
Motion Estimation Performance of the TM3270 Processor

Jan-Willem
van de Waerdt*+

Gerrit A.
Slavenburg^

Jean-Paul
van Itegem*

Stamatis
Vassiliadis+

*Philips Semiconductors
San Jose, CA, USA

{Jan-Willem.van_de_Waerdt,
JeanPaul.vanItegem}

@philips.com

^NVIDIA Corporation
Santa Clara, CA, USA

GSlavenburg@nvidia.com

+TU Delft
 Electrical Engineering Dept.

Delft, The Netherlands
Stamatis@dutepp0.et.tudelft.nl

ABSTRACT
Motion estimation constitutes a significant computational part of
video standards such as MPEG2, MPEG4, and H264/AVC. This
paper evaluates the performance of a motion estimation algorithm
on the TM3270, a low-cost media-processor. In order to improve
performance, the TM3270 processor provides architectural
enhancements over previous TriMedia processors. We quantify
the speedup of the proposed new operations to motion estimation
performance. We show that the new operations incorporated in
the TM3270 improve performance by a factor between 3 and 4.
Furthermore, we quantify the speedup of data prefetching. We
show that prefetching can improve performance up to 30%. By
applying all TM3270 architectural enhancements, we show that
standard resolution motion estimation can be performed in less
than 5% of the available processor performance.

Categories and Subject Descriptors
D.1.1 [Processor Architectures]: Single Data Stream
Architectures – pipeline processors, RISC/CISC, VLIW
architectures. I.4.0 [Image Processing and Computer Vision]:
General.

General Terms

Design, Measurement, Performance.

Keywords
Media processor, motion estimation, software implementation.

1. INTRODUCTION
Media-processors are used in the domain of video processing.
Their programmability allows for a flexible implementation of
video processing algorithms. When enough computational
performance is available, they provide an interesting alternative to
fixed dedicated hardware solutions. The time-to-market of a
programmable solution, from algorithm conception to market

introduction, can be kept short, since no lengthy hardware design
cycle is required. Furthermore, a single programmable platform
may address multiple markets. As a result, its development costs
may be shared, providing a cost-efficiency advantage over fixed
dedicated hardware solutions.

Motion estimation constitutes a significant computational part of
standard video codecs, and finds application in proprietary video
enhancement algorithms. Standard video codecs include MPEG2,
MPEG4, H264/AVC [1], etc. Their functionality is pre-scribed to
allow for inter-operability, and documented by international
standardization committees. In this domain, flexibility allows for
fast market introduction, or improved implementations of
functionality after market introduction. Proprietary video
algorithms are typically company specific. In the video display
markets, these algorithms implement the key features with which
the set makers distinguish themselves. Philips provides Natural
Motion image enhancement, which includes motion based de-
interlacing and temporal up-conversion. In a new and rapidly
growing market like LCD-TV, fast time-to-market may determine
the success of a solution based on these video algorithms. This
paper evaluates the performance of a motion estimation algorithm
on the TM3270. We quantify the speedup from new operations
and from data prefetching. Furthermore, we evaluate the impact of
memory latency to processor performance. We introduce the
concepts of two-slot operations, and collapsed load operations.

The remainder of this paper is organized as follows. In Section 2,
we introduce the motion estimation algorithm, which is used to
evaluate processor performance. In Section 3, we define our
performance evaluation environment. In Section 4, we present the
TM3270 architecture. In Section 5, we present six software
implementations of the algorithm as described in Section 2. In
Section 6, we present and discuss performance measurement
results. Finally, in Section 7, we present our conclusions.

2. MOTION ESTIMATION ALGORITHM
Many block-based motion estimation algorithms exist, and the
suitability of a particular algorithm depends on the application at
hand. This paper does not intend to introduce a new and better
motion estimator, but rather to evaluate the performance of our
processor on an existing algorithm. We decided upon the 3-D
Recursive Search (3DRS) algorithm [2]. This algorithm provides
a high quality result, at a relatively low computational complexity,
making it an attractive candidate for a software implementation.
Furthermore, it has found successful application in commercial
ICs [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00.

The 3DRS algorithm is a spatial-temporal algorithm; i.e. the
candidate motion vectors for a block are derived from the motion
vectors of surrounding blocks in both space and time. We will
give a brief overview of the algorithm.

Our version of the 3DRS algorithm evaluates 11 candidate motion

vectors per 8x8 block of pixels b. Let ���
�����=

y

x

b

b
b� denote the block

position, such that ���
	

��

y

x

b

b

8

8
 and �

�����
+
+

78

78

y

x

b

b
 identify the upper left

and lower right pixel positions of block b in the image. Let mv(b� ,
n) denote the best motion vector for block b� in image n, based on
a cost function. The motion estimation vector candidates are taken
from the candidate sets CS_zero (the zero vector), CS_spatial
(motion vectors of already processed blocks in the current image),
CS_temporal (motion vectors of blocks in the previous image),
and CS_noise_spatial (noise updated motion vectors of already
processed blocks in the current image):

� �
�

�� �����
��� !=

0

0
_ zeroCS

""
""
#

"""
"
$
%

""
""
&

"""
"
'
(

))*
+,,-.

−
+

))*
+,,-.

−
−

+

))*
+,,-. −+

=

),
1

1
(

),,
1

1
(

),,
0

1
(

_

nbmv

nbmv

nbmv

spatialCS

/
/
/

00
00
00
0

1

00
00
00
0

2

3

00
00
00
0

4

00
00
00
0

5

6

−7789::;< −+

−7789::;<+

−7789::;<+

−7789::;<+

−

=

),1,
1

1
(

),1,
1

1
(

),1,
0

2
(

),1,
0

1
(

),1,(

_

nbmv

nbmv

nbmv

nbmv

nbmv

temporalCS

=
=
=
=
=

>>?
>>@
A

>>B
>>C
D

+EEFGHHIJ
−

+

+EEFGHHIJ −+
=

2

1

),
1

0
(

,),
0

2
(

__

unbmv

unbmv

spatialnoiseCS KK
KK

Noise vectors 1uL and 2uL are cyclically selected from the list of

noise vectors NS:

MMN
MMO
P

MMQ
MMR
S

TTU
VWWXY

−
TTU
VWWXYTTU

VWWXY −TTU
VWWXYTTU

VWWXY
−
TTU
VWWXYTTU

VWWXY −TTU
VWWXY

TTU
VWWXY

−
TTU
VWWXYTTU

VWWXY −TTU
VWWXYTTU

VWWXY
−
TTU
VWWXYTTU

VWWXY −TTU
VWWXY

=

8

0
,

8

0
,

0

8
,

0

8
,

4

0
,

4

0
,

0

4
,

0

4

,
2

0
,

2

0
,

0

2
,

0

2
,

1

0
,

1

0
,

0

1
,

0

1

NS

Block matching uses the Sum-of-Absolute-Differences (SAD)
cost function, which sums the absolute differences of
corresponding values of source and reference blocks. These
values can represent image pixels, fractional image pixels, or
multiple image pixels (in case of spatial down-scaling).

3. PERFORMANCE EVALUATION
This section describes the performance evaluation environment.
An accurate portrayal of the System-on-Chip (SoC) is important
since the processor’s performance heavily depends on its
interaction with the rest of the SoC environment (Figure 1). The
evaluation environment includes the TM3270 media-processor, a
DDR memory controller, and off-chip DDR memory.

The TM3270 has an operating frequency of 450 MHz. We
simulate with a DDR400 SDRAM memory; i.e. an operating
frequency of 200 MHz. The SDRAM has a CAS latency of 3
cycles. The TM3270 provides an asynchronous clock domain
transfer between the 200 MHz. memory, and the 450 MHz.
processor clocks. We use the actual TM3270 Verilog HDL
description as simulation model. The same description was used
as input to synthesis and place&route tools. This ensures a cycle
accurate portrayal of processor performance, including cache
behavior. We use Cadence’s NC-Verilog for Verilog HDL
simulation. The path between the processor and the memory
controller includes a delay block, which can be used to artificially
delay the data traffic from/to the off-chip SDRAM memory. The
artificial delay is used to mimic the processor observed memory
latency in a SoC in which multiple on-chip IP devices share a
unified off-chip memory.

SYSTEM-ON-CHIP (SoC)

DDR400 SDRAM MEMORY

MEMORY
CONTROLLER

TM3270

ON-CHIP
DEVICE

ON-CHIP
DEVICE

ON-CHIP
DEVICE

CRITICAL RESOURCE

DELAY
BLOCK

64-bit

32-bit

200 MHz 450 MHz

M
E

D
IA

 S
T

R
E

A
M

S

Figure 1. Performance evaluation environment. The dotted
line indicates a clock domain transfer.

4. TM3270 ARCHITECTURE
This section gives an overview of the TM3270. The TM3270
media-processor is source code backward compatible with the
TriMedia architecture. An overview of the TriMedia architecture
can be found in [4], [5], and [6]. The processor has a fully
synthesizable design using a standard-cell logic library and single-
ported SRAMs, allowing for fast process technology mapping.
Silicon area was one of the main design constraints, to allow for

an economically viable solution in the cost-driven consumer
electronics market. The processor achieves a frequency of 450
MHz. in a .09 µm process technology, and measures around 8
mm2. Table 1 gives an overview of the main architectural features.

The TM3270 has a 32-bit VLIW architecture. A VLIW
instruction may contain up to five operations. Each of these
operations may be guarded; i.e. their execution can be made
conditional on the value of a guard register. This allows the
compiler to eliminate conditional jump operations, using if-
conversion. SIMD arithmetic and shuffle operations allow for
efficient manipulation and re-organization of 8-, and 16-bit data
types. Floating-point operations comply with the IEEE-754
standard. Operations are grouped into functional units, and most
functional units have multiple instantiations. Most functional
units are fully pipelined, allowing for back-to-back issue of
operations. The simple arithmetic functional unit has five
instantiations, so up to five simple arithmetic operations can be
issued every cycle. The floating point multiply and adder units
have two instantiations each. The TM3270 provides some
architectural enhancements over previous TriMedia processors;
we mention those that impact motion estimation performance:

Two-slot operations. The TM3270 has function units that are
located in two neighboring issue slots. As a result, the operations
executed by these functional units can have up to 4 source and up
to 2 destination operands. Table 2 gives the definition of a two-
slot operation with 4 source operands and 1 destination operand:
SUPER_ULCIP8ASR6MIX8UI.

Unaligned load/store operations. The load/store unit provides
access to non-aligned data elements, without incurring processor
stall cycles.

Collapsed load / reduction operations. The collapsing of multiple
elementary arithmetic operations was introduced in [7]. The
TM3270 instead combines the functionality of memory and
reduction operations into a single operation. More specifically,
support is provided for operations that combine the functionality
of an ordinary load with the functionality of a reduction operation.
These operations can improve processor performance, and have
the additional benefit that they reduce register-pressure. The
operations have two source operands: a memory address, and a 4-
bit value that acts as a weight for a weighted average calculation.
Table 2 gives the definitions of two of these operations:
LD_FRAC8, and LD_PACKFRAC8. The LD_FRAC8 operation
loads 5 byte elements from sequential memory addresses, and
calculates a weighted average for the 1st and 2nd, the 2nd and 3rd,
the 3rd and 4th, and the 4th and 5th byte elements. The
LD_PACKFRAC8 operation loads 8 byte elements from
sequential memory addresses, and calculates a weighted average
for the 1st and 2nd, the 3rd and 4th, the 5th and 6th, and the 7th and
8th byte elements.

Data cache capacity. The TM3270 has a 128 Kbyte data cache,
whereas previous TriMedia processors have a 16 Kbyte data
cache. The cache contributes more than 1/3 of the area of the 8
mm2 processor. The 128 Kbyte cache is able to capture the
working set of most standard video codecs at standard definition
(SD) resolution (720*480), and the working set of most of our
proprietary video processing algorithms at either SD or HD
resolution.

Prefetching. Prefetching reduces processor observed latency of
the off-chip memory. By prefetching data from the off-chip
memory into the processor’s data cache before actual use of the
data, performance is improved by eliminating stall cycles
associated to cache misses.

image height

MEMORY

PRE-FETCH REGION X:
PFx_START_ADDR
PFx_END_ADDR
PFx_STRIDE

image width

IMAGE

ADDRESS A

ADDRESS A+PFx_STRIDE

PFx_START_ADDR

PFx_END_ADDR

Figure 2. Memory region based prefetching.

 Table 1. TM3270 architecture overview.

Architectural feature Quantity

Architecture 5-issue slot VLIW, guarded RISC-
like operations

Pipeline depth 7-13 stages

Address width 32-bit

Data width 32-bit

Register-file Unified, 128 32-bit registers

Functional units 35

Floating point IEEE-754

SIMD 1 x 32-bit

2 x 16-bit

4 x 8-bit

Instruction cache 64 Kbytes, 8 way set-associative,
128 byte lines

Data cache 128 Kbytes, 4 way set-associative,
128 byte lines

Besides the support of software prefetch operations, the processor
supports hardware based prefetching. Hardware based prefetching
uses so-called prefetch memory regions, which allow for a
prefetching pattern that reflects the access pattern of a data
structure mapped onto a certain address space. The TM3270
supports four separate memory regions. The identification of these
memory regions, and the required prefetch pattern is under
software control, and defined by the following parameters (n = 0,
1, 2, 3):

• PFn_START_ADDR

• PFn_END_ADDR

• PFn_STRIDE

The first two parameters, PFn_START_ADDR and
PFn_END_ADDR, are used to identify a memory region. The
third parameter, PFn_STRIDE, is used to specify the prefetch
pattern for the associated region.

As an example, consider an application that is processing a two-
dimensional image in memory (Figure 2). Assume the application
processes all image pixels in a line-by-line fashion, in a top to
bottom line direction. The memory region is set to include the
image. The stride value, PFn_STRIDE, is set to reflect the image
access pattern. By setting the stride value equal to the image
width, the image line sequential to the one being processed is pre-
fetched. When the off-chip memory latency exceeds the time
needed to process an image line, prefetching may not complete in
time. Therefore, it might be necessary to prefetch more than one
image line ahead, by setting the stride value to a multiple of the
image width.

Note that by setting the prefetch stride to the cache line size,
traditional next-sequential cache line prefetching is implemented.

5. MOTION ESTIMATION
IMPLEMENTATIONS
We evaluated six different software implementations of the 3DRS
algorithm, as described in Section 2. The implementations differ
in the extent to which they exploit the TM3270’s new operations,
and their quality level. The quality level is determined by the
ability to support a fractional horizontal and/or vertical motion
vector component. When supported, fractional pixels are
calculated using linear interpolation at ¼ pixel image resolution.

All implementations operate on a SD image of 720*480 pixels,
resulting in a total of 5400 8*8 blocks per image. All
implementations use memory region based prefetching. For the
current image, the memory region stride is set such that while

processing a pixel position ���
�����

y

x

c

c
, the pixel at position

���
�		
�

+ 8y

x

c

c
, is prefetched. For the reference image, the memory

region stride is set such that while processing a pixel at image

position ��
�����

y

x

r

r
, the pixel at position ��

�����
+ mr

r

y

x , is prefetched

(with m = 40, being the maximum value of the vertical component
of the motion vector).

As the 3DRS algorithm iterates over a sequence of video images,
it tends to converge to a smooth motion vector field. Although we
implemented the 3DRS algorithm as presented, including the
control overhead of tracking the best motion vector candidate, we
decided not to rely on the spatial and temporal convergence of the
algorithm. By doing so, our measurement results reflect worst
case, rather than typical case execution behavior. The spatial

Table 2. Some of the new TM3270 operations.

Operation Description

 SUPER_UCLIP8ASR6MIX8UI
 rsrc1 rsrc2 rsrc3 rscr4 ->rdest1;

Semantics: Weighted average of 8-bit

unsigned integers (with rounding).

temp = (rsrc1[31:24]*rsrc2[31:24] + rsrc3[31:24]*rsrc4[31:24] + 32) / 64;
rdest1[31:24] = min (max (0, temp), 255);
temp = (rsrc1[23:16]*rsrc2[23:16] + rsrc3[23:16]*rsrc4[23:16] + 32) / 64;
rdest1[23:16] = min (max (0, temp), 255);
temp = (rsrc1[15:8]*rsrc2[15:8] + rsrc3[15:8]*rsrc4[15:8] + 32) / 64;
rdest1[15:8] = min (max (0, temp), 255);
temp = (rsrc1[7:0]*rsrc2[7:0] + rsrc3[7:0]*rsrc4[7:0] + 32) / 64;
rdest1[7:0] = min (max (0, temp), 255);

LD_FRAC8
 rsrc1 rsrc2 -> rdest1;

Semantics: Collapsed load; load

combined with linear interpolation.

data0 = Mem[rsrc1]; data1 = Mem[rsrc1 + 1]; data2 = Mem[rsrc1 + 2];
data3 = Mem[rsrc1 + 3]; data4 = Mem[rsrc1 + 4];
rdest1[31:24] = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) / 16;
rdest1[23:16] = (data1*(16-rsrc2[3:0]) + data2*rsrc2[3:0] + 8) / 16;

 rdest1[15:8] = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) / 16;
rdest1[7:0] = (data3*(16-rsrc2[3:0]) + data4*rsrc2[3:0] + 8) / 16;

LD_PACKFRAC8
 rsrc1 rsrc2 -> rdest1;

Semantics: Collapsed load; load

combined with linear interpolation.

data0 = Mem[rsrc1]; data1 = Mem[rsrc1 + 1]; data2 = Mem[rsrc1 + 2];
data3 = Mem[rsrc1 + 3]; data4 = Mem[rsrc1 + 4]; data5 = Mem[rsrc1 + 5];
data6 = Mem[rsrc1 + 6]; data7 = Mem[rsrc1 + 7];
rdest1[31:24] = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) / 16;
rdest1[23:16] = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) / 16;
rdest1[15:8] = (data4*(16-rsrc2[3:0]) + data5*rsrc2[3:0] + 8) / 16;
rdest1[7:0] = (data6*(16-rsrc2[3:0]) + data7*rsrc2[3:0] + 8) / 16;

convergence is non-existent, since we operate on random
initialized video images; i.e. image pixels have a random value
between 0 and 255. The temporal convergence is non-existent,

since we initialize the motion vectors mv(b
�

, n-1), for all blocks b
of the previous image n-1, to a random value. The horizontal
component of the motion vectors are taken from the range [-128,
127 ¾], and the vertical component of the motion vectors are
taken from the range [-32, 31 ¾] (video motion is typically more
dominant in the horizontal direction). Note that the motion
candidates from CS_noise_spatial include the addition of a noise
vector, possibly extending the motion vector ranges to [-136, 135
¾], and [-40, 39 ¾], respectively.

Our base line, implementation A, uses neither unaligned load/store
operations, nor any new operations. No software support is
provided for fractional motion vectors. Implementation B is
intended to show the benefit of unaligned load/store operations.
No support is provided for fractional motion vectors.
Implementations A and B provide the same functionality; i.e.
integer motion vector based motion estimation. Implementation C
uses unaligned load/store operations. The
SUPER_UCLIP8ASR6MIX8UI operation is used to support a
horizontal fractional motion vector component. Implementation D
uses the LD_FRAC8 operation to support a horizontal fractional
motion vector component. Implementations C and D provide the
same functionality; i.e. support for a horizontal fractional motion
vector component. The support of a fractional horizontal motion
vector component improves the quality of implementations C and
D over implementations A and B. Implementation E uses the
LD_FRAC8 operation to support a horizontal fractional motion
vector component, and the UCLIP8ASR6MIX8UI operation to
support a vertical fractional motion vector component. The
support of a fractional component in both directions improves the
quality of this implementation over the previous implementations.
Implementation F uses the LD_PACKFRAC8 operation, to
support horizontal down-sampling by a factor 2. Note that down-
sampling is at ¼ pixel resolution and performed on the fly; i.e.
input to the down-sampling are the pixels of the original image,
and not the pixels of a down-sampled image. This approach does
not have the potential advantage of a reduction in data working
set size, but does provide a better quality result, and eliminates the
need to perform a separate down-sampling pass on images. Down-
sampling, and the fact that a vertical fractional motion vector
component is not supported, degrades the quality of this
implementation.

Table 3 gives a summary of the six implementations.

6. MEASUREMENTS AND RESULTS
All six implementations were simulated in our cycle accurate SoC
environment, as described in Section 3. For all implementations,
the instruction working set fits within the instruction cache, so
apart from initial compulsory cache misses, no instruction cache
misses and associated stalls were encountered.

6.1 Comparing the implementations
To compare the performance of the implementations, we
simulated them under the same SoC conditions: the delay block
adds 10 cycles delay in the memory clock domain (22.5 cycles in
the processor clock domain). Table 4 gives the simulation results.

All implementations show a CPI of close to 1.0, which is the
theoretical optimal. Implementation A, however, suffers from low
issue slot utilization (large amount of NOP operations), resulting
in a large VLIW instruction count. The main reason is the
inability of the compiler/scheduler to inline the SAD cost
function. Function parameter passing through the stack requires a
series of store and load operations. Issue slot constraints on load
and store operations (a VLIW instruction may only contain one
load and one store, or two store operations), result in low issue
slot utilization. Furthermore, read-after-write dependencies
between successive store and load operations result in additional
stall cycles for implementation A. The implementations only
utilize a small amount of available processor performance.
Implementation A utilizes 18.4% of the processor’s full potential.
Implementation F improves the performance by a factor 4,
resulting in a processor utilization of only 4.69%.

Implementation A does not support unaligned loads. Therefore,
additional load and shuffle operations are required, to extract the
required reference image pixels. This is reflected in the high
VLIW instruction count. Implementation B shows the benefit of
unaligned load/store operations. It provides tha same functionality
as implementation A at significant lower VLIW instruction count.
This confirms that media-processors should not only provide
SIMD support for computational operations, but also for memory
operations. Implementation C shows that the support for a
horizontal fractional motion vector component adds a significant
amount of VLIW instructions. Implementation D provides the
same functionality as implementation C, but uses the LD_FRAC8
operation. This operation combines the horizontal fractional
calculation with the loading of data elements from memory. The
VLIW instruction count of implementation D is comparable to
implementation B, which only supports an integer motion vector.
Implementation E adds support for a vertical fractional motion

Table 3. Implementations A to F, their use of TM3270 architectural enhancements and their support of fractional horizontal
and/or vertical motion vector components.

Implem.
Unaligned
load/store
support

Horizontal fractional

motion vector

Vertical fractional

motion vector

Horizontal

down-sampling

Relative
quality

level

A no no no no -

B yes no no no -

C yes SUPER_UCLIP8ASR6MIX8UI no no +

D yes LD_FRAC8 no no +

E yes LD_FRAC8 SUPER_UCLIP8ASR6MIX8UI no ++

F yes LD_PACKFRAC8 no LD_PACKFRAC8 -

vector component; at the cost of a cycle budget increase of
approximately 50% over implementation D. Implementation F has
the best cycle budget. The LD_PACKFRAC8 operation is used to
perform down-sampling. As a result, the amount of operations
involved in the SAD calculation is halved.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

C
yc

le
s

A B C D E F A B C D E F

Prefetching off Prefetching on

Stall cycles
VLIW instruction count

Figure 3. Performance results for implementations A to F,
with prefetching off and prefetching on.

6.2 Influence of prefetching
By prefetching data from the off-chip memory into the processor’s
data cache before actual use of the data by the processor,
performance is improved by eliminating stall cycles associated to
cache misses. To quantify the benefit of prefetching, we simulated
all implementations with and without prefetching. Figure 3 gives
the simulation results (numbers taken from Table 4). The benefit
from prefetching is similar for all implementations. On average,

the cycle count decreases by around 300.000 cycles when
prefetching is on. Those implementations with the lower cycle
count have the largest relative benefit from prefetching. For
implementation F, prefetching decreases the cycle count by
roughly 30%.

6.3 Influence of memory latency
To quantify the influence of SoC SDRAM memory latency on
processor performance, we simulated all implementations with
different memory delay cycles. The simulation with 0 delay cycles
reflects a SoC in which only the processor requires off-chip
memory bandwidth. Increasing the amount of delay cycles mimics
a SoC in which off-chip memory bandwidth is consumed by other
on-chip IP devices. Figure 4 gives the cycle counts for the
simulation results.

As expected, all implementations suffer from increased memory
latency. The implementations with a relatively low VLIW
instruction count (B, D, and F) have a discontinuity in the
increase in cycle budget as a function of memory latency.
Implementation F becomes more latency dependent at
approximately 30 additional memory delay cycles.
Implementations B and D show similar behavior, at approximately
60 additional delay cycles. Due to the relatively low VLIW
instruction count, implementations B, D, and F become memory
bound. In the presence of high memory latency, it is no longer
possible to overlap prefetching with computation.
Implementations A and C have a relatively high VLIW instruction
count, and have not become completely memory bound at 100
memory delay cycles. For these implementations is possible to
overlap prefetching and computation. Implementations A and C
offer better performance at 100 additional delay cycles with
prefetching on, than at 10 additional delay cycles with prefetching
turned off.

Higher memory latencies make an implementation more
dependent on the ability to overlap prefetching with computation,

Table 4. Performance results for implementations A to F (10 cycle delay block).

Image average

Implementation
Cycles

VLIW
instruction

count
Stall cycles

Cycles/
VLIW
instr.

Operations/
VLIW
instr.

MHz. req.
for SD @

30
images/sec.

% of 450
MHz.

processor
performance

Prefetching on

A (-) 2761797 2556595 205202 1.08 1.66 82.9 18.4 %

B (-) 1175520 1086999 88521 1.08 3.46 35.3 7.8 %

C (+) 1962161 1907856 54305 1.03 3.96 58.9 13.1 %

D (+) 1239854 1173460 66394 1.06 4.04 37.2 8.3 %

E (++) 1697739 1637807 59932 1.04 4.37 50.9 11.3 %

F (-) 704411 617076 87335 1.14 4.43 21.1 4.7 %

Prefetching off

A (-) 3092172 2556592 535580 1.21 1.66 92.7 20.6 %

B (-) 1481615 1086932 394683 1.36 3.44 44.4 9.9 %

C (+) 2300662 1907789 392873 1.21 3.96 69.0 15.3 %

D (+) 1565680 1173393 392287 1.33 4.03 47.0 10.4 %

E (++) 2028260 1637741 390519 1.24 4.36 60.8 13.5 %

F (-) 1027849 617069 410780 1.67 4.41 30.7 6.8 %

and less dependent on the VLIW instruction count. As memory
latency increases, the absolute cycle difference between different
implementations decreases. One could draw the conclusion that
the additional quality as provided by an implementation with a
higher VLIW instruction count, becomes cheaper as the memory
latency increases.

7. CONCLUSION
Although this paper does not intend to provide the best motion
estimator for the TM3270, the simulation results show that real-
time motion estimation utilizes only a fraction of the processor’s
computational abilities (4.7% for implementation F and 11.3% for
the highest quality implementation, implementation E). The
TM3270 provides architectural enhancements that allow for
efficient implementation of other parts of video standards
(IDCT/DCT, and standard compliant fractional pixel calculation),
which makes SD multi-standard video encoding achievable.

The use of two-slot operations (SUPER_UCLIP8ASR6MIX8UI)
and collapsed load operations (LD_FRAC8 and
LD_PACKFRAC8) significantly reduces the cycle count. At a
higher quality level, implementation E has a cycle count that is
39% lower than that of implementation A (1697739 versus
2761797 cycles for implementations A and E respectively). At a
comparable quality level, implementation F has a cycle count that
is 75% lower than that of implementation A.

Data prefetching improves performance of implementation F by
30%, at 10 memory delay cycles. As the amount of memory delay
cycles increases, the relative speedup due to prefetching is
decreasing.

Dedicated hardware solutions are typically considered to be
smaller than programmable solutions. However, this conclusion
may be premature. Unutilized processor performance may be used
to implement other parts of a video encoder, and an audio
encoder. When taking a system approach to the encoder

functionality at large, a programmable solution can compete with
dedicated hardware solutions, in terms of silicon area. The data
cache contributes more than 1/3 of the area of the processor. The
cache capacity was found necessary to limit the amount of off-
chip memory bandwidth. It is likely, that a dedicated hardware
solution requires a similar sized memory structure, to achieve
comparable memory bandwidth requirements.

Since the motion estimation algorithm has a software
implementation, improvements on the 3DRS algorithm or
different motion estimation algorithms are easily realized.

8. REFERENCES
[1] Richardson, I.E.G. H.264 and MPEG-4 video compresson,

video coding for next-generation multimedia, Wiley, 2003.

[2] de Haan, G. et al. True-motion estimation with 3-D recursive
search block matching, In ICCE Transactions on Circuits
and Systems for Video Technology, vol.3, pp. 368-379,
October 1993.

[3] de Haan, G. IC for motion compensated deinterlacing, noise
reduction and picture rate conversion, In IEEE Transactions
on Consumer Electronics, pp. 617-624, August 1999.

[4] Rathnam, S. and Slavenburg, G. An architectural overview of
the programmable multimedia processor, tm-1, In
Proceedings of the COMPCON ’96, pp. 319-326, 1996.

[5] Halfhill, T. Philips powers up for video, In Microprocessor
Report, http:/www.mpronline.com/, November 2003.

[6] Hennessy, J.L. and Patterson, D.A. Computers Architecture:
A Quantitative Approach, 3rd edition, Morgan Kaufmann,
2003.

[7] Vassiliadis, S., Phillips, J. and Blaner, B. Interlock
collapsing ALU’s, In IEEE Transactions on Computers, vol.
42, issue 7, pp. 825-839, July 1993

500000

750000

1000000

1250000

1500000

1750000

2000000

2250000

2500000

2750000

3000000

0 10 20 30 40 50 60 70 80 90 100

Memory delay cycles

C
yc

le
s

A

B

C

D

E

F

Figure 4. Performance results for implementations A to F, for different memory delay cycles (prefetching on).

