two I/O ports to drive an on-board buzzer. We can thus

change the workload of Application 1 (through the potentiometer) and observe

the frequency of the sound omitted, and this way hear if there is any change in

Application 2.

In addition to merely listening to the effects of the schedulers, the traces

from tasks 1 through 4 in Figure 10 and Figure 11 illustrate the state of the

LED variable from Application 1. The LED variable will stay at 1, even if the

task is pre-empted. The traces shows how this workload is transported through

a pipeline among the four tasks. The difference between the two simulations

is the task-scheduler used in application 1. Notice that task 5 in application

2, is not affected by the switch of task-scheduler in application 1. The smaller

latency introduced by the round-robin scheduler can be observed in the graphs.
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Figure 10: Task invocation using TDM task scheduler

6.1.2. Performance

The CompOSe overhead is processing time consumed by the operating sys-

tem itself, i.e context switching and scheduling decisions, including the time

required to wait until the worst-case in-flight instructions finish and resetting

the processor state. A context switch, without slack management, takes about

1600 ARM assembly instructions. The small overhead is due to the local mem-

ories (small worst-case time for in-flight instructions) and the absence of caches

and TLBs. On the ARM7 implementation, running at 60MHz, the overhead

for using CompOSe when using a 100 Hz system tick is only 0.3%. Raising the

clock to 1kHz gives, due to linear scaling, 3% overhead.

6.2. Multi-processor system netlist

In addition to the single-processor implementation, CompOSe is evaluated

on a ARM11-based MPSoC, for which the netlist is available. The system con-

tains three ARM11 processors and a large external memory. In contrast to the

single-processor system, this evaluation also includes the inter-processor com-

munication through C-HEAP. To verify composability we map two applications
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Figure 11: Task invocation using round-robin task scheduler

to the three processors, similar to what is shown in Figure 2(c). Next we run

two simulations, where the second application is modified between the two runs.

Traces in Figure 12 show the interface of the middle processor, executing tasks

from both applications. Traces from two different simulations are overlaid. The

diagonally striped (red) area indicate cycles that differ between the two. The

nFIQ signal indicates where the service cycle starts and stops. The comparison

between the two traces clearly shows that the only differences take place in the

time slots of the changed applications (third and fourth service cycle) and in the

operating system unit when accessing the data structure (in the beginning of

each service cycle). Seeing that the behaviour on a cycle level remains the same

clearly indicates that temporal composability is achieved by CompOSe and the

NoC (and memories).

6.3. Multi-processor system FPGA implementation

We implement CompOSe also on a MicroBlaze-based FPGA prototype. This

experimental platform consist of two processor tiles as described in Section 4,

communicating through an Æthereal network on chip [10]. The workload ex-
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Figure 12: Signal trace ARM11.
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Figure 13: Applications executed on the MicroBlaze-based platform.

ercised on this platform consists of 3 applications: 2 synthetic ones (A1, A2 ),

having the same task graph structure but different execution times, and a par-

allel H264 decoder (H264 ) obtained using PNGen [36]. Figure 13 presents the

task graphs of these applications and their processor mapping. H264 and A2

are scheduled using TDM, and A1 is scheduled using Round-Robin.

We measured the execution time of the H264 tasks in two cases: (1) the

H264 executing alone on the platform, and the H264 executing together with

A1 and A2. We observed that the execution times of each one of the H264 tasks

are identical, regardless the presence or absence of A1 and A2 in the system.

This suggests that temporal composability is achieved.

Similar simulation traces as in the previous subsection are compared also for

the MicroBlaze platform in Figure 14. We compare 5 signals of one MicroBlaze

core in two different runs. The diagonally striped (red) area indicate cycles

that differ between the two. In first run A1 is scheduled using Round-Robin,

and in the second one it is scheduled with TDM. The int out signal indicates
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Figure 14: Signal trace MicroBlaze

where the service cycle starts and stops. One can see that some of the service

units completely differ because in those units different tasks of A1 execute in

the two different runs. However, the rest of the service units are cycle-level

identical, as A2 and H264 have the same scheduling policy over the two runs.

Thus this traces comparison suggests that the system is temporally composable

at cycle-level.

On the MicroBlaze, the worst case execution time of CompOSe (when schedul-

ing 3 applications, each having at most 5 tasks) is 1300 cycles, representing an

overhead of 6.5%, when the service unit is 20000 cycles long, as in the experi-

ments of this subsection.

Our empirical evidence does not prove the ability to provide composable

processor sharing. However, by having multiple different hardware and soft-

ware instances, our experiments cover a large space of compilers, processor

architectures, and applications. The many design points together serve as a

strong indication that our goals are achieved.

7. Conclusions

In this work we introduce CompOSe, an operating system that enables com-

posable sharing of processors, extending an existing network-based composable

hardware platform with hardware and software support. With a temporally

composable system, on both a hardware and a software level, we reduce the

design and verification effort by a divide-and-conquer approach. The need for

verification is reduced from the system level, down to an application level.
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CompOSe uses a novel concept based on scheduling of fixed-size service units,

implemented by means of pre-emptive scheduling using a budget-enforcing sched-

uler. In contrast to many other operating systems, an application need not be

characterised, only adhere to the task interface with explicit communication.

CompOSe also provides slack management, and uses a novel two-level arbitra-

tion scheme to separate inter- and intra-application arbitration. We demon-

strate CompOSe on a range of processor architectures and show its applicabil-

ity in network-based multi-processor systems with release consistency, software

cache coherency and distributed memories. Our experiments, using netlist simu-

lation and an FPGA prototype, suggest that temporal composability is achieved.
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