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Abstract— This paper presents a hybrid hardware-software
implementation of the AES encryption algorithm on the MOLEN
polymorphic processor [1]. In order to combine the advan-
tages of both the software and the hardware implementations,
the application code has been divided into two computational
approaches, software and hardware. Only the main ciphering
function, the more computational demanding component, has
been implemented in hardware in a Virtex II pro-20. The AES
encryption core occupies about 20% of the available slices and
utilizes 12 BRAMs. The proposed design is capable of running
at a frequency above 100MHz. Even in the worst case scenario,
where only one 128-bit block is encrypted, this implementation
has a speedup of 43, compared to a pure software implementation
running on a PowerPC at 300MHz.

When encrypting a file of 16 kbits, the overhead of passing the
data into the hardware (including the 1408 bits of the expanded
key) is much less significant, thus a speedup of 569 times is
obtained for the proposed design compared to the pure software
implementation. This speedup corresponds to an increase on the
encryption rate from 1.85 Mbits/s, for pure software, to 1057
Mbits/s in the polymorphic processor.

I. INTRODUCTION

In present days, almost every relevant communication sys-
tem requires secure data transfer in order to maintain the
privacy of the transmitted message; this message can be a
simple email or a billion euro transaction between banks. In
order to maintain the security of the communication channels,
several encryption standards and algorithms exist, such as
public key ciphers, symmetric ciphers and hash functions.
Though public algorithms may offer an increased reliability,
due mostly to the size of the keys, the computational require-
ments do not allow them to be efficiently used to encrypt the
bulk of the data. To cipher large quantities of data, symmetrical
ciphering algorithms are used. Because they are significant
less demanding for an adequate security level. One of the
emerging new NIST standards is the Advanced Encryption
Standard (AES) [2].

Even though the symmetrical encryption algorithms are
less computational demanding, they are still a critical part in
purely software implemented applications. When implemented
in hardware, the problem lays on the lack of adaptability to the
constantly changing standards and the high cost for small scale
productions. In order to use the best of both worlds, several
reconfigurable proposals have been presented [3], based on
FPGAs. However, most of these coprocessors are too specific
and can not be easily adapted to other devices.

This paper proposes a AES encryption core that is used
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has a functional unit of a polymorphic processor, namely the
MOLEN processor [1]. This approach allows the the AES core
to be instantiated the same way has the equivalent software
function, making it completely transparent to the software
developer, that wishes to improve is system through the use
of reconfigurable hardware.

The following section describes the structure of the AES en-
cryption algorithm. The third section elaborates the proposed
architecture for this algorithm to be used in the polymorphic
processor, presenting a fine grain structure that mostly uses
the FPGAs LUTSs, and a memory based structure that takes
advantage of the internal memory blocks (BRAMs) that exist
in the newer FPGA devices. Section 5 presents experimental
results for the developed core, on the Alpha Data: ADM-
XPL development board with a Xilinx Virtex II Pro (xc2vp20)
FPGA, using a 128-bit key. The last section finalizes this paper
with some concluding remarks.

II. AES DESCRIPTION

The AES is a standard of the NIST and uses the Rijndael
encryption algorithm. It is becoming the replacing standard
for the old, but still used, 3DES [4]. The AES algorithm is
capable of using cryptography keys of 128, 192, 256 bits to
encrypt and decrypt data blocks of 128 bits. Note that the
Rijndael encryption algorithm also allows data blocks of 192
and 256, these however are not parte of the AES standard, and
thus will not be mentioned on this paper.

As most of the symmetrical encryption algorithm, AES
operations consists of byte substitution, bit permutation and
the addition of the expanded Key, performed a predefined
number of times, designated by rounds. These operations are
performed through the usage of lookup tables to perform the
byte substitution, column shifts and arithmetic operations in
finite fields (addition and multiplications in GF' (28)).

To better manipulate the 128 bits of the data block, they are
represented by a matrix with 4 rows (r), each with IV, bytes,
designated by the State array (S), were N, is the dimension
of the block in bytes divided by 4. Each column (c) has one
byte of the input designated by S, ., with 0 <r <4 and 0 <
¢ < Ny. For this standard N, = 4, i.e. 0 < ¢ < 4, resulting
in a square matrix, as depicted in figure 1. The output is the
State array after all rounds have been computed. For the AES
algorithm, the length of the Cipher Key, is 128, 192, or 256
bits. The key length is represented by Nk = 4, 6, or 8, which
reflects the number of 32-bit words in the Cipher Key. For the
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Fig. 1: AES matrix organization.

AES algorithm, the number of rounds to be performed during
the execution of the algorithm is dependent on the key size.
The number of rounds is represented by Nr, where N, = 10
when N, = 4, N, = 12 when N, = 6, and N, = 14 when
N = 8. The number of rounds, Key length and Block Size
in the AES standard id summarized in table I.

TABLE I: Key-Block-Round Combinations for AES.

Key Length | Key Length Number of

(Nk words) (bits) Rounds (Nr)
AES-128 4 128 10
AES-192 6 192 12
AES-256 8 256 14

A. Encryption

As mentioned before the coding process consists on the
manipulation of the 128-bit data block through a series of
logical and arithmetic operations, repeated a fixed number of
times. This number of rounds is directly dependent on the size
of the cipher key. In the computation of both the encryption
and decryption, a well defined order exists for the several
operations that have to be performed over the data block. The
encryption process is depicted in figure 2

State = in

AddRoundKey(State, key[0 to Nb—1])
for round= 1, round<Nr, round=round+1 do
SubBytes(State)
ShiftRows(State)
MixColumns(State)
AddRoundKey(State,key[roundxNb to (round+1)xNb—1])
end for

SubBytes(State)

ShiftRows(State)

AddRoundKey(State,key[NrxNb to (Nr+1)xNb—1])
out = State

Fig. 2: Pseudo Code for AES Encryption.

The next subsections describe in detail the operation per-
formed by each of the functions used in figure 2, for the
particular case of the encryption.

SubBytes()Transformation: The replacement of one set of
bits by another is a non linear transformation, and is one
of the most common operations in symmetrical encryption

algorithms. In the Rijndael algorithm, this replacement is
performed over a set of 8 bits (1 byte). Unlike the DES, this
replacement can be described by a affine transformation (over
GF(2)), as presented in equation 1.

b; =bi® b(i+4)mod8 ® b(i+5)mod8 D b(i+6)mod8 (1)
@ b(i+7)mod3 D 0 < 1< 8

where b; in the n-th bit of the byte b(x) obtained from the State
array. This bit permutation and transformation is performed
over each byte individually. The ¢; is the i-th of the value
{01100011}.

ShiftRows(): The bytes in each row is shifted to the left
by n bytes, with n being equal to the row number, for
example 5170517151,251’3 is transformed to 51,151725'1,3;9170.
This operation is illustrated in figure 3.

ShiftRows()

Sr,O Sr,l Sr,z Sr,S S’r‘o S‘r,l S’r,z S’r.3
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Fig. 3: AES ShiftRows.

MixColumns() Transformation: In this transformation each
column is treated as a four-term polynomial over GF(2%) and
multiplied modulo z* 4 1 with a fixed polynomial a(z), given
by:

a(x) = 03z + 01z% + 01z + 02 2)

resulting in the column given by:

S =(0205).) ®(038),)® S ® Sy,
Sie=S0,®(0205),) @ (030 Ss,)® Sy,
Sp.c= S0, ®S1c®(020S5,) @ (03 S;.)
Ss..=(030S0.) ®S1.®Ss.®(02S;,) 3)
Figure 4 illustrates the MixColumns() Transformation.
AddRoundKey(): The final operation to be performed in
each round is the addition (in GF(2%)) of the respective Key
with each column of the State matrix, simply performed by
bitwise XOR. Each round Key consists of 4 32-bit words

from the expanded Key (xK). The operation formalized in
equation 4 is depicted in Figure 5, where ¢ = round x Nj.

[S(,J,c’ S;,m S;,m Sé,c] :[SO-,Cv Sl,c, SQ,C) S3,C] D “4)
[xKroundXNb—i-c} ; 0 S c< Nb



MixColumns()

So0 Soc Bo2 | So3 Soo Soc 502|Soa
S10 Sic P12 | S13 Sv1,1 Sic 5l1,3 Sli,o
S20 || S P22 | Soa S22|| S2c B2o| S22
Ss0 || Ssc Pa2| Sas Sss S 531 |S32
Fig. 4: AES MixColumns Transformation.
Soo || o< b Soo || 5°¢ Boz [Sos
Sio|| Ste iz |Sia Si1|| SteBia|Sio
So0 || Sac p22|Sos S%2|| S2c P2o|S2a
Sso || Ssc Paz | Sss S3s Ssc 531 |Ss2

Fig. 5: AES key addition.

Key expansion: In this ciphering algorithm, the input Key
has Ny 32-bit words, however Ny(N,. + 1) 32-bit words are
needed. Since N < Np(N, + 1) the input Key has to be
expanded. The resulting expanded key consists of a linear
array of 4-byte words, denoted [xK;], with i in the range
0 <i< Np(N,+1).

Each subkey is a 32-bit word, that in the case of the first Ny
subkeys are directly obtained directly from the input key. The
remaining subkey however, require some additional computa-
tion as described the pseudo code depicted in figure 6. This
computation mostly consists in byte substitution as described
for the SubBytes() transformation and a XOR operation with
a constant Rcon[i]. Every Ny subkey calculation also requires
an one byte left rotation.

for i =0,1 < NEk,i=1i+1do
sKey[i] =word(Key[4 x i], Key[4 x i + 1], Key[4 x i +
2], Key[4 x i + 3])

end for

for i = Nk, i< Nbx (Nr+1),i=i+1 do
if © mod Nk= 0 then
temp=SubWord(RotWord(temp)) xzor Rcon|i/NKk]
else if (Nk> 6) and (i mod Nk) =4 then
temp=SubWord(temp)
end if
sKey[i] =sKey[i—Nk] zor temp
end for

Fig. 6: Pseudo Code for AES Key expansion.

The SubWord is exactly the same as the SubBytes() trans-
formation, in which every byte of the word is applied to the

S-Box previously described. The function RotWord() takes a
word [a0,al,a2,a3] as input, performs an one byte left rotation,
and returns the word [al,a2,a3,a0]. The round constant word
array, Rconli], contains the values given by [z'~1 00, 00, 00],
with 2i~1 being powers of x (x is denoted as 02) in the
field GF(28). The subkey W/[i] is calculated through the
manipulation of the previous calculated subkey Wi — 1] using
the previously described functions and finally with the bitwise
XOR operation with the Wi — Ny]| subkey [5].

B. Decryption

In order to recover the data previously encrypted it is re-
quired to perform the inverse of the AES cipher, this process is
identical the the encryption, however the operations performed
in each subroutines different.

The structure of the inverse AES cipher is described in the
pseudo code depicted in figure 7. Note that the expanded key
for the decryption process is different than the one used in the
encryption, although both are obtained (expanded) from the
same original key [5].

State = in

AddRoundKey(State, key[NrxNb to (Nr+1)xNb—1])
for round= Nr — 1, round< 1, round=round—1 do
InvSubBytes(State)
InvShiftRows(State)
InvMixColumns(State)
AddRoundKey(State, key[roundxNb to (round+1)xNb-1])
end for

InvSubBytes(State)
InvShiftRows(State)
AddRoundKey(State, key[0 to Nb—1])
out = State

Fig. 7: Pseudo Code for AES inverse Cipher.

InvShiftRows: The InvShiftRows is the same as the
ShiftRows with the difference that the rotation is performed
to the right instead of the left.

InvSubBytes: The InvSubBytes is the inverse of the byte
substitution performed on the encryption (SubBytes). This is
obtained by applying the inverse of the affine transformation
described in equation 1, followed by taking the multiplica-
tive inverse in GF(2%). The lookup table values required
to perform this transformation (substitution) are presented
in [5]. This table consists on a 8-bit input to an 8-bit output
transformation.

InvMixColumns: The InvMixColumns is the inverse of
the MixColumns transformation previously presented for the
encryption.

Once again the columns of the S state are considered as
polynomials over GF(28) and multiplied modulo * + 1 with
a fixed polynomial a~*(z), which is the inverse of a(z), given
by:

a(x) = 0bx® + 0dz? + 09z + Oe (5)



resulting in the column given by:

Sp.=(0ceSy.)D(0beS.)D(0deSy.)D(09eSs,)
Sy .=(09eS0.) @ (0ceSc)@® (0beS,y.) @ (0deSs.)
Sy..=(0deSy.)® (0985 .)® (0ceSs.)® (0beSs.)
Sy .= (0beSy.)D(0deS;.)d(09eS;,)® (0ceS;,)

Note that this polynomial multiplication is more compu-
tational demanding than the one required by the encryption,
having more multiplication and the constants to be multiplied
have more non zero bits.

Key expansion: The key expansion algorithm for the de-
cryption is identical to the key expansion algorithm for the
encryption, also resulting in a expanded key with Ny (N, + 1)
32-bit words [2]

III. IMPLEMENTATION

This section presents the implementation details of the
several components of the AES core as well as the connection
to the PowerPC (used in this polymorphic processor). This
implementation has in mind the Xilinx virtex II pro FPGAs,
however its VHDL description can be used to implement this
core in any reconfigurable device with an identical structure.
The coarse grain architecture though, requires the existence of
ROMs with a 8 bit input and a 32 bits output (with 1024 bytes
of addressable memory).

A. AES core

The most linear way to implement in hardware the AES
core, consists on designing each of the subroutines presented
in figure-2 in hardware and connect them sequentially. Each
loop of the for cycle is designated by round, the amount of
rounds required depends on the size of the key and can be 10,
12 or 14 for 128-bit, 192-bit or 256-bit key respectively. It can
be observed in the pseudo-code depicted in figure 2 that one
last round is necessary. However this last round is simpler than
the above, since it does not required the mixcolumn operation.

The first operation to be performed in the AES encryption
is the addition of the corresponding expanded keys to the
initial data block matrix. After this initial addition, the rounds
have to computed (sequentially). Each round consists of a byte
substitutions followed by row shifts and column mixing and
finally the resulting intermediate data matrix is added to the
corresponding subset of the expanded key. Finally to obtain
the encrypted data the last round has to be computed, by
performing byte substitutions, row shifts and the key addition.

Byte substitution: As described in section II, the byte
substitution performed in the Rijndael encryption algorithm
is given by a bit wise arithmetic function. The result of each
bit depends on the value of the all byte.

This calculation can be performed either by a lookup table
with an 8 input (an 256 memory block) or in hardware logic.

Even though a simple logical expression exists, the usage of
look up tables may be more advantage when implementing on
a FPGA, due to the existence of LUTs in this type of device.

Row shift: The shifting of rows of the state matrix is
performed by a fixed byte reordering, which has no direct
hardware requirements.

Column mixing: The mix column consists on calculating
the new value for a given byte, based on the value of all the
bytes on that column. Meaning that to calculate the byte in the

(6) matrix position (1,2)(S; 2) all the values of column 2 have to

be used (50’2,5172,52’2,53’2).

This column is considered with a polynomial representation
over GF(28) and is multiplied modulo x4 + 1 with the fixed
polynomial a(z) (a(z) = 0323 + 012 + 01z + 02). The
partial multiplications over the Galois field 2° is performed by
a simple bitwise logical AND operation. The additions is also
performed over the 2 Galois Filed (GF(2%)), which means
that the addition can be performed by a bitwise XOR logical
operation, without the need for carry propagation. However,
the multiplication of two bytes results in one number with
more than 8 bits. In order to obtain a values with 8 bits, the
result is replaced by the remainder polynomial, that in the case
of Rijdael is given by the irreducible polynomial:

m(z) =2+ 2 + 23+ + 1. 7

Thus when ever the result of the multiplication has more
than 8 bits the hexadecimal value 118 has to be subtracted,
which in GF(28) is the same as doing an XOR between
the less significant byte of the result and the hexadecimal
value 1B. To better illustrate this multiplication the following
example depicts the multiplication of the byte D7 by 3 (values
in hexadecimal representation).

1 x D7 = D7 (8)
2x D7 =1AE = 1AE — 1B = B5 )
3xD7=(241)x DT =2xD7+1x D7

= B5+ D7 =62 (10)

The conditional addition of the value 1B can be imple-
mented by 4 XOR gates (which is the number of bits with
the value 1 in 1B). Figure 8 depicts the architecture used to
compute the multiplication. Note that the multiplier used to
compute the multiplication by 3 also produces the value of
the multiplication by 2.

Observing equation 3 it can easily be recognized the locality
of the data. In other words the values of column ¢ depend only
on the values of column ¢, these locality can significantly
improve the performance of the implemented hardware, es-
pecially on reconfigurable devices such as FPGAs were the
routing hardware is limited. Moreover, note that the value on
each column of equation 3 is dependent on only one of the
state (5;,c) values, thus only one multiplier has to be used per
each data byte, since one multiplier automatically calculates
the multiplication by 2 and 3.

The final polynomial addition is performed by a a tree of
XOR gates, since in GF(28) no carry propagation is required.
This addition structure is depicted in figure 9.
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Key addition: The key addition is also performed over the
GF(28), as such it is easily implemented by one XOR gate
per each par of bits to be added (one from the data matrix and
the other from the expanded key).

AES decryption core: In order to retrieve the original data
previously encrypted, the data undergoes a process identical
to that of the encryption (see pseudo code of figure 2). The
main differences in the decryption computation lays on the
byte substitution and on the polynomial equation used in the
column mix.

Unlike the encryption, the byte substitution transformation
has no apparent boolean expression, thus it has to be imple-
mented by a look up table [2].

In the inverse column mix, the process is exactly the same
as in the encryption, the only difference lays in the coefficients
values. While in the encryption these coefficients result in
a small hardware structure, since at most, only 2 bits are
equal to 1 (the multiplications constants are 1,2 and 3), in
the inverse column mix the coefficients (9, b, d, ) usually have
3 bits at 1. The method used to compute the multiplications
values in the GF(28) is the same, for example to calculate the
multiplication by the constant b, the multiplication by 8,2, 1 is
first computed and only then added (b = 8+2+1) to obtain the
value b. The multiplication architecture for the inverse column
mix multiplier is presented in figure 10.

Implementing the AES cipher in memory banks: The hard-
ware implementation previously presented describes a fine
grain implementation of the AES cipher. However the recent

-1B
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Fig. 10: GF'(2®) multiplication architecture for decryption

programable devices, such as the Xilinx Virtex II Pro FPGAs,
possesses versatile and fast memory banks in sufficient number
that allow for more coarse grain architectures.

While in a fine gain architecture the computation for the
byte substitution and column mix multiplication have to be
implemented in different and specific hardware structures,
as depicted in figure 11, in a memory bank based coarse
grain architecture these two units, along with an hardwired
row shift, can be merged together and easily mapped into,
an 8 bit input and 32 bit out output, memory bank. The

S

0!
SBox
s

Mult

JUil

1S’ 1S’ 28’ 38’

Fig. 11: Fine grain column computation

memory bank receives one byte from the state matrix and
outputs that value multiplied by the 4 coefficients after the byte
transformation, {1, 1,2,3} for the encryption and {9, ¢,d, e}
for the decryption. Since, in order to calculate each column
four of these outputs are required (see equations 3 and 6)
four memory banks would be needed. However, the memory



banks available in these FPGAs have a dual input and dual
output ports, and since all the memory banks perform the
same computation one FPGA memory bank can be used to
implement 2 AES coarse grain memory banks, as depicted in
figure 12 for the decryption case.

Port Bin Port Ain
4 4
S s
U A
SBsox SBeox
s s
Mult Mult
guid | guid
8 d 8
1S’ 1S’ 25 38’ 1S’ 1S’ 25’ 3%’

32 32
AV 4

Port Bout Port Aout

Fig. 12: Coarse grain column computation

This coarse grain implementation has the potential to in-
crease the architecture performance as well as to reduce
the device occupation, since it uses more of the available
hardware.

The full core processor: The architecture described so
far has been for only one round, however in the full AES
cipher the data has to be processed several times, i.e. several
computation rounds. This can be done either by having each
round implemented in its own hardware structure (fully un-
rolled), which implies a significant amount of hardware, or
the hardware used to implement one round can be reused
to compute the rest of the rounds (folded) as depicted in
figure 13. Partially rolled implementations can also be used.

The computational flow of the full AES cipher, depicted in
figures 2 and 7 (described in the previous section), also include
an initial key addition and a simplified final round that does not
perform the column mix (no multiplication). Both the prologue
and the epilogue have their own hardware structures, resulting
in the architecture depicted in figure 14. The expanded keys
used in the main rounds (sets of 128 bits) are given according
to the round being executed at that given cycle.

B. Data transfer

While in a fully software processor the data is passed
through the stack when a software function is called, in the
Molen processor when a hardware function is called, the data
is passed through a special register designated by exchange

Address
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Key; Mux
128 u
1281
Round
Key L
128
Last Round

Address
—

Enable

Fig. 13: AES Core

register (XReg). The input data for the AES cipher processing
core is not only the location of the data to encrypted, other
values also have to be uploaded. The processing core needs
to know how many rounds have to be computed (depending
if the key has 128, 192 or 256 bits), it also has to know
the end address for the data to be ciphered, since more than
one data block may need to processed. Finally the begin and
end address of the expanded key also has to be passed. With
the number of rounds the end address of the key could be
computed, however, when the same key is being used for more
than one time it does not have to be uploaded again to the AES
core. In these situations the end address can be the same as the
begin address, and thus no new key will be loaded. Note that
the internal registers of the AES core work as static variables,
meaning that there previous state is maintained unless a new
value is loaded.

As in a software function the, bulk of the data is obtained
directly form the data memory region. The AES core starts
by reading the key into the key register, this process requires
some cycles, since the memory is accessed in blocks of 64
bits and the expanded key has at least 1408 (up to 1920 bits
for a 256-bit key).

Although much smaller than the expanded key, the data
block (128 bits) is still bigger than the length of the main data
bus (64 bits), thus the data block as to be read and written
in multiple cycles. This implies that additional hardware must
exist to store and reassemble the each of the 64 bits of the
data block. This is done by a small bank register with a single
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Fig. 14: AES cipher architecture

addressable 64-bit input and one 128-bit output, for the data
block reception, and identically for the processed data block,
as depicted in figure 14.

After this initial setup stage the AES core enters the burst
mode, were it reads one data block (128 bits) after the other,
in between every data block reading a processed data block is
written back to the memory. Since the memory only has one
data port, a data block reading can occur at the same time as
a data block write.

C. Key register

The key associated to the cipher can not be used directly,
this (128, 192 or 256-bit) key as to be expanded. For efficiency
reasons, and taking into account that usually this expansion is
only performed sporadically, it is computed in a fully software
function and stored in the data memory. When the data blocks
are being ciphered this expanded key has to be available, and
due to its dimension (10 times bigger than the data block), it
has to be stored locally in the AES core, otherwise a crippling
memory access overhead would occur.

On a fully unfolded version of this AES core, the all
expanded key has to be available at all times, this can be
implemented by a register bank with an input length equal to
the size of the main memory data bus and a output port with
the size of the expanded key (that in the case of a 256-bit key
corresponds to 1920 bits).

On the fully rolled AES core only 128 bits of the expanded
key have to be available, thus a register bank can be imple-
mented with an input port the size of the main memory data
bus and a output port with 128 bits. In this case, the register
has to be indexed according to the round being executed at the
time. This type of addressable register bank can be directly
mapped to a small memory bank. In the case of the used
FPGA, 4 internal memory banks have to be used, not due to

the lack of space in an single memory bank, but due to the
fact that these internal memory banks have output port with
at most 32 bits.

Even in the fully rolled AES core, depicted in figure 13, the
first and last 128 bits of the expanded key are outside the main
loop, and in some cycles are accessed simultaneously with the
ones in the main loop. Due to this simultaneous access, these
values have to be stored in separate registers. The key storing
unit is depicted in figure 15
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Fig. 15: Expanded key register

D. Control unit

The architecture here described requires a significant
amount of control signals, which are generated in the control
unit. This control unit is composed not by one, but by two
state machines. A main state machine and a secondary one
designated by write state machine responsible for the writing
of the processed data block and for signalling the PowerPC of
the conclusion of the process (function).

After filling the XREG with the input parameters for this
hardware function (the equivalent of filling the stack memory
in a software routine) the PowerPC signals the AES core
(namely the control unit) to start via the start signal.

Main state machine: This signal is directed to the main
state machine, that starts by reading the begin and end ad-
dresses were the expanded key is located, from the predefined
addresses in the XREG. These values are stored in dedicated
registers. The begin address is sequentially incremented and
its value used to address the main memory. The output of the
memory (the expanded key value) is stored in the expanded
key register. The state machine also has a dedicated counter
used to address the expanded key register. The increments of
the memory depend on the length of the memory data bus, in
this case the address is incremented by 8 (64 bits= 8 x 8 bits).
When the incremented address becomes equal to the given end
address the state machine switches to the next state.



In the following 2 states the begin and end data addresses
are copied from the XREG to the two previously mentioned
registers, as well as to two additional address registers that
will be used by the write state machine to address the main
memory to write the processed data blocks.

At this moment the main state machine synchronizes it self
with the write state machine, by sending a signal for this state
machine to start (through a single bit value).

From this moment on, the main state machine enters a
loop in which it reads one data block from the memory and
waits until a new data block can be read. During this wait
state, addresses are generated for the expanded key register,
depending on the current round.

When the incremented address becomes equal to the data
end address it exits the loop and returns to the initial state
were it waits for a start signal from the PowerPC. The stop
signal that indicates the conclusion of the encryption process
is generated by the write state machine.

Write state machine: The write state machine is responsible
for controlling the writing of the processed data block back to
the main memory, in order for the writing to be synchronized
with the data block read from the main memory, two wait
states have to be implemented.

When the synchronization signal is received from the main
state machine, a non repeatable waiting loop is performed.
This waiting period depends on the time required for the
pipeline to be filled, which varies according to the depth of the
pipeline. Only when the pipeline is full can the main writing
loop begin.

After the initial synchronization, this state machine enters
the main loop. On it, a inner waiting loop is executed in order
for the data to be processed or for a new data block to be
read by the main state machine. When ready it jumps to the
writing state, were the processed data is written to the main
data memory and the writing address incremented.

The main loop is stopped when the the incremented address
equal the end address. When that occurs the stop signal is sent
to the PowerPC signaling the end of the (hardware) function
and the state machine returns to the initial state, waiting for
the synchronization signal of the main state machine.

Control unit characteristics: The implementation of the
control units as a dual state machine allows a better synchro-
nization between the writing and reading of data blocks. It
also facilitates its modification for different pipeline depths,
different unrolling architectures, different lengths of the main
memory as well as different memory architectures (i.e. if it
has a common read/write address port a extra cycle has to
exist between each read/write sequence).

Since the memory write state machines is synchronized with
the main state machine through a single bit line, it allows
the two state machines to be in different locations, and thus
closer to the hardware they have to control, allowing for an
optimization on the routing, which can be critical in a FPGA
hardware implementation.

This control unit has been designed in a parameterizable
fashion, as such it is possible to alter its main parameters by

changing the constant values defined in a VHDL file. This
way, major changes can be made by different designers, with
a complete abstraction of the control machine architecture.

IV. EXPERIMENTAL RESULTS

In order to test the resulting architecture, the AES core
prototype (for a 128-bit key) has been implemented in a
Xilinx Virtex II Pro (xc2vp20) on an Alpha Data: ADM-XPL
development board using the ISE (6.3) and SDK (6.3) tools
from Xilinx . This core has been developed to be integrated
in the MOLEN polymorphic processor [1], which uses the
PowerPC embedded in the FPGA and capable of running at
maximum a frequency of 250 MHz.

Table II shows the synthesis results of the AES core for the
fine grain (fg) and for the memory based (mb) architecture,
for both encryption and decryption. These results have been
obtain for the fully rolled version of the AES cipher core.

TABLE II: AES core implementation results

[ architecture | Slices [ BRAMs [ Time(ns) |
fg - encryption 3224 (35%) 4 (4%) 8.45
fg - decryption 3498 (38%) 4 (4%) 8.86
mb - encryption 1879 (20%) | 12 (13%) 7.51
mb - decryption 1933 (20%) 12 (13%) 7.51

These results show that a compact architecture can be
derived for this new cipher algorithm and at the some time
with a working frequency that would allow a throughput of
approximately 1.7 Gbits/s at a operating frequency of 133
MHz, however the system as a bottleneck in the main memory
operating frequency that can only run at 80 MHz. At this
frequency and taking into account that each block is computed
in the main round for 10 cycles, the system has an estimated
throughput of 1.02 Gbits/s (= 80M Hz/10 x 128 bits), with
both the architecture types (fine grain and memory based).
These values disregard the setup time required for the AES
core initialization.

From table II it is clear that the memory based implemen-
tation results in a better usage of the FPGA resources, since
the number of used BRAMs (13%) and slices (20%) is more
homogeneous than the fine grain implementation, where only
4% of the BRAMs are used, requiring more that one third of
the available slices.

In order to increase the throughput, the main loop of AES
core can be unrolled, which obviously represents an increase
on the required hardware. Table III presents the additional
FPGA resources necessary to include one additional round.

TABLE Ill: AES core additional round requirements

[ architecture | Slices | BRAMs |
fg - encryption 1337 (14%) 4 (4%)
fg - decryption 1642 (17%) 4 (4%)
mb - encryption 221 2%) 12 (13%)
mb - decryption 194 2%) 12 (13%)

From values in table III it can be concluded that some loop
unrolling can be performed with small additional increase in



the cost. However since the memory throughput is at most 6.4
Ghz (100M Hz x 64bit) and due to the fact that every read
block has to be written back, the system maximum ciphering
rate is of 3.2 GHz. Thus, by unfolding the AES core main loop
once the maximum processing rate is obtained. With the main
loop unfolded once the AES core processing rate is doubled,
having a expected ciphering rate of about 2.5 Ghz.

In order to compare the speedup archived by this core, the
algorithm has been executed in a fully software implementa-
tion on the PowerPC at his maximum frequency of 300 Mhz
and in the hybrid implementation using the MOLEN processor
also using the PowerPC. In order to accurately measure the
performance, the throughput was obtained by counting the
PowerPC clock cycles (at 300MHz), that is one third of the
FPGA clock cycle (at 100MHz). Experimental results depicted
in table IV show a clear improvement when the AES core is
used.

TABLE IV: AES performances

Hardware Software
Bytes || Cycles | Throughput Cycles [ Throughput
16 560 76 MHz 24216 1.76 MHz
512 1800 759 MHz 738952 1.85 MHz
16k 41480 1057 MHz 23610504 1.85 MHz

While the obtained speedup is just of 43 times (table V)
when only one 128-bit data block is encrypted, due to the
overhead to transfer the expanded key (1408 bits), a speedup
of 569 is accomplished for a file with 16kBytes. Note that
the overhead of the expanded key transference is already
no very significant, specially considering that most private
key encryption applications usually have to encrypt files with
significantly large dimensions. For specific applications that

TABLE V: AES core Speedup

Speedup
16 43
512 410
16k 569

have real time demands and require to send small amounts of
data as soon as they are available (for example a text console),
an higher throughput can be reach, since the expanded key
only has to be uploaded to the AES core once. In this case a
throughput of 98 Mbits/s can be archived, instead of 76 Mbit/s
for a single 128-bit data block.

All these values were obtained for a FPGA with clock
frequency of 100 MHz, due to the memory bottleneck. With
a faster main memory, even higher speedups can be reached
since the AES core is capable of a 133 MHz working fre-
quency.

V. CONCLUSION

The hybrid hardware-software implementation of the AES
encryption algorithm on the MOLEN polymorphic processor
presented in this communication shows to be clearly advan-
tageous. In practical application, where large blocks have to

be encrypted and decrypted, this implementation is capable
of speedups of 450 times with a significant small amount
of reconfigurable hardware (less than 2000 slices), 20% on
a xc2vp20 Virtex II pro FPGA. The type of integration of this
AES core on the MOLEN processor allows for a expedite
integration in any type of software application making it
possible to be used on the new 1 Gbit ethernet applications,
with the 1 Gbits/s processing rate obtained from a speedup
of 569. The control unit structure and design allow for an
easy adaptation of the AES core to different specifications,
such as different memory architectures or even when loop
unrolling is applied to the hardware structure to achieve a
higher throughput.

Future work in this core will include merging the encryption
and decryption core in one single unit, that in the coarse grain
architecture may result in practically null area increase, since
only half of the addressable memory in the BRAMs is being
used. Another optimization may lay on the calculation of the
last round with the same hardware has the main rounds, which
in the fully rolled version will result in a significant hardware
reduction.
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