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Abstract— This paper investigates the implementation of Periodic
Symmetric Functions (PSF) in single electron tunneling technology.
First, we discuss the procedure of expressing arithmetic and logic op-
erations as generalized PSFs. Second, we propose a building block that
performs a multiple input PSF. The block we propose can be used for the
computation of any function that is or can be expressed as a PSF, thus
it can be utilized for the implementation of a large number of arithmetic
operations, e.g., parity, addition, multi-operand addition, as they belong
to the class of generalized PSFs. To demonstrate the capabilities of the
PSF scheme we present the design and simulation results of a PSF based
3-bit adder and a PSF based block save adder. Finally, we explain how
these PSF based schemes can be used in a Single Electron Encoded Logic
(SEEL) environment.
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I. INTRODUCTION

It is generally expected that current semiconductor tech-
nologies, i.e., CMOS, cannot be pushed beyond a certain
limit because of problems arising in the area of power con-
sumption and scalability. A promising alternative is Sin-
gle Electron Tunneling (SET) technology [1], which has
the potential of performing computation with lower power
consumption than CMOS and is scalable to the nanometer
region and beyond [2].

Several proposals have been made to implement com-
putational operations using SET technology and these im-
plementations are mainly categorized in two types (see for
example [1], [3]). The first type of implementation repre-
sents logic values by voltage (see [3] for an overview) while
the second type of implementation represents bits by single
electrons. Single Electron Encoded Logic (SEEL) [4] is an
example of the latter.

Thus far most implementations focussed on design-
ing logic gates to perform operations in the digital do-
main. SET technology however, possesses properties, e.g.
Coulomb oscillations, that open new avenues for the im-
plementation of logic and arithmetic functions. In this line
of reasoning we assume in this paper a basic SET struc-
ture, the electron trap, that exhibits a periodic behavior
and use it as a basis for the implementation of Periodic
Symmetric Functions (PSFs). As a large number of arith-
metic operations, including addition and parity check, can
be expressed as PSFs, the electron trap provides a natural
base for nonstandard SET based implementations of logic
and arithmetic functional units. In this line of reasoning
we investigate in this paper PSF based implementations of
addition related arithmetic functions.

The remainder of this paper is organized as follows. Sec-
tion IT briefly describes the SET phenomenon. In Sec-
tion III some preliminaries on periodic symmetric functions

are presented and it is explained how arithmetic and logic
operations can be expresed as PSFs. In Section IV a build-
ing block is proposed that performs a multiple input gen-
eralized periodic symmetric function. Using this building
block in Section V a PSF based 3-bit adder is proposed and
in Section VI a PSF based block save adder is proposed.
In Section VII it is described how this scheme can be ad-
justed to operate in a SEEL environment by augmenting it
with static inverting buffers. In Section VIII some practi-
cal considerations are discussed and Section IX concludes
the paper.

II. BACKGROUND

SET circuits are based on tunnel junctions which consist
of an ultra-thin insulating layer in a conducting material.
In classical physics no charge transport is possible through
an insulator. However, when the insulating layer is thin
enough the transport or tunneling of charge can occur in a
discrete and accurate manner, i.e., one electron at a time, if
it reduces the amount of energy in the system. Tunneling
through a junction becomes possible when the junction’s
current voltage V; exceeds the junction’s critical voltage
V., = Wicj) [5], where g. = 1.602 - 107*°C, Cj is the
capacitance of the tunnel junction, and C, is the equiva-
lent capacitive value of the remainder of the circuit as seen
from the junction. In other words, tunneling can occur if
and only if |V;| > V¢, in which case the junction is called
unstable. Electron tunneling is stochastic in nature and as
such the delay cannot be analyzed in the traditional sense.
Instead, for each transported electron one can describe the
switching delay as

_ln(Perror)QeRt

1

tg =
where R; is the junction’s resistance and Py, is the
chance that the desired charge transport has not occurred
after tq seconds. In this paper we assume R; = 10°Q and
Perror = 1078,

Note that the implementations discussed in here are tech-
nology independent. SET tunnel junctions can for exam-
ple be implemented by classical semiconductor lithography
and by carbon nanotubes [6]. Therefore, circuit area is
evaluated in terms the total number of circuit elements
(capacitors and junctions).

A well know SET structure is the electron trap depicted
in Figure 1 which has a periodic transfer function. The SET
electron trap functions as follows. If the input voltage rises,
the output voltage follows due to capacitance division. At
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(a) Circuit. (b) Transfer function.

Fig. 1. SET electron trap.

some point, though, the voltage across the tunnel junction
exceeds the critical voltage and an electron tunnels to the
output node. The output voltage therefore drops. As the
input voltage continues to rise, the output voltage rises
again until it reaches the critical voltage.

The relation between the input voltage V;,, and the out-
put voltage V,,; of the electron trap can be derived as

Vvin = %Eiovout + %(::7 (2)

where CYy,, is the sum of all capacitances connected to node
o and g, is the net charge in node o. The critical voltage
of the tunnel junction is expressed as V, = Qg; ~. We know
from the description of the electron trap, that the output
voltage reaches its maximum when this voltage reaches the
critical voltage of the tunnel junction. Thus, by substitut-
ing the expression of the critical voltage into Equation (2),
the input voltage for which the output voltage reaches its
maximum can be expressed as:

Ge kqe
20 T e,

Vipeak = for k=0,1,2,... (3)

This equation suggests that the period of the electron
trap transfer function is dependent only on the magnitude
of capacitance C;, while the capacitance of the tunnel junc-
tion has no influence. The periodic nature of the elec-
tron trap transfer function provides the fundamentals for
effective implementation of Periodic Symmetric Functions
(PSFs) in SET technology, which is explained in Section IV.

III. PSF BASED ARITHMETIC

A function on n variables is symmetric if and only if for
any permutation o of < 1,2,...,n >, Fs(x1,22,...,Z,) =
Fo(25(1), To(2), s To(n)). In other words, a symmetric
function is independent on the order of the operands. Ad-
dition and multiplication, for example, are symmetric func-
tions since x1 + 9 = X9 + 1 and xq * o = To * X71.

As Boolean functions have operands that are either 0’
or ’1’ Boolean symmetric functions depend on the num-
ber of ’ones’ in the input. Thus, a Boolean symmetric
function entirely depends on the sum of its input values:
Fy(x1,22,...,x,) = Fs(> 1, ;). This allows for a more
compact representation of the function as it can be de-
scribed by a vector v = vyv;...v,, where v; is the output of

X ||o] 1] 2| 3| 4|5]6] 7] 8] 9] 10 11| 12| 13| 14

S0 of1fo0j1|j0] 1|0 1]O0|1[0]1T|0|1]O0

s1 ofof1f1j0jO0]1)1]O0|O0Of1T]1T|0]O0]|1

S2 ofofojoj 1|11 1]0J0[O0O]O0O| 1] 1|1

s3 ojojofojojfoOjOjO| 111 |1]1]1]1
TABLE 1

SYMMETRIC FUNCTIONS Fi(X) FOR SUM BITS OF 3-BIT ADDITION.

F, when the sum of the inputs is i. This representation is
linear in the number of inputs while the traditional truth
table has a size of 2™ entries.

;Period;

_—
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Fig. 2. Periodic Symmetric Function.

A generalized symmetric function F,(X) is a function
that depends on the weighted sum of its inputs X =
(>, zw;), where w; is the weight of input z;.

A Periodic Symmetric Function (PSF) is a symme-
tric function for which there exists a period T' such that
Fy(X) = Fs(X +T). A PSF is completely defined by the
constants a, b, and T', where a is the first positive transition
and b is the first negative transition (see Figure 2).

Many arithmetic operations can be described as gener-
alized periodic symmetric functions. Assume, for example,
the binary addition of operands {as, a1, a¢} and {b2, b1, bo}
resulting in a sum {s3, s2, 51, S0 }. A weight wy, = 2¥ can be
assigned to every ay, by, such that X = ZZ:O 28 (ay, + by,).
Each sum bit s; can be described as a symmetric function
of X as shown by Table I.

From the table a periodicity can be observed for all four
symmetric functions s;, ¢ = 0,1,2,3. More precisely each
sum bit s; can be calculated with a periodic symmetric
function Fy;(X) that has a period of T = 2!*! and the
first positive transition at 2°t1). Given that each input
bit ay, by, has a weight w;, = 2*, each input bit with k& > i
has no effect on the value of Fj ;(X). Consequently each
sum bit s; can be calculated with a periodic symmetric
function F, ; as:

S; = Fs’i(i 2k(ak + bk)) (4)

k=0

In the same way many other arithmetic functions can
be described by generalized periodic symmetric functions.
In the next section a building block is proposed that can
evaluate generalized periodic symmetric functions.

IV. MucrtipLE INPUT PSF BUILDING BLOCK

The SET electron trap can be used as a basis for a build-
ing block that performs a PSF, though two extensions are
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needed. First, the number of inputs of the electron trap
needs to be increased. Second, the triangular transfer func-
tion of the electron trap needs to be converted into a rect-
angular one.

Vin O—CHj

| p V

Fig. 3. Multiple input SET electron trap.

Figure 3 presents a modified electron trap, which allows
it to be driven by multiple inputs in the same time. The ca-
pacitance Cgq represents the equivalent capacitance of the
circuit connected to the output (V},) of the electron trap.
Every input V;,, = 1,...,n contributes to the output
voltage according to the following expression

Ci,z

Vp’m = Cizp

Vi, ()

where Cyp = Cj +Ceq + 2221 C; » is the total capacitance
connected to node p. The total output voltage is the sum
of the contributions of all inputs V, = >""_ V..

From Equation (5) it can be observed that every input
Vi« is contributing to the voltage on node p according to
the size of the capacitor C; ;. Thus by choosing different
values for C; ;, inputs can be given different weights. Let
Vi,nigh be the input voltage representing logic ’1” and let
w, be the weight of input x, the corresponding capacitance
of input = can be evaluated as:

de
_— 6
2wr‘/i,high ( )

Ci,z =
Equation (6) allows us to compute the capacitances of the
inputs and associate to each input its appropriate weight.
Now as the number of inputs was extended, the next step
is to change the shark tooth transfer function into a rect-
angular one.

Fig. 4. The multiple input PSF implementation.

To obtain a rectangular shape transfer function we con-
nect to the output of the electron trap a static inverting
buffer [4], which then acts as a literal gate. The resulting
topology, called the multiple input PSF block is depicted
in Figure 4.

We notice here that in the multiple input PSF block,
one of the inputs of the electron trap is connected to the
supply voltage through the capacitor C. This input causes
a bias on node p of the electron trap, which is added for
the following reason. Assuming an electron trap with only
one input and no bias, the transfer function would be as
depicted in Figure 5(a). From the transfer function it is
seen that the first positive transition is located at exactly
an input voltage corresponding to one unit. If, due to vari-
ous effects (cross-talking, impurities, parameter deviation,
etc.) the input voltage is a little less than the voltage cor-
responding to one unit, the output of the PSF block would
be logic ’0’ instead of the expected logic '1°.

\ \Y
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Vi (units)

(a) without bias. (b) with bias.

Fig. 5. PSF block transfer function.

The addition of the bias, with a magnitude of half a unit,
causes all transitions to move to the left by a half unit (see
Figure 5(b)). Consequently, the first positive transition has
moved from an input of one unit to a half unit and in this
way the structure is less sensitive to parameter variation,
etc. Note that the input, though analog, is discrete in
nature and only takes values of whole units. Therefore,
adding a bias of a half unit results in maximal robustness
of the implementation.

V. EXAMPLE: 3-BIT PSF BASED ADDER

When adding two binary numbers A = {a,,—1, ..., a1, a0}
and B = {by_1,...,b1,0p} the result is a sum S =
{Sn, .., 51,50}. As explained in Section III each sum bit
s; can be calculated with a generalized periodic symmetric
function. Thus a PSF based addition scheme can be build
by utilizing a multiple input PSF block for each output
bit and connecting to it all the necessary inputs using the
proper weights according to Equation 4.

A 3-bit PSF based adder was build and simulated of
which the schematic is depicted in Figure 6. We assumed a
supply voltage Vs = 16mV and that logic ’1’ is represented
as 16mV. Further we assumed that the inputs are driven
by ideal voltage sources.

The 3-bit PSF adder has 6 inputs {as, ai, ag, b2, b1,bo}
which have weights {4,2,1,4,2,1} and four outputs
{s3, S2, 51, s0}. Using these values of the weights and Equa-
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Fig. 6. 3-bit PSF based addition scheme.
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tion (6), the values for the input capacitances of the MPSF
block were calculated.

The simulation results of the 3-bit PSF based adder are
presented in Figure 7 and they indicate that the PSF based
adder functions correctly. The adder requires 70 circuit
elements and, assuming an error probability Pep,or = 1078,
has a delay of 16.0 ns.

VI. ExaMPLE: PSF BASED BLOCK SAVE ADDER

Multi-operand addition is often necessary for the real-
ization of some arithmetic operations like multiplication,
especially when delay is of great importance. Generally
speaking multi-operand addition based multiplication fol-
lows the scheme presented in Figure 8, for the particular
case of a 4-bit multiplication. First the operands are multi-
plied bit wise, which results in four rows of bits. To find the
final result of the multiplication, a multi operand addition
is required. This multi operand addition is traditionally
performed by the following two steps. In the first step
the number of rows is reduced to two rows using counters
(see Figure 9(a,b)), which avoid carry propagation and thus
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Fig. 7. Simulation results for 3-bit PSF based adder.

minimizes the delay. In the case in Figure 8, one reduction
step is sufficient to end up with two rows, but in general
more reduction steps might be required. In the second step
the two rows of bits are added using a fast adder structure,
based for example on a carry look-ahead adder.

r

e

Fig. 8. Schematic of 4 bit multiplication process.

Another approach to implement multi operand addition
is to partition the input bits in blocks and to use Block
Save Adders (BSAs). Figure 9(c) depicts the schematic of
a BSA(4,2,4), a block save addition of four rows and two
columns producing a four bit output. Using this approach
of partitioning results in a very small depth network, as-
suming the right block size was chosen [7].

Block save addition can easily be expressed as a gener-
alized periodic symmetric function. Assuming a block of k
columns and [ rows containing the elements ay;, the sum

]
]
]
] | B |
m ™ T
] ] | B |
] ] | B |
| B | EEN EEER
(a) 3/2 (b) 7/3 (c)
counter. counter. BSA(4,2,4).

Fig. 9. Schematic of counters and block save adder.

250



bits can be described as a PSF of

k l
X:ZTZ‘“J’ (7)
=0 j=0

where ag is the bit in the right bottom corner. Thus a
block save adder can be implemented using multiple input
PSF building blocks.
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Fig. 10. PSF based BSA(4,2,4) scheme.

Figure 10 depicts the PSF based implementation of a
BSA(4,2,4). The multiple input PSF block generating s
has a period of 2 and is therefore only connected to inputs
with a weight of 1 (ag ;). The simulation results for the
BSA(4,2,4) based adder are presented in Figure 11 and
they indicate that the block save adder functions correctly.
The adder requires 80 circuit elements and, assuming an
error probability P.,,.., = 1078, has a delay of 16.0 ns.
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Fig. 11. Simulation results for BSA(4,2,4).

VII. BUFFERED PSF SCHEME

The example circuits presented in Section V and Sec-
tion VI assumed, among others, ideal input voltage sources.
However, when using these schemes in a Single Electron
Encoded Logic (SEEL) environment the inputs are not
ideal. The output signal of a SEEL gate is generated by a
static inverting buffer, which is depicted in Figure 12. The
value logic "1’ is represented as a net charge of one elec-
tron on node o, which results in an output voltage V, of
approximate 16mV, assuming C; = 10aF'. For proper op-
eration, when connecting a gate to the output of the buffer,
it is assumed that its input capacitance C; is much smaller
than the load capacitor of the buffer, that is C; <« C;. If
that is not the case, the output voltage of the buffer would
decrease and it might even cause the buffer to malfunc-
tion. This situation occurs when connecting a buffer to
one input of the PSF addition scheme, or even to a single
PSF block. Thus, a PSF based implementation cannot be
driven by SEEL circuitry directly.

Fig. 12. Static inverting buffer.

The solution to this problem is an integral design of both
the output buffers of the SEEL gates and the first stage
of the PSF block, the electron trap. For this purpose a
mathematical model of the connection between a buffer and
an electron trap was derived. The model proved to be non-
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linear and can only be solved using numerical methods. For
a complete description of the model, the reader is referred
to [8]. Calculations proved that it is not possible for a
buffer to drive multiple electron traps in the same time
and have all the latter function correct. Therefore buffers
have to be added in front of each input of every PSF block.
Moreover, to eliminate feedforward from the gates driving
the inputs of the adder a buffer is also placed on every
input of the PSF adder. A buffered 3-bit PSF based adder
was designed and verified by means of simulation, which
indicated the scheme to work correctly.

VIII. PRACTICAL CONSIDERATIONS

In theory any arithmetic operation that can be expressed
as a periodic symmetric function, can be build using multi-
ple input PSF building blocks. However, practical consid-
erations limit the number of inputs for the such schemes.

The first problem that arises when designing PSF based
circuits with large operands, is the required accuracy. A
PSF block with a large weight has a large number of unit
steps in a period of its transfer function and thus a small
step size. Small unit steps results in small margins for
the threshold of the output buffer of the PSF block and
therefore a high accuracy is needed. Thus the required
accuracy is depending on the number of output bits.

The second problem is the delay of the PSF adder, which
is exponential to the number of output bits. For addition
this means that the delay is also exponential to the number
of inputs, since the latter is linear to the number of output
bits. But for multi operand addition the relation between
the number of inputs and outputs is less than linear, result-
ing in a delay less than exponential. For parity check the
delay is even independent on the number of inputs (O(1)).

To build an adder with large numbers of inputs, based
on the PSF addition scheme, a hierarchical approach can
be used. In this way the input operands are partitioned
in g—bit blocks, where k is the maximum number of inputs
a PSF adder can accommodate. For each block one PSF
adder can be used and these PSF adders can be cascaded in
a ripple-carry scheme or used in more efficient structures,
e.g., carry look-ahead, carry-skip, etc.

IX. CONLCUSION

This paper investigated the implementation of Periodic
Symmetric Functions (PSF) in single electron tunneling
technology. First, we discussed the procedure of expressing
arithmetic and logic operations as generalized PSFs. Sec-
ond, we proposed a generic building block that can eval-
uate multiple input PSFs. The block we proposed can be
used for the computation of any function that is or can
be expressed as a PSF, thus it can be utilized for the im-
plementation of a large number of arithmetic operations,
e.g., parity, addition, multi-operand addition, as they be-
long to the class of generalized PSFs. To demonstrate the
capabilities of the PSF scheme we presented the design and
simulation results of a PSF based 3-bit adder and a PSF
based block save adder. Finally, we explained how these

PSF based schemes can be embedded in a Single Electron
Encoded Logic (SEEL) environment.
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