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Abstract— In contemporary and future embedded as

well as high-performance microprocessors, power con-

sumption is one of the most important design consid-

erations. Because in current technologies the dynamic

power consumption dominates the static power consump-

tion, voltage scaling is an effective technique to reduce the

power consumption. The most common way to reduce the

power consumption of multi-processor systems, is to sched-

ule a program to run on as many processors as possible

and apply voltage scaling afterwards. As technology scales

to increasingly smaller feature sizes, however, the static

power consumption is expected to grow exponentially. In

this paper, we first show for which combinations of leak-

age current, supply voltage, and clock frequency the static

power consumption dominates the dynamic power dissipa-

tion. Based on these results, it is at a certain point no

longer advantageous to use as many processors as possi-

ble. We then present a heuristic to schedule task graphs

on a number of processors that is sufficient to meet the

deadline, but at the same time minimizes the power con-

sumption. Experimental results have been obtained using

our in-house power analysis tool with task graphs from real

applications as well as randomly generated ones. The re-

sults show that our scheduling algorithm reduces the total

energy consumption by up to 65%, compared to the strat-

egy that schedules the tasks on the maximum number of

processors and then exploits the remaining slack to lower

the supply voltage.

Keywords: multiprocessor systems, scheduling, leak-
age power, voltage scaling

I. Introduction

Currently, power consumption is one of the most
important issues in the design of microprocessors. Not
only does this apply to high-performance embedded
processors in battery powered devices, also in desk-
top machines and high-performance dedicated sys-
tems power consumption is a fundamental problem
that limits clock frequencies and scaling of distributed
systems. Through the advent of (single chip) multi-
processors for the embedded market, power consump-
tion is becoming increasingly important for multipro-

cessor systems as well. Power consumption can gen-
erally be classified in dynamic and static power con-
sumption. The first relates to the power that is dissi-
pated due to switching activity, while the second one
is due to leakage currents.

Because in current technologies the dynamic power
consumption dominates the static power consump-
tion, and because the dynamic power dissipation
grows quadratically with the supply voltage, voltage
scaling is an effective technique to reduce the power
consumption. Consequently, when scheduling tasks
on a multiprocessor system, it is advantageous to em-
ploy as many processors as possible so that the re-
maining slack can be exploited to lower the supply
voltage. While in the past static power consump-
tion could be ignored, it should not be neglected in
the near future. With decreasing feature sizes, leak-
age current is expected to increase exponentially [7]
in the next decade. Because of this, it will not always
be advantageous to use as many processors as possi-
ble. In this work, we present a scheduling algorithm
that is targeted at a near future technology, where
leakage current is responsible for at least 50% of the
total amount of dissipated power. The algorithm we
present schedules task graphs on a number of proces-
sors that is sufficient to meet the deadline, while the
total power consumption is minimized.

This paper is organized as follows: Section II con-
tains a brief overview of related work. In Section III,
we will describe the conditions under which voltage
scaling can be applied to reduce energy consumption.
Section IV describes our scheduling and voltage se-
lection algorithm. Experimental results are given in
Section V. Section VI finishes with the conclusions
and directions for future research.

II. Related Work

Reducing power consumption has been an impor-
tant research topic in the past years, both in em-
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bedded systems and in high-performance related re-
search. One of the most promising techniques that
have been proposed in this area is dynamic voltage
scaling (DVS), where both the clock frequency and
the supply voltage are scaled down.

The combination of dynamic voltage scaling and
multi-processor scheduling has been investigated by
a significant number of researchers in the past years.
Several authors (e.g. [4], [13]) used existing scheduling
techniques, such as list scheduling with earliest dead-
line first, to finish the tasks as early as possible and
used the remaining slack to lower the supply voltage.
We will refer to this strategy as Schedule and Stretch

(S&S). In other work [12], the scheduling is done in a
way to optimize the possibilities for selecting different
voltages. Varatkar et al. [10] included communication
in their power estimations and tried to execute part of
the code on a lower supply voltage while minimizing
communication.

Jejurikar et al. [5] included leakage current in their
energy estimations and proposed to maximize slack
time to allow processors to shut down temporarily.
This was combined with DVS and used for real-time
scheduling.

Some researchers have proposed to also adjust the
threshold voltage when scaling the supply voltage [3],
[9]. Others have extended this to scheduling for real-
time multi-processor systems [1], [11].

Other means of reducing a processors power con-
sumption are mostly targeted at caches, since these
structures require a significant portion of the area on
a chip, and are responsible for a large part of the total
amount of dissipated power. Therefore, an effective
way to reduce the amount power dissipated in these
parts is to shut down parts of the cache [2], [7].

Our work differs in the following ways. First of
all, we use experimental models that are projected
in the near future, where leakage current is of much
more importance than it is in current technologies.
Second, we employ frequency and voltage scaling con-
currently to all processors. In other words, only one
voltage/frequency pair is chosen for all processors for
the duration of the whole schedule. Third, we do
a full search to find the optimal number of proces-
sors. Fourth, most research mentioned above target
scheduling of real-time recurring tasks, while we tar-
get scheduling of a task graph.

III. CPU Energy Consumption

In this section, we will first derive how static and
dynamic power dissipation relate to leakage-current,

supply voltage, and clock frequency. From this, we
then derive the extend to which voltage scaling is ef-
fective for a certain processor. In the second part, we
will show how these results can be used for scheduling
on multi-processor systems.

A. Voltage Scaling Requirements

An approximation for the power consumption in a
CMOS gate is:

P = CLV 2f + IqV , (1)

where CL is the load capacitance, V is the supply
voltage, Iq is the leakage current, and f is the op-
erating frequency. The first term in this equation
corresponds to the amount of dynamically dissipated
power, caused by switching circuitry. The second part
models the amount of statically dissipated power, gen-
erated by leakage current.

First, we will look at what the requirements are for
voltage scaling to be beneficial for the total energy
consumption. For this purpose, we will first derive an
expression for the normalized amount of power dissi-
pation.

First, we split Equation (1) into a part for dynamic
dissipation (D) and one for static dissipation (S):

P = D + S (2)

D = CLV 2f (3)

S = IqV . (4)

To normalize these expressions, we define that at max-
imum frequency fmax and corresponding supply volt-
age Vmax, a processor will dissipate an amount of
power Pmax = Dmax + Smax. With P, D, and S
denoting the normalized total, dynamic, and static
power dissipation, we then write:

P =
P

Pmax

= D + S =
D

Pmax

+
S

Pmax

. (5)

We then define δ and σ as:

δ =
Dmax

Dmax + Smax

, σ =
Smax

Dmax + Smax

. (6)

In other words, δ and σ denote how much of the total
power dissipation at maximum frequency is caused by
switching activity and how much by leakage current.

Let V = V/Vmax be the normalized voltage and F =
f/fmax the normalized frequency. The expressions for
normalized dynamic and static dissipation can then be
rewritten as:

D = δ
D

Dmax

= δ
CLV 2f

CLV 2
maxfmax

= δV2F , (7)
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Fig. 1. Normalized Energy Consumption

and

S = σ
S

Smax

= σ
IqV

IqVmax

= σV . (8)

Combining Equation (5) with Equations (7) and (8)
then results in:

P = δV2F + σV . (9)

Using a normalized expression for time T = 1/F ,
the expression for the normalized energy consumption
E then becomes:

E(F ,V) = P(F ,V)T = δV2 + σV/F . (10)

From (10), it is clear that voltage scaling is only
beneficial if for a certain F < 1 there exists a V < 1,
so that:

E(F ,V) < 1 . (11)

The supply voltage of a processor must be high
enough to guarantee that the logic levels are always
safely reached before the end of a clock cycle. This
implies that the required supply voltage actually de-
pends on the operating frequency. From [8], we take
the following expression approximating the relation
between normalized frequency and voltage:

V = β1 + β2F , (12)

where β1 = Vth/Vmax and β2 = 1−β1, with Vth being
the threshold voltage and Vmax the voltage at maxi-
mum frequency. Again, F represents the normalized
frequency.

Combining this with Equation (10) leads to:

E(F) =δ(β2
2F

2 + 2β1β2F + β2
1)+

σ(β1/F + β2) . (13)
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In Figure 1, the normalized energy consumption is
plotted against the frequency for a number of different
configurations. The first three curves depict systems
where, at maximum frequency, the leakage current is
responsible for 50% of the total energy consumption.
The fourth curve depicts a system where the amount
of energy consumed by leakage currents is 80% of the
total. In this case, it is hardly possible to effectively
employ voltage scaling, unless the threshold voltage is
decreased. From Figure 1, one can see that a higher
threshold voltage diminishes the possibility to effec-
tively employ voltage scaling.

In order to show the limits of voltage scaling, we
have included Figure 2. In this figure, we have plot-
ted σ versus F , so that E in Equation (13) equals 1.
We have included curves for three different relative
threshold voltages (β1 = Vth/Vmax). Furthermore, we
have swapped the axes to show the minimum frequen-
cies to where voltage scaling can be effective for a cer-
tain a priori chosen percentage static dissipation (σ).
Areas to the right (more leakage current) or below
(lower frequency) the lines in this graph depict sit-
uations where voltage scaling actually increases the
energy consumption.

It might not always be possible to scale down
enough, based on the threshold voltage and the
amount of leakage current. Under those circum-
stances, the most energy efficient strategy would be
to finish the task at a higher frequency, and turn
to a low-power (sleep) mode for the remaining time.
Such power saving modes, in fact, can incur significant
penalties when the involved logic has to be turned on
again. This actually limits the possibility of effectively
using sleep modes.
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B. Parallelization and Voltage Scaling

In the previous section, we have determined the cir-
cumstances under which it is useful to employ volt-
age scaling in a single processor. In this section, we
will assume that a task graph has a tight deadline, so
that several processors must be used in order to meet
this deadline. For a multiprocessor system, the re-
quirements for lowering energy consumption by volt-
age scaling are equivalent as to the case with only
one processor. For technologies with very low leakage
current, where voltage scaling always decreases the
energy consumption, the lowest-energy solution is to
run the tasks on as many processors as possible, with
the lowest possible frequency. On the other hand,
when energy consumption cannot effectively be de-
creased by voltage scaling, the lowest-energy solution
is to run the tasks on as few processors as possible.
In this work, we assume a technology with relatively
high leakage current where the possibility to reduce
energy consumption by voltage scaling is limited.

When running programs in parallel, it is by defini-
tion impossible to achieve a super-linear speedup. In
fact, linear speedup is only theoretically possible and
will never be achieved for real programs. For example,
when increasing the number of processors by a factor
of two, the number of required cycles will decrease by
a factor less than two. Because of this, it is only ben-
eficial to increase the number of processors if there is
enough parallelism exploitable.

The amount of available slack is often not sufficient
to make it profitable to put a processor into sleep
mode. Especially for multiprocessor systems, the to-
tal amount of slack is often fragmented across differ-
ent processors and over time. Under these circum-
stances, it is beneficial to use voltage scaling to exploit
the available slack, even though the power dissipation
through leakage current can be very high. Although
in some cases it might turn out that sleep modes could
be more beneficial than frequency scaling, we will not
consider this, since it is outside of the scope of this
work.

IV. Scheduling for Low Power

As described in the previous section, it is not always
beneficial to the total amount of power consumption
to employ as much parallelism as possible.

In our approach, we take the following assumptions:
We assume that all used processors are in active mode
all the time. In other words, it is impossible to turn
used processors into sleep mode. Second, we assume

that all processors in one system run at the same fre-
quency. Furthermore, we have not included any com-
munication delays between the nodes.

For the case where voltage scaling would increase
energy consumption, finding the optimum number of
processors is just the same as finding the minimum
number of processors that can finish the tasks before
the given deadline. For processors with a less dis-
astrous leakage current, this number depends on the
amount of parallelism that can be exploited. As ex-
plained before, in this work we will use a processor for
which it is still possible to successfully employ volt-
age scaling, however to a very limited extend. This
depends for a large part on the possibility to exploit
available parallelism.

The basis of our approach is a list-scheduling algo-
rithm that employs an Earliest-Deadline-First (EDF)
priority function. After scheduling, the remaining cy-
cles before the deadline (slack) is used to lower the
clock frequency and supply voltage. This implies that
any resulting schedule will always finish exactly at the
deadline. The normalized clock frequency for a sched-
ule can then be found by dividing the number of cy-
cles by the deadline. Since the different schedules pro-
duced by this algorithm all finish at the same time, we
can compare different solutions by power consumption
instead of energy consumption.

To determine the optimum number of proces-
sors, we first define the theoretical minimum (Nmin)
and the theoretical maximum number of processors
(Nmax) as:

Nmin = d Σwork

deadline
e , (14)

Nmax = number of tasks−1 , (15)

where Σwork is the sum of the weights of all nodes.
Then, we determine the minimum number of proces-
sors that is required to finish the tasks before the
deadline, using a binary search on an interval from
the theoretical minimum to the theoretical maximum.
Starting with this minimum, we then generate sched-
ules for increasing numbers of processors. This loop is
exited whenever increasing the number of processors
no longer decreases the required number of cycles. At
this point, the graph is scheduled at exactly the length
of the critical path. For each generated schedule, the
total power consumption is recorded. The algorithm
finishes by selecting the configuration that requires
the least amount of power.

The reason for doing a full search on the number of
processors comes forth from the fact that minima in
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name nodes edges CP Σwork

sparse 96 128 122 1920

robot 88 130 545 2459

fpppp 334 1196 1062 7113

proto001 273 1688 167 4711

proto003 164 646 556 1599

proto279 1342 16762 735 13302

TABLE I

Benchmarks

these results are not necessarily global minima. This
will be shown in more detail in Section V.

In order to determine the power consumption of a
multiprocessor system, we first derive an expression
similar to Equation (9) for a multiprocessor system
consisting of N processors:

Pmulti = N(δV2F + σV) . (16)

Combining this with Equation (12) then results in:

Pmulti = N(δβ2
2F

3 + 2δβ1β2F
2 + δβ2

1F+

σβ2F + σβ1) . (17)

V. Experimental Results

In this section, we present the results of our schedul-
ing approach.

In these experiments, we will assume a technology
where leakage current contributes to the overall power
consumption to a much larger extend than it does
today. In fact, we state that half of the power con-
sumption at maximum frequency is due to this leakage
current (δ = 0.5, σ = 0.5). Furthermore, we assume
that β1 and β2 in Equation (12) are 0.3 and 0.7 re-
spectively. Filling in these values in (17), gives the
equation for the total amount of power:

Pmulti = N(0.245F3 + 0.21F2+

0.395F + 0.15) . (18)

Note that, although we have assumed a relatively
high leakage current in this processor, according to
Equation (13) and Figure 2, it is still theoretically
possible to reduce energy consumption by scaling the
frequency down by even more than a factor of 2.

Table I lists the benchmarks that were used, along
with the number of nodes and edges, as well as the
length of the critical path (CP), and the total weight
of all the nodes (Σwork). The first three benchmarks
have been derived from real applications, while the

Fig. 3. Normalized energy consumption for different
benchmarks with the deadline at 1.5 times the critical path
length.

other three have been randomly generated. All of
these benchmarks were taken from the Standard Task

Graph Set [6]. Since there is no real deadline for any
of these experiments, we have used deadlines of 1.5,
2, 4, and 8 times the length of the critical path (CP).

Figure 3 depicts the relative power consumption for
different task graphs, scheduled at all possible num-
bers of processors for a deadline that is 1.5 times the
weight of its critical path. From this figure, we can
see that there are local minima that are not globally
optimal, for example with the sparse benchmark on
15 processors. Therefore, a full search must be per-
formed on the number processors, in order to find the
optimum for a certain graph and deadline.

In Tables II to V, the results of our experiments
are depicted. We have used two different algorithms in
our experiments. The first one is our algorithm, as de-
scribed in Section IV. We will refer to this algorithm
as Minimum Power Scheduling (MPS). The second al-
gorithm we use is often used in DVS-related research,
for example in [4]. In this algorithm, a task graph
is first scheduled using list scheduling, using earliest-

deadline-first as the priority assignment. The remain-
ing slack is then used to stretch the whole schedule.
We will refer to this algorithm as Schedule-and-Strech

(S&S). The main difference between the two algo-
rithms is that with Schedule-and-Stretch, the graph
is scheduled on the maximum number of processors
that is useful to decrease the length of the schedule. In
our algorithm, on the other hand, we use the number
of processors that minimizes the power consumption.
For each benchmark, we have listed the number of pro-
cessors (N), the normalized frequency (F), and the
total normalized power consumption (Pmulti). Note
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MPS S&S

benchmark N F P N F P

fpppp 7 0.76 4.76 9 0.67 5.21

robot 4 0.82 3.00 7 0.67 4.06

sparse 17 0.72 10.81 19 0.67 11.01

proto001 27 0.79 19.34 36 0.67 20.90

proto003 3 0.74 1.99 5 0.67 2.90

proto279 17 0.78 11.96 25 0.67 14.49

TABLE II

Results for deadline at 1.5 times the length of

the critical path

MPS S&S

benchmark N F P N F P

fpppp 5 0.75 3.33 9 0.50 3.88

robot 3 0.77 2.07 7 0.50 3.01

sparse 14 0.65 7.84 19 0.50 8.18

proto001 21 0.72 13.36 36 0.50 15.50

proto003 2 0.75 1.35 5 0.50 2.15

proto279 14 0.69 8.38 25 0.50 10.77

TABLE III

Results for deadline at 2 times the length of

the critical path

that, in case of the Schedule-and-Stretch, the clock
frequency can be derived directly from the length of
the critical path (CP) and the chosen deadline:

fs&s = CPW/deadline . (19)

In Figure 4, the improvements made by our method
are depicted. From this figure it can be seen that a
significant amount of power can be saved. For tight
deadlines, the savings range from 2% to 31%. For
less strict deadlines, the savings increase to more than
65%. Because the processors cannot always be used
to their full extend, the low-power solution in most
experiments is to use typically less than maximum
number of processors. Both the optimal number of
processors and the resulting power consumption are
largely depending on the chosen deadline.

VI. Conclusions & Future Work

As feature sizes keep decreasing, the contribution
of leakage current to the total energy consumption is
expected to increases significantly. In this work, we
have shown that soon the point will be reached where
maximizing the amount of parallelism is not always
beneficial from an energy saving perspective.

MPS S&S

benchmark N F P N F P

fpppp 3 0.58 1.48 9 0.25 2.39

robot 2 0.57 0.98 7 0.25 1.86

sparse 6 0.67 3.51 19 0.25 5.05

proto001 12 0.60 6.24 36 0.25 9.57

proto003 1 0.72 0.63 5 0.25 1.33

proto279 8 0.58 4.01 25 0.25 6.64

TABLE IV

Results for deadline at 4 times the length of

the critical path

MPS S&S

benchmark N F P N F P

fpppp 2 0.42 0.75 9 0.12 1.83

robot 1 0.56 0.48 7 0.12 1.42

sparse 3 0.66 1.71 19 0.12 3.86

proto001 6 0.59 3.04 36 0.12 7.31

proto003 1 0.36 0.33 5 0.12 1.02

proto279 4 0.57 1.97 25 0.12 5.08

TABLE V

Results for deadline at 8 times the length of

the critical path

Fig. 4. Improvements of our proposed method compared
to S&S.
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Depending on the amount of leakage current and an
applications parallelism, a combination of parallelism
and clock-speed can be determined that minimizes en-
ergy consumption. In our experiments, we have shown
that our solution can save over 30% of the amount of
dissipated power for tight deadlines and over 65% for
loose deadlines.

In the end, the relative amount of energy dissipated
by leakage currents is expected to become much larger
than the amount of energy dissipated through switch-
ing activity. At that point, the lowest power solution
will be to perform as much as possible sequentially
on one processor and to only use parallelism if the
required performance demands to do so.

We have assumed that all processors in one system
operate at the same frequency. By having some pro-
cessors slow down more than others, it would be possi-
ble to make a more balanced schedule and in that way
save more power. This is a goal for future research.
Also the possibility to let processors to go into sleep
mode is an interesting option.

Furthermore, it would be interesting to see how de-
lays and additional power consumption, needed for
communication between the processors, would influ-
ence these results.
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