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ABSTRACT 
Motion estimation constitutes a significant computational part of 
video standards such as MPEG2, MPEG4, and H264/AVC. This 
paper evaluates the performance of a motion estimation algorithm 
on the TM3270, a low-cost media-processor. In order to improve 
performance, the TM3270 processor provides architectural 
enhancements over previous TriMedia processors. We quantify 
the speedup of the proposed new operations to motion estimation 
performance. We show that the new operations incorporated in 
the TM3270 improve performance by a factor between 3 and 4. 
Furthermore, we quantify the speedup of data prefetching. We 
show that prefetching can improve performance up to 30%. By 
applying all TM3270 architectural enhancements, we show that 
standard resolution motion estimation can be performed in less 
than 5% of the available processor performance.  

Categories and Subject Descriptors 
D.1.1 [Processor Architectures]: Single Data Stream 
Architectures – pipeline processors, RISC/CISC, VLIW 
architectures. I.4.0 [Image Processing and Computer Vision]: 
General. 

General Terms 

Design, Measurement, Performance. 

Keywords 
Media processor, motion estimation, software implementation. 

1. INTRODUCTION 
Media-processors are used in the domain of video processing. 
Their programmability allows for a flexible implementation of 
video processing algorithms. When enough computational 
performance is available, they provide an interesting alternative to 
fixed dedicated hardware solutions. The time-to-market of a 
programmable solution, from algorithm conception to market 

introduction, can be kept short, since no lengthy hardware design 
cycle is required. Furthermore, a single programmable platform 
may address multiple markets. As a result, its development costs 
may be shared, providing a cost-efficiency advantage over fixed 
dedicated hardware solutions. 

Motion estimation constitutes a significant computational part of 
standard video codecs, and finds application in proprietary video 
enhancement algorithms. Standard video codecs include MPEG2, 
MPEG4, H264/AVC [1], etc. Their functionality is pre-scribed to 
allow for inter-operability, and documented by international 
standardization committees. In this domain, flexibility allows for 
fast market introduction, or improved implementations of 
functionality after market introduction. Proprietary video 
algorithms are typically company specific. In the video display 
markets, these algorithms implement the key features with which 
the set makers distinguish themselves. Philips provides Natural 
Motion image enhancement, which includes motion based de-
interlacing and temporal up-conversion. In a new and rapidly 
growing market like LCD-TV, fast time-to-market may determine 
the success of a solution based on these video algorithms. This 
paper evaluates the performance of a motion estimation algorithm 
on the TM3270. We quantify the speedup from new operations 
and from data prefetching. Furthermore, we evaluate the impact of 
memory latency to processor performance. We introduce the 
concepts of two-slot operations, and collapsed load operations. 

The remainder of this paper is organized as follows. In Section 2, 
we introduce the motion estimation algorithm, which is used to 
evaluate processor performance. In Section 3, we define our 
performance evaluation environment. In Section 4, we present the 
TM3270 architecture. In Section 5, we present six software 
implementations of the algorithm as described in Section 2. In 
Section 6, we present and discuss performance measurement 
results. Finally, in Section 7, we present our conclusions. 

2. MOTION ESTIMATION ALGORITHM 
Many block-based motion estimation algorithms exist, and the 
suitability of a particular algorithm depends on the application at 
hand. This paper does not intend to introduce a new and better 
motion estimator, but rather to evaluate the performance of our 
processor on an existing algorithm. We decided upon the 3-D 
Recursive Search (3DRS) algorithm [2]. This algorithm provides 
a high quality result, at a relatively low computational complexity, 
making it an attractive candidate for a software implementation. 
Furthermore, it has found successful application in commercial 
ICs [3]. 
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The 3DRS algorithm is a spatial-temporal algorithm; i.e. the 
candidate motion vectors for a block are derived from the motion 
vectors of surrounding blocks in both space and time. We will 
give a brief overview of the algorithm. 

Our version of the 3DRS algorithm evaluates 11 candidate motion 

vectors per 8x8 block of pixels b. Let ���
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n) denote the best motion vector for block b�  in image n, based on 
a cost function. The motion estimation vector candidates are taken 
from the candidate sets CS_zero (the zero vector), CS_spatial 
(motion vectors of already processed blocks in the current image), 
CS_temporal (motion vectors of blocks in the previous image), 
and CS_noise_spatial (noise updated motion vectors of already 
processed blocks in the current image): 
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Noise vectors 1uL  and 2uL  are cyclically selected from the list of 
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Block matching uses the Sum-of-Absolute-Differences (SAD) 
cost function, which sums the absolute differences of 
corresponding values of source and reference blocks. These 
values can represent image pixels, fractional image pixels, or 
multiple image pixels (in case of spatial down-scaling). 

3. PERFORMANCE EVALUATION 
This section describes the performance evaluation environment. 
An accurate portrayal of the System-on-Chip (SoC) is important 
since the processor’s performance heavily depends on its 
interaction with the rest of the SoC environment (Figure 1). The 
evaluation environment includes the TM3270 media-processor, a 
DDR memory controller, and off-chip DDR memory. 

The TM3270 has an operating frequency of 450 MHz. We 
simulate with a DDR400 SDRAM memory; i.e. an operating 
frequency of 200 MHz. The SDRAM has a CAS latency of 3 
cycles. The TM3270 provides an asynchronous clock domain 
transfer between the 200 MHz. memory, and the 450 MHz. 
processor clocks. We use the actual TM3270 Verilog HDL 
description as simulation model. The same description was used 
as input to synthesis and place&route tools. This ensures a cycle 
accurate portrayal of processor performance, including cache 
behavior. We use Cadence’s NC-Verilog for Verilog HDL 
simulation. The path between the processor and the memory 
controller includes a delay block, which can be used to artificially 
delay the data traffic from/to the off-chip SDRAM memory. The 
artificial delay is used to mimic the processor observed memory 
latency in a SoC in which multiple on-chip IP devices share a 
unified off-chip memory.  
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Figure 1. Performance evaluation environment. The dotted 
line indicates a clock domain transfer. 

4. TM3270 ARCHITECTURE 
This section gives an overview of the TM3270. The TM3270 
media-processor is source code backward compatible with the 
TriMedia architecture. An overview of the TriMedia architecture 
can be found in [4], [5], and [6]. The processor has a fully 
synthesizable design using a standard-cell logic library and single-
ported SRAMs, allowing for fast process technology mapping. 
Silicon area was one of the main design constraints, to allow for 



an economically viable solution in the cost-driven consumer 
electronics market. The processor achieves a frequency of 450 
MHz. in a .09 µm process technology, and measures around 8 
mm2. Table 1 gives an overview of the main architectural features. 

The TM3270 has a 32-bit VLIW architecture. A VLIW 
instruction may contain up to five operations. Each of these 
operations may be guarded; i.e. their execution can be made 
conditional on the value of a guard register. This allows the 
compiler to eliminate conditional jump operations, using if-
conversion. SIMD arithmetic and shuffle operations allow for 
efficient manipulation and re-organization of 8-, and 16-bit data 
types. Floating-point operations comply with the IEEE-754 
standard. Operations are grouped into functional units, and most 
functional units have multiple instantiations. Most functional 
units are fully pipelined, allowing for back-to-back issue of 
operations. The simple arithmetic functional unit has five 
instantiations, so up to five simple arithmetic operations can be 
issued every cycle. The floating point multiply and adder units 
have two instantiations each. The TM3270 provides some 
architectural enhancements over previous TriMedia processors; 
we mention those that impact motion estimation performance: 

Two-slot operations. The TM3270 has function units that are 
located in two neighboring issue slots. As a result, the operations 
executed by these functional units can have up to 4 source and up 
to 2 destination operands. Table 2 gives the definition of a two-
slot operation with 4 source operands and 1 destination operand: 
SUPER_ULCIP8ASR6MIX8UI. 

Unaligned load/store operations. The load/store unit provides 
access to non-aligned data elements, without incurring processor 
stall cycles. 

Collapsed load / reduction operations. The collapsing of multiple 
elementary arithmetic operations was introduced in [7]. The 
TM3270 instead combines the functionality of memory and 
reduction operations into a single operation. More specifically, 
support is provided for operations that combine the functionality 
of an ordinary load with the functionality of a reduction operation. 
These operations can improve processor performance, and have 
the additional benefit that they reduce register-pressure. The 
operations have two source operands: a memory address, and a 4-
bit value that acts as a weight for a weighted average calculation. 
Table 2 gives the definitions of two of these operations: 
LD_FRAC8, and LD_PACKFRAC8. The LD_FRAC8 operation 
loads 5 byte elements from sequential memory addresses, and 
calculates a weighted average for the 1st and 2nd, the 2nd and 3rd, 
the 3rd and 4th, and the 4th and 5th byte elements. The 
LD_PACKFRAC8 operation loads 8 byte elements from 
sequential memory addresses, and calculates a weighted average 
for the 1st and 2nd, the 3rd and 4th, the 5th and 6th, and the 7th and 
8th byte elements. 

Data cache capacity. The TM3270 has a 128 Kbyte data cache, 
whereas previous TriMedia processors have a 16 Kbyte data 
cache. The cache contributes more than 1/3 of the area of the 8 
mm2 processor. The 128 Kbyte cache is able to capture the 
working set of most standard video codecs at standard definition 
(SD) resolution (720*480), and the working set of most of our 
proprietary video processing algorithms at either SD or HD 
resolution.  

Prefetching. Prefetching reduces processor observed latency of 
the off-chip memory. By prefetching data from the off-chip 
memory into the processor’s data cache before actual use of the 
data, performance is improved by eliminating stall cycles 
associated to cache misses. 

image height
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Figure 2. Memory region based prefetching. 

 

 Table 1. TM3270 architecture overview. 

Architectural feature Quantity 

Architecture 5-issue slot VLIW, guarded RISC-
like operations 

Pipeline depth 7-13 stages 

Address width 32-bit 

Data width 32-bit 

Register-file Unified, 128 32-bit registers 

Functional units 35 

Floating point IEEE-754 

SIMD 1 x 32-bit 

2 x 16-bit 

4 x 8-bit 

Instruction cache 64 Kbytes, 8 way set-associative, 
128 byte lines 

Data cache 128 Kbytes, 4 way set-associative, 
128 byte lines 

 



Besides the support of software prefetch operations, the processor 
supports hardware based prefetching. Hardware based prefetching 
uses so-called prefetch memory regions, which allow for a 
prefetching pattern that reflects the access pattern of a data 
structure mapped onto a certain address space. The TM3270 
supports four separate memory regions. The identification of these 
memory regions, and the required prefetch pattern is under 
software control, and defined by the following parameters (n = 0, 
1, 2, 3): 

• PFn_START_ADDR 

• PFn_END_ADDR 

• PFn_STRIDE 

The first two parameters, PFn_START_ADDR and 
PFn_END_ADDR, are used to identify a memory region. The 
third parameter, PFn_STRIDE, is used to specify the prefetch 
pattern for the associated region.  

As an example, consider an application that is processing a two-
dimensional image in memory (Figure 2). Assume the application 
processes all image pixels in a line-by-line fashion, in a top to 
bottom line direction. The memory region is set to include the 
image. The stride value, PFn_STRIDE, is set to reflect the image 
access pattern. By setting the stride value equal to the image 
width, the image line sequential to the one being processed is pre-
fetched. When the off-chip memory latency exceeds the time 
needed to process an image line, prefetching may not complete in 
time. Therefore, it might be necessary to prefetch more than one 
image line ahead, by setting the stride value to a multiple of the 
image width. 

Note that by setting the prefetch stride to the cache line size, 
traditional next-sequential cache line prefetching is implemented. 

5. MOTION ESTIMATION 
IMPLEMENTATIONS 
We evaluated six different software implementations of the 3DRS 
algorithm, as described in Section 2. The implementations differ 
in the extent to which they exploit the TM3270’s new operations, 
and their quality level. The quality level is determined by the 
ability to support a fractional horizontal and/or vertical motion 
vector component. When supported, fractional pixels are 
calculated using linear interpolation at ¼ pixel image resolution. 

All implementations operate on a SD image of 720*480 pixels, 
resulting in a total of 5400 8*8 blocks per image. All 
implementations use memory region based prefetching. For the 
current image, the memory region stride is set such that while 
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(with m = 40, being the maximum value of the vertical component 
of the motion vector). 

As the 3DRS algorithm iterates over a sequence of video images, 
it tends to converge to a smooth motion vector field. Although we 
implemented the 3DRS algorithm as presented, including the 
control overhead of tracking the best motion vector candidate, we 
decided not to rely on the spatial and temporal convergence of the 
algorithm. By doing so, our measurement results reflect worst 
case, rather than typical case execution behavior. The spatial 

Table 2. Some of the new TM3270 operations. 

Operation Description 

 SUPER_UCLIP8ASR6MIX8UI 
        rsrc1 rsrc2 rsrc3 rscr4 ->rdest1; 
 
 
 
 
Semantics: Weighted average of 8-bit 

unsigned integers (with rounding). 

temp               = (rsrc1[31:24]*rsrc2[31:24] + rsrc3[31:24]*rsrc4[31:24] + 32) / 64; 
rdest1[31:24] = min (max (0, temp), 255); 
temp               = (rsrc1[23:16]*rsrc2[23:16] + rsrc3[23:16]*rsrc4[23:16] + 32) / 64; 
rdest1[23:16] = min (max (0, temp), 255); 
temp               = (rsrc1[15:8]*rsrc2[15:8]     + rsrc3[15:8]*rsrc4[15:8]     + 32) / 64; 
rdest1[15:8]   = min (max (0, temp), 255); 
temp              = (rsrc1[7:0]*rsrc2[7:0]          + rsrc3[7:0]*rsrc4[7:0]         + 32) / 64; 
rdest1[7:0]     = min (max (0, temp), 255); 

LD_FRAC8 
       rsrc1 rsrc2 -> rdest1; 
 
 
Semantics: Collapsed load; load 

combined with linear interpolation. 

data0 = Mem[rsrc1];         data1 = Mem[rsrc1 + 1];   data2 = Mem[rsrc1 + 2]; 
data3 = Mem[rsrc1 + 3];   data4 = Mem[rsrc1 + 4]; 
rdest1[31:24]  = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) / 16; 
rdest1[23:16]  = (data1*(16-rsrc2[3:0]) + data2*rsrc2[3:0] + 8) / 16; 

    rdest1[15:8]    = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) / 16; 
rdest1[7:0]      = (data3*(16-rsrc2[3:0]) + data4*rsrc2[3:0] + 8) / 16; 

LD_PACKFRAC8 
       rsrc1 rsrc2 -> rdest1; 
 
 
 
Semantics: Collapsed load; load 

combined with linear interpolation. 

data0 = Mem[rsrc1];         data1 = Mem[rsrc1 + 1];   data2 = Mem[rsrc1 + 2]; 
data3 = Mem[rsrc1 + 3];   data4 = Mem[rsrc1 + 4];   data5 = Mem[rsrc1 + 5]; 
data6 = Mem[rsrc1 + 6];   data7 = Mem[rsrc1 + 7]; 
rdest1[31:24]  = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) / 16; 
rdest1[23:16]  = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) / 16; 
rdest1[15:8]    = (data4*(16-rsrc2[3:0]) + data5*rsrc2[3:0] + 8) / 16; 
rdest1[7:0]      = (data6*(16-rsrc2[3:0]) + data7*rsrc2[3:0] + 8) / 16; 

 



convergence is non-existent, since we operate on random 
initialized video images; i.e. image pixels have a random value 
between 0 and 255. The temporal convergence is non-existent, 

since we initialize the motion vectors mv(b
�

, n-1), for all blocks b 
of the previous image n-1, to a random value. The horizontal 
component of the motion vectors are taken from the range [-128, 
127 ¾], and the vertical component of the motion vectors are 
taken from the range [-32, 31 ¾] (video motion is typically more 
dominant in the horizontal direction). Note that the motion 
candidates from CS_noise_spatial include the addition of a noise 
vector, possibly extending the motion vector ranges to [-136, 135 
¾], and [-40, 39 ¾], respectively. 

Our base line, implementation A, uses neither unaligned load/store 
operations, nor any new operations. No software support is 
provided for fractional motion vectors. Implementation B is 
intended to show the benefit of unaligned load/store operations. 
No support is provided for fractional motion vectors. 
Implementations A and B provide the same functionality; i.e. 
integer motion vector based motion estimation. Implementation C 
uses unaligned load/store operations. The 
SUPER_UCLIP8ASR6MIX8UI operation is used to support a 
horizontal fractional motion vector component. Implementation D 
uses the LD_FRAC8 operation to support a horizontal fractional 
motion vector component. Implementations C and D provide the 
same functionality; i.e. support for a horizontal fractional motion 
vector component. The support of a fractional horizontal motion 
vector component improves the quality of implementations C and 
D over implementations A and B. Implementation E uses the 
LD_FRAC8 operation to support a horizontal fractional motion 
vector component, and the UCLIP8ASR6MIX8UI operation to 
support a vertical fractional motion vector component. The 
support of a fractional component in both directions improves the 
quality of this implementation over the previous implementations. 
Implementation F uses the LD_PACKFRAC8 operation, to 
support horizontal down-sampling by a factor 2. Note that down-
sampling is at ¼ pixel resolution and performed on the fly; i.e. 
input to the down-sampling are the pixels of the original image, 
and not the pixels of a down-sampled image. This approach does 
not have the potential advantage of a reduction in data working 
set size, but does provide a better quality result, and eliminates the 
need to perform a separate down-sampling pass on images. Down-
sampling, and the fact that a vertical fractional motion vector 
component is not supported, degrades the quality of this 
implementation. 

Table 3 gives a summary of the six implementations. 

6. MEASUREMENTS AND RESULTS 
All six implementations were simulated in our cycle accurate SoC 
environment, as described in Section 3. For all implementations, 
the instruction working set fits within the instruction cache, so 
apart from initial compulsory cache misses, no instruction cache 
misses and associated stalls were encountered. 

6.1 Comparing the implementations 
To compare the performance of the implementations, we 
simulated them under the same SoC conditions: the delay block 
adds 10 cycles delay in the memory clock domain (22.5 cycles in 
the processor clock domain). Table 4 gives the simulation results. 

All implementations show a CPI of close to 1.0, which is the 
theoretical optimal. Implementation A, however, suffers from low 
issue slot utilization (large amount of NOP operations), resulting 
in a large VLIW instruction count. The main reason is the 
inability of the compiler/scheduler to inline the SAD cost 
function. Function parameter passing through the stack requires a 
series of store and load operations. Issue slot constraints on load 
and store operations (a VLIW instruction may only contain one 
load and one store, or two store operations), result in low issue 
slot utilization. Furthermore, read-after-write dependencies 
between successive store and load operations result in additional 
stall cycles for implementation A. The implementations only 
utilize a small amount of available processor performance. 
Implementation A utilizes 18.4% of the processor’s full potential. 
Implementation F improves the performance by a factor 4, 
resulting in a processor utilization of only 4.69%. 

Implementation A does not support unaligned loads. Therefore, 
additional load and shuffle operations are required, to extract the 
required reference image pixels. This is reflected in the high 
VLIW instruction count. Implementation B shows the benefit of 
unaligned load/store operations. It provides tha same functionality 
as implementation A at significant lower VLIW instruction count. 
This confirms that media-processors should not only provide 
SIMD support for computational operations, but also for memory 
operations. Implementation C shows that the support for a 
horizontal fractional motion vector component adds a significant 
amount of VLIW instructions. Implementation D provides the 
same functionality as implementation C, but uses the LD_FRAC8 
operation. This operation combines the horizontal fractional 
calculation with the loading of data elements from memory. The 
VLIW instruction count of implementation D is comparable to 
implementation B, which only supports an integer motion vector. 
Implementation E adds support for a vertical fractional motion 

Table 3. Implementations A to F, their use of TM3270 architectural enhancements and their support of fractional horizontal 
and/or vertical motion vector components. 

Implem. 
Unaligned 
load/store 
support 

Horizontal fractional 

motion vector 

Vertical fractional 

motion vector 

Horizontal 

down-sampling 

Relative 
quality 

level 

A no no no no - 

B yes no no no - 

C yes SUPER_UCLIP8ASR6MIX8UI no no + 

D yes LD_FRAC8 no no + 

E yes LD_FRAC8 SUPER_UCLIP8ASR6MIX8UI no ++ 

F yes LD_PACKFRAC8 no LD_PACKFRAC8 - 

 



vector component; at the cost of a cycle budget increase of 
approximately 50% over implementation D. Implementation F has 
the best cycle budget. The LD_PACKFRAC8 operation is used to 
perform down-sampling. As a result, the amount of operations 
involved in the SAD calculation is halved. 
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Figure 3. Performance results for implementations A to F, 
with prefetching off and prefetching on. 

6.2 Influence of prefetching 
By prefetching data from the off-chip memory into the processor’s 
data cache before actual use of the data by the processor, 
performance is improved by eliminating stall cycles associated to 
cache misses. To quantify the benefit of prefetching, we simulated 
all implementations with and without prefetching. Figure 3 gives 
the simulation results (numbers taken from Table 4). The benefit 
from prefetching is similar for all implementations. On average, 

the cycle count decreases by around 300.000 cycles when 
prefetching is on. Those implementations with the lower cycle 
count have the largest relative benefit from prefetching. For 
implementation F, prefetching decreases the cycle count by 
roughly 30%. 

6.3 Influence of memory latency 
To quantify the influence of SoC SDRAM memory latency on 
processor performance, we simulated all implementations with 
different memory delay cycles. The simulation with 0 delay cycles 
reflects a SoC in which only the processor requires off-chip 
memory bandwidth. Increasing the amount of delay cycles mimics 
a SoC in which off-chip memory bandwidth is consumed by other 
on-chip IP devices. Figure 4 gives the cycle counts for the 
simulation results. 

As expected, all implementations suffer from increased memory 
latency. The implementations with a relatively low VLIW 
instruction count (B, D, and F) have a discontinuity in the 
increase in cycle budget as a function of memory latency. 
Implementation F becomes more latency dependent at 
approximately 30 additional memory delay cycles. 
Implementations B and D show similar behavior, at approximately 
60 additional delay cycles. Due to the relatively low VLIW 
instruction count, implementations B, D, and F become memory 
bound. In the presence of high memory latency, it is no longer 
possible to overlap prefetching with computation. 
Implementations A and C have a relatively high VLIW instruction 
count, and have not become completely memory bound at 100 
memory delay cycles. For these implementations is possible to 
overlap prefetching and computation. Implementations A and C 
offer better performance at 100 additional delay cycles with 
prefetching on, than at 10 additional delay cycles with prefetching 
turned off. 

Higher memory latencies make an implementation more 
dependent on the ability to overlap prefetching with computation, 

Table 4. Performance results for implementations A to F (10 cycle delay block). 

Image average 

Implementation 
Cycles 

VLIW 
instruction 

count 
Stall cycles 

Cycles/ 
VLIW 
instr. 

Operations/ 
VLIW 
instr. 

MHz. req. 
for SD @ 

30 
images/sec. 

% of 450 
MHz. 

processor 
performance 

Prefetching on 

A (-) 2761797 2556595 205202 1.08 1.66 82.9 18.4 % 

B (-) 1175520 1086999 88521 1.08 3.46 35.3 7.8 % 

C (+) 1962161 1907856 54305 1.03 3.96 58.9 13.1 % 

D (+) 1239854 1173460 66394 1.06 4.04 37.2 8.3 % 

E (++) 1697739 1637807 59932 1.04 4.37 50.9 11.3 % 

F (-) 704411 617076 87335 1.14 4.43 21.1 4.7 % 

Prefetching off 

A (-) 3092172 2556592 535580 1.21 1.66 92.7 20.6 % 

B (-) 1481615 1086932 394683 1.36 3.44 44.4 9.9 % 

C (+) 2300662 1907789 392873 1.21 3.96 69.0 15.3 % 

D (+) 1565680 1173393 392287 1.33 4.03 47.0 10.4 % 

E (++) 2028260 1637741 390519 1.24 4.36 60.8 13.5 % 

F (-) 1027849 617069 410780 1.67 4.41 30.7 6.8 % 

 



and less dependent on the VLIW instruction count. As memory 
latency increases, the absolute cycle difference between different 
implementations decreases. One could draw the conclusion that 
the additional quality as provided by an implementation with a 
higher VLIW instruction count, becomes cheaper as the memory 
latency increases. 

7. CONCLUSION 
Although this paper does not intend to provide the best motion 
estimator for the TM3270, the simulation results show that real-
time motion estimation utilizes only a fraction of the processor’s 
computational abilities (4.7% for implementation F and 11.3% for 
the highest quality implementation, implementation E). The 
TM3270 provides architectural enhancements that allow for 
efficient implementation of other parts of video standards 
(IDCT/DCT, and standard compliant fractional pixel calculation), 
which makes SD multi-standard video encoding achievable. 

The use of two-slot operations (SUPER_UCLIP8ASR6MIX8UI) 
and collapsed load operations (LD_FRAC8 and 
LD_PACKFRAC8) significantly reduces the cycle count. At a 
higher quality level, implementation E has a cycle count that is 
39% lower than that of implementation A (1697739 versus 
2761797 cycles for implementations A and E respectively). At a 
comparable quality level, implementation F has a cycle count that 
is 75% lower than that of implementation A. 

Data prefetching improves performance of implementation F by 
30%, at 10 memory delay cycles. As the amount of memory delay 
cycles increases, the relative speedup due to prefetching is 
decreasing. 

Dedicated hardware solutions are typically considered to be 
smaller than programmable solutions. However, this conclusion 
may be premature. Unutilized processor performance may be used 
to implement other parts of a video encoder, and an audio 
encoder. When taking a system approach to the encoder 

functionality at large, a programmable solution can compete with 
dedicated hardware solutions, in terms of silicon area. The data 
cache contributes more than 1/3 of the area of the processor. The 
cache capacity was found necessary to limit the amount of off-
chip memory bandwidth. It is likely, that a dedicated hardware 
solution requires a similar sized memory structure, to achieve 
comparable memory bandwidth requirements. 

Since the motion estimation algorithm has a software 
implementation, improvements on the 3DRS algorithm or 
different motion estimation algorithms are easily realized. 
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Figure 4.  Performance results for implementations A to F, for different memory delay cycles (prefetching on). 


