2005 ACM Symposium on Applied Computing

Avoiding Data Conversions in Embedded Media Processors

Ben Juurlink
benjQce.et.tudelft.nl

Asadollah Shahbahrami
shahbahrami@Qce.et.tudelft.nl

Stamatis Vassiliadis
stamatis@ce.et.tudelft.nl

Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology, The Netherlands
Phone: +31 15 2787362, Fax: +31 15 2784898.

ABSTRACT

Complex application-specific media instructions and kernels
are emulated with simple to implement extended subword
instructions. We show that assuming extended register file
entries to accommodate intermediate results and by imple-
menting a few simple instructions, packing/unpacking, sat-
uration, and frequently used complex instructions can be
practically eliminated. It is shown that in most emulations
there is a potential performance improvement, making the
proposed scheme suitable for embedded processors with a
limited hardware budget.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures—SIMD

General Terms

Design, Performance

Keywords

Multimedia applications, SIMD instructions.

1. INTRODUCTION

Microprocessor vendors have developed multimedia in-
structions in order to exploit the computational character-
istics of multimedia applications. Some of these ISA ex-
tensions include complex instructions like Sum-of-Absolute-
Differences (SAD) and averaging. Additionally, for preci-
sion and data representation reasons, they use saturation
and pack/unpack instructions. In this paper we consider
eliminating these instructions using wider registers, having
in mind the design of embedded processors with a limited
hardware budget.

We investigate the possibilities of using simple instruc-
tions to emulate complex instructions with a Modified Mul-
tiMedia eXtension (MMMX). To determine the effectiveness
of our proposal we consider ten frequently used multimedia

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACO05, March 13-17, 2005, Santa Fe, New Mexico, USA.

Copyright 2005 ACM 1-58113-964-0/05/0003...$5.00.

901

each section is 12 bit

(R N N N N N B
| Y Y Yy

b | 24-bit | 24-bit | 24-bit | 24-bit |
fsum24

Yy

[48-bit | 48-bit |
fsum48 \‘?‘/

L | 96-bit |

Figure 1: The structure of the three fsum instruc-
tions in MMMX.

kernels. We have established that for eight of the ten kernels
the dynamic number of instructions is reduced significantly
(up to 2.7x) using the proposed approach. For only two ker-
nels the dynamic number of instructions increases, by 1.4x
and 1.2x, respectively.

2. MODIFIED MMX

For reasons of space, we cannot present the MMMX in-
struction set architecture. The most important difference
to MMX is that the MMMX multimedia registers are 96
bits wide instead of 64 bits. In other words, for every byte
of data there are four bits of extra precision. This allows
many computations to be performed without overflow. Ac-
cording to [1], a 12-bit data format is sufficient for 85.7% of
the processing in MPEG-4 encoding. In addition, MMMX
provides some instructions which can be used to emulate
more complex MMX instructions. For example, Figure 1
illustrates how eight 12-bit values in a register can be accu-
mulated using the fsum12, fsum24, and fsum48 instructions.

3. SUMMARY OF RESULTS

We have implemented ten kernels. Table 3 lists all the ker-
nels that we have implemented using MMMX and MMX /SSE®.
The table shows the storage formats of the input and output
data, the maximum data size during intermediate computa-
tions, the dynamic number of instructions required when the
kernel is implemented in MMX, and the dynamic number of
instructions required for MMMX. When the kernel is typi-
cally performed on fixed-size blocks (such as DCT and SAD)
we present the number of instructions required for that in-

!The MMX /SSE implementations of DCT, IDCT, and block
match are due to Slingerland and Smith [3].

Table 1: Dynamic number of instructions required to implement the considered kernels in MMX and MMMX,
the storage format, and the maximum data size during computation.

[Kernel | Storage format | Max. data size | #instr. MMX | #instr. MMMX |
Sum of abs. diff. unsigned byte 9 bits 194 274
Sum of Squared diff. unsigned byte 24 bits 582 260
DCT 16-bit signed 24 bits 909 553
IDCT 16-bit signed 24 bits 685 641
Arithmetic avg. unsigned byte 9 bits 176 208
Block match vert. and unsigned byte 10 bits 1037 573
hor. interpolation
Add block unsigned byte 9 bits 170 106
FIR unsigned byte 12 bits 44- N -MJ/4 34-N-M/8
Color space conv. unsigned byte 12 bits N - (125-M/8+3)+ 19 N - (74-M/8+3)+ 19
fade-in-fade-out unsigned byte 12 bits 3-N-M+5-N+19 9-N-M/8+5-N+19

put size. If there is not a typical input size, we present the
runtime formula.

The SAD kernel is used for motion estimation and is very
time-consuming. In this kernel the difference between cor-
responding pixels is computed. This difference can be 9 bits
wide which implies that an 8-bit data format is insufficient.
Some media extensions support a SAD instruction. This is a
very special-purpose instruction, however, that has limited
usefulness except for this kernel. In our MMMX implemen-
tation, the SAD is synthesized using the fsum instructions
described in Section 2. This increases the dynamic number
of instructions by 1.4x but this seems reasonable given that
the SAD is emulated with simpler instructions.

The Sum of Square Differences is similar to the SAD ker-
nel except that the squared difference is used instead of the
absolute difference. For this kernel, MMMX reduces the
dynamic number of instructions by 2.2x.

The Discrete Cosine Transform (DCT) and its inverse
(IDCT) are broadly used in image/video compression appli-
cations such as JPEG/MPEG. These applications partition
the input image into blocks of 8 x 8 and perform a two-
dimensional (2D) DCT on each block. We have implemented
the LLM algorithm [2]. The dynamic number of instructions
needed to perform a 2D DCT is 909 for MMX versus 553
for MMMX (reduction of 1.6x). Moreover, MMMX requires
fewer and less wide multiply-add operations. For the 2D
IDCT the reduction is smaller (1.1x) because the input data
is 12-bit and intermediate results are wider than 12-bit.

Arithmetic average is used for horizontal or vertical inter-
polation in the block match kernel of MPEG. In MMX it can
be implemented using the special-purpose pavgb instruction.
The usefulness of pavgb is limited, however. For example,
it cannot be used for both horizontal as well as vertical in-
terpolation. In MMMX pavgb can be synthesized using add
and shift operations. This slightly increases the dynamic
number of instructions (by 1.2x), but this seems reasonable
given that add and shift operations are more general and
simpler to implement.

The block match kernel performs the SAD but also hori-
zontal and vertical interpolation. In this case the MMX code
cannot employ the pavgb instruction because that would re-
sult in rounding errors. For this kernel MMMX reduces the
dynamic number of instructions significantly (by 1.8x) even
though the MMX code employs the SAD instruction.

The add block kernel adds two 8 x 8 blocks of pixels.
One block consists of unsigned bytes and the other is stored
as signed 16-bit values but in reality these values are 9-
bit. Consequently, MMMX reduces the dynamic number of

902

instructions by 1.6x.

The Finite Impulse Response (FIR) filter has many appli-
cations in image processing. For an N x M image, MMMX
requires 34 - N - M/8 instructions to be executed whereas
MMX requires 44 - N - M /4 instructions, a reduction of 2.6x.

Another kernel that we have implemented is RGB-to-YUV
color conversion. For large images, MMMX reduces the dy-
namic number of instructions by 1.7x. In addition, MMMX
requires only half as many multiplications as MMX.

The last kernel implements a fade-in-fade-out effect. For
this kernel, MMMX achieves a reduction of the dynamic
number of instructions by 2.7x.

4. RELATED WORK

Our approach is similar to the approach described in [3]
in that we use extra wide registers to represent intermediate
results. The major differences are the instruction set we use
and the fact that we use 96- rather than 192-bit registers.
In addition, we have evaluated the efficacy of the approach
by implementing media kernels using the proposed ISA.

5. CONCLUSIONS

In this paper we have proposed simple instructions that
process extended data to eliminate saturation, (un)packing,
and some complex instructions. We have proposed the Mod-
ified MMX (MMMX) ISA and evaluated it by implementing
several frequently-used multimedia kernels using MMMX.
The results show that MMMX reduces the dynamic num-
ber of instructions significantly (up to 2.7x) compared to
MMX for eight out of ten kernels. For two kernels the dy-
namic number of instructions increases, but this is because
complex, special-purpose instructions were synthesized us-
ing simple, general-purpose instructions in MMMX. This
strongly indicates that the proposed scheme is suitable for
inexpensive hardware embedded processors.

6. REFERENCES

[1] Dasu A. and Panchanathan S. Reconfigurable Media
Processing. Parallel Computing, 28(7):1111-1139, 2002.
[2] Loeffler C., Ligtenberg A., and Moschytz G. S.
Practical Fast 1-D DCT Algorithms With 11
Multiplications. In Proc. Int. Conf. on Acoustical and
Speech, volume 2, pages 988-991, 1989.
Slingerland N. and Jay Smith A. Measuring the
Performance of Multimedia Instruction Sets. IEFE
Trans. on Computers, 51(11):1317-1332, 2002.

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

