
1

A Survey of Peer-to-Peer Networks

B. Pourebrahimi K. Bertels S. Vassiliadis
Computer Engineering Laboratory, ITS, TU Delft, The Netherlands

{behnaz, koen, stamatis}@ce.et.tudelft.nl

Abstract—The limitations of client/server systems become
evident in large scale distributed environments. In such
systems individual resources are concentrated on one or a
small number of nodes and in order to provide access with
acceptable response times sophisticated load balancing and
fault-tolerance algorithms have to be applied. Also limita-
tion on the network bandwidth adds the bottleneck prob-
lem. These problems have motivated researchers to come up
with approaches to distribute processing loads and network
bandwidth among all nodes participating in a distributed
system. Peer-to-Peer systems offer an alternative to tradi-
tional client/server systems that solve bottleneck problems
but need complex algorithms.

This paper provides an overview on different p2p archi-
tectures and compares them with each other regarding some
issues such as scalability, fault tolerance and manageability.
P2P systems constitute highly dynamic networks of peers
with complex topologies that create an overlay network. P2P
applications need sophisticated discovery mechanisms to en-
able peers to find, identify and communicate with other
peers. We discuss the discovery mechanisms in p2p systems
which are based on the topology of the network and study
the potential challenges in p2p networks such as reliability,
security and adaptability.
Keywords: Peer-to-Peer, Distributed systems, Centralized,
Decentralized, Resource discovery

I. INTRODUCTION

Computation in networks of processing nodes, each
holding a part of the inputs and/or resources initially,
can be classified into centralized or distributed computa-
tions(see figure 1). A centralized solution relies on one
node being designated as the computer node that processes
the entire application locally. In distributed computation,
the processing steps of the application are divided among
the participating nodes. The goal in such systems is to min-
imize communication and computation cost. Distributed
systems can be further classified into a client-server model
and a P2P model. In the client-server model, the server is
the central registering unit, as well as the only provider of
content and services. A client only requests content or the
execution of services, without sharing any of its own ser-
vices. The client-server model can be flat where all clients
only communicate with a single server or it can be hierar-
chical for improved scalability.

Peer-to-Peer systems offer an alternative to traditional
client-server systems for some application domains. A

P2P network is a distributed network composed of a large
number of distributed, heterogeneous, autonomous, and
highly dynamic peers in which participants share a part
of their own resources such as processing power, storage
capacity, softwares, and files contents. The participants in
the P2P network can act as a server and a client at the same
time. They are accessible by other nodes directly, without
passing intermediary entities. The P2P models can be pure
or hybrid. In pure P2P any single, arbitrary chosen termi-
nal entity can be removed from the network without having
the network suffering any loss of network service. Hybrid
P2P allows the existence of central entities in its network
to provide parts of the offered network services.

There are several concepts underlying p2p systems:
sharing resources, decentralization and self organization.
Resource sharing implies that applications can not be set
up by a single node. Shared resources can be physical re-
sources such as disk space, CPU or network bandwidth,
as well as, logical resources such as services or differ-
ent forms of knowledge. Decentralization is an immedi-
ate consequence of sharing of resources. Decentralization
is in particular interesting in order to avoid single point
of failures and bottlenecks. When a p2p system becomes
fully decentralized then there exists no longer a node that
can centrally coordinate its activities or a database to store
global information about the system centrally. Therefore
nodes have to self-organize themselves,based on whatever
local information is available and interacting with locally
reachable nodes (neighbors). The global behavior then
emerges as the result of all the local behaviors that occur.

II. P2P ARCHITECTURES

Decentralization is one of the major concept of p2p sys-
tems. This includes distributed storage, processing, infor-
mation sharing and also control information. Based on the
degree of decentralization in a p2p system, we can classify
them into two categories:

A. Purely Decentralized

A pure p2p system is a distributed system without any
centralized control. In such systems all nodes are equiv-
alent in functionality. In such networks the nodes are
named as ”servant” (SERver+cliENT), the term servent
represents the capability of the nodes of a peer-to-peer net-
work of acting at the same time as server as well as a client.



Fig. 1. computer systems

Gnutella[32], Freenet[12], Chord[35] and CAN[30] are in-
stances of such systems.

Pure p2p systems are inherently scalable. Scalability
in the system is usually restricted by the amount of cen-
tralized operation necessary and such system largely avoid
central instances or servers. This kind of systems are in-
herently fault-tolerant, since there is no central point of
failure and the loss of a peer or even a number of peers can
easily be compensated. They also have a greater degree
of autonomous control over their data and resources. On
the other hand such systems present slow information dis-
covery and there is no guarantee about quality of services.
Also because of the lack of a global view at the system
level, it is difficult to predict the system behavior.

B. Hybrid Architecture

In hybrid P2P systems [41], there is a central server that
maintains directories of information about registered users
to the network, in the form of meta-data. The end-to-end
interaction (data exchange) is between two peer clients.
There are two kinds of hybrid systems: centralized index-
ing and decentralized indexing. In centralized indexing
[figure 2] a central server maintains an index of the data or
files that are currently being shared by active peers, Each
peer maintains a connection to the central server, through
which the queries are sent. This architecture is used by
Napster[7]. Such systems with the central server are sim-
ple and they operate quickly and efficiently for discovery
information. Searches are comprehensive and they can
provide guarantee in searches. On the other hand they are
vulnerable to censorship and malicious attack. Because of
central servers they have a single point of failure. They are
not inherently scalable, because of limitations on the size
of the database and its capacity to respond to queries. As
central directories are not always updated, they have to be
refreshed periodically.

Fig. 2. centralized indexing

In decentralized indexing [figure 3], a central server reg-
isters the users to the system and facilitates the peer dis-
covery process. In these systems some of the nodes as-
sume a more important role than the rest of nodes. They
are called ”supernodes”[41]. These nodes maintain the
central indexes for the information shared by local peers
connected to them and proxy search requests on behalf
of these peers. Queries are therefore sent to SuperNodes,
not to other peers. Kazaa[5][15] and Morpheus[6] are two
similar decentralized indexing systems. In such systems
peers are automatically elected to become SuperNodes if
they have sufficient bandwidth and processing power and
a central server provides new peers with a list of one or
more SuperNodes with which they can connect.

More recent architectures, such as Gnutella [2] also uses
the concept of Super Nodes. As a node with enough CPU
power joins the network, it immediately becomes a Super-
Peer and establishes connections with other SuperPeers,
forming a flat unstructured network of SuperPeers. It also
sets the number of clients required for it to remain a Su-
perPeer. If it receives at least the required number of con-
nections to client nodes within a specified time, it remains
a SuperPeer. Otherwise it turns into a regular client node.
If no SuperPeer is available, it tries to become a SuperPeer
again for another probation period.

In comparison with purely decentralized systems, they
reduce the discovery time and also they reduce the traf-
fic on messages exchanging between nodes. In compar-
ison with centralized indexing, they reduce the workload
on central server but they present slower information dis-
covery. Also in this kind of systems, there is still no unique
point of failure as on single central sever. If one or more
supernodes go down, the nodes connected to them can
open new connection with others, and the network will
continue to operate. In the case a large number or even
all supernodes go down, the existing peers become supern-
odes themselves.



Fig. 3. distributed indexing

III. DISCOVERY MECHANISMS FOR P2P SYSTEMS

Distributed peer-to-peer systems often require a discov-
ery mechanism to locate specific data within the system.
P2P systems have evolved from first generation central-
ized structures to second generation flooding-based and
then third generation systems based on distributed hash ta-
bles[19]:
• Centralized indexes and repositories
This mechanism is used in hybrid systems. In this model
the peers of the community connect to a centralized direc-
tory servers, which store all information regarding location
and usage of resources. Upon request from a peer, the cen-
tral index will match the request with the best peer in its
directory that matches the request. The best peer could be
the one that is cheapest, fastest, nearest, or most available,
depending on the user needs. Then the data exchange will
occur directly between the two peers. Napster uses this
method [10]. A central directory server maintains: an in-
dex with meta data (file name, time of creation etc.) of
all files in the network, a table of registered user connec-
tion information (IP addresses, connection speeds etc.), a
table listing the files that each user holds and shares in the
network. In the beginning the client contacts the central
server and reports a list with the files it maintains. When
server receives a query from a user, it searches for matches
in its index, returning a list of users that hold the matching
file. The user then opens a direct connection with the peer
that holds the requested file, and downloads it (see figure
4).
• Flooding broadcast of queries
This model is a pure p2p model in which each peer does
not maintain any central directory and each peer publishes
information about the shared contents in the P2P network.
Since no single peer knows about all resources, peers in
need for resources flood an overlay network queries to
discover a resource, each request from a peer is flooded
(broadcasted) to directly connected peers, which them-
selves flood their peers etc., until the request is answered

or a maximum number of flooding steps occur. Flood-
ing based search networks are built in an ad hoc manner,
without restricting a priori which nodes can connect or
what types of information they can exchange[13]. Differ-
ent broadcast policies have been implemented to improve
search in P2P networks[40], [36], [38]. Original architec-
ture of Gnutella[1] uses the flooding broadcast to find the
files in the network. It works as a distributed file storage
system. There is four types of messages in the Gnutella
protocol: Ping: a request for a certain host to announce
itself. Pong: reply to a Ping message. It contains the
IP and port of the responding host and number and size
of files shared. Query: a search request. It contains a
search string and the minimum speed requirements of the
responding host. Query hits: reply to a Query message. It
contains the IP and port and speed of the responding host,
the number of matching files found and their indexed re-
sult set.After joining the Gnutella network(by using hosts
such as gnutellahosts.com), a node sends out a Ping mes-
sage to any node it is connected to. The nodes send back
a Pong message identifying themselves, and also propa-
gate the ping to their neighbors. Gnutella originally uses
TTL-limited flooding (or broadcast) to distribute Ping and
Query messages. At each hop the value of the field time-
to-live(TTL) is decremented, and when it reaches zero the
message is dropped. In order to avoid loops, the nodes use
the unique message identifiers to detect and drop duplicate
messages. This approach improves efficiency and preserve
network band width. Once a node receives a QuerryHit
message, indicating that the target file has been identified
at a certain node, it initiates a direct out-of-network down-
load, establishing a direct connection between the source
and target node (see figure 5).
Although the flooding protocol might give optimal results
in a network with a small to average number of peers,
it does not scale well. Furthermore, accurate discovery
of peers is not guaranteed in flooding mechanisms. Also
TTL effectively segments the Gnutella network into sub-
sets, imposing on each user a virtual horizon beyond which
their messages cannot reach. If on the other hand the TTL
is removed, the network would be swamped with requests.
• Routing Model
The routing model adds structure to the way information
about resources are stored using distributed hash tables.
This protocol provide a mapping between the resource
identifier and location, in the form of a distributed rout-
ing table, so that queries can be efficiently routed to the
node with the desired resource. This protocol reduces the
number of p2p hops that must be taken to locate a re-
source. The look-up service is implemented by organiz-
ing the peers in a structured overlay network, and routing



a message through the overlay to the responsible peer [14].
Several proposals have been recently put forth for imple-
menting distributed P2P look-up services :
– Freenet

Freenet [12] provides file-storage service rather than file-
sharing service. In this system each peer from the net-
work is assigned a random ID and each peer also knows
a given number of peers. When a document is shared on
such a system, an ID is assigned to the document based
on a hash of the document’s contents and its name. Each
peer will then route the document towards the peer with the
ID that is most similar to the document ID. This process
is repeated until the nearest peer ID is the current peer’s
ID. Each routing operation also ensures that a local copy
of the document is kept. When a peer requests the docu-
ment from the p2p system, the request will go to the peer
with the ID most similar to the document ID. This process
is repeated until a copy of the document is found. Then
the document is transferred back to the request originator,
while each peer participating the routing will keep a local
copy.
– Chord

Chord [35] is a decentralized p2p lookup protocol that
stores key/value pairs for distributed data items. Given a
key, it maps key a node responsible for storing the key’s
value. In the steady state, in an N-node network, each
node maintains routing information about O(logN) other
nodes, and resolves all lookups via O(logN) messages to
other nodes. Updates to the routing information for nodes
leaving and joining require only O(log2N) messages.
– Content Addressable Networks

CAN[30] is a mesh of N nodes in virtual d-dimensional
dynamically partitioned coordinate space. Each peer keeps
track of its neighbors in each dimension. When a new peer
joins the network, it randomly chooses a point in the iden-
tifier space and contacts the peer currently responsible for
that point. The contacted peer splits the entire space for
which it is responsible into two pieces and transfers re-
sponsibility of half to the new peer. the new peer also con-
tacts all of the neighbors to update their routing entities.
The CAN discovery mechanism consists of two core oper-
ations namely, a local hash-based look-up of a pointer to
a resource, and routing the look-up request to the pointer.
The CAN algorithm guarantees deterministic discovery of
an existing resource in O(N 1/d) steps.
– Pastry

An approach similar to Cord was also used in Pasty [33].
In the Pastry each node network has a unique identifier
(nodId) from a 128-bit circular index space. The pastry
node routes a message to the node with a nodeId that is
numerically closest to the key contained in the message,

Fig. 4. Resource discovery in Napster

Fig. 5. flooding-based broadcast

from its routing table of O(logN), where N is the number
of active Pastry nodes. The expected of routing steps is
O(logN). Pastry takes into account network locality; it
seeks to minimizes the distance messages travel, according
to a scalar proximity metric like the number of IP routing
hops.

IV. P2P NETWORKS STRUCTURE

P2P networks can be classified by the degree to which
these overlay networks contain some structure or are cre-
ated ad-hoc. Structure refer to the way in which the content
of the network is located with respect to the network topol-
ogy. In structured networks, the topology is tightly con-
trolled and the data are placed at specific locations. These
systems provide a mapping between the data identifier and
location, in the form of a distributed routing table, so that
queries can be efficiently routed to the node with the de-
sired data. In unstructured networks, the placement of the
data is completely unrelated to the overlay topology and
peers are connected directly to each other. They are refer-
eed to as neighbors and have no information of each oth-
ers data. In these systems, searching amounts to random
search, in which various nodes are probed and asked if they
have any match for the query. For instance, Gnutella is un-
structured and Freenet, Chord and CAN are structured.

In many ways, the quality of a P2P system depends on
the structural and behavioral properties of its network. Un-
structured systems are easy to implement and also they re-
quire little maintenance but they lack scalability. As the
number of participant peers increases, the number of mes-
sages exchanged for a resource search grows. Flooding



unstructured pure structured pure centralized indexing distributed indexing
p2p p2p hybrid p2p hybrid p2p

Scalable no yes no yes
Flexible yes no no yes

Robustness yes yes no yes
Manageable no yes yes yes

TABLE I
COMPARISON OF P2P MECHANISMS

search protocol used in unstructured P2P networks is very
sensitive to the number of edges in the network graph. If
the number of links is to small, all nodes will not be reach-
able in a reasonable amount of time. Conversely, if there
are too many links, numerous identical copies of the query
message will arrive at many nodes from different direc-
tions, resulting in wasted bandwidth. In structured P2P
systems peers maintain information about what resources
neighboring peers offer. It increases the cost of mainte-
nance efforts during changes in the overlay network when
peers join or leave.

V. P2P APPLICATIONS

The domains of p2p applications can be classified into
four categories[25]:
• File sharing
Content storage and exchange is one of the areas where
P2P technology has been most successful. File sharing ap-
plications [10], [20], [34] focus on storing information on
and retrieving information from various peers in the net-
work. One of the best-known example of such p2p systems
is Napster, it became famous as a music exchange system.
Other instances are Gnutella, Freenet, Kazaa, Chord, etc.
• Distributed computing
These applications use resources from a number of net-
worked computers. The general idea behind these applica-
tions is that idle cycles from any computer connected to the
network can be used for solving the problems of the other
computers that require extra computation. SETI@home
is one example of such systems. SETI (Search for Ex-
traterrestrial Intelligence) [9] is a scientific search project
aimed at building a huge virtual computer based on the
aggregation of the computer power offered from internet-
connected computers during their idle periods. The project
uses two major components: the database server and the
client. Clients can help with search for extra-terrestrial life
by running the search program for a specified portion of
the universe. This project strongly relies on its server to
distribute jobs to each participating peer and to collect re-
sults after processing is done.
• Collaboration

Collaborative p2p applications aim to allow application-
level collaboration between users. These applications
range from instant messaging and chat, to on line games,
to shared applications that can be used in business, edu-
cational, and home environments. Such as Groove, Jab-
ber. Jabber [4] is a set of streaming XML protocols and
technologies that enable any two entities on the Internet to
exchange messages, presence, and other structured infor-
mation in close to real time.
Groove [3] provides a variety of applications for communi-
cation, content sharing (files, images and contact data), and
collaboration (i.e. group calendaring, collaborative editing
and drawing, and collaborative Web browsing).
• Platforms
P2P platforms provide infrastructure to support distributed
applications using p2p mechanisms. P2P components used
in this context are for instance naming, discovery, commu-
nication, security and resource aggregation. JXTA [8] is
p2p platform that provides a general-purpose network pro-
gramming and computing infrastructure. It creates a p2p
system by identifying a small set of basic functions nec-
essary to support p2p applications and providing them as
building blocks for higher-level functions. it includes three
layer: core, services and applications. JXTA core provides
core support for peer-to-peer services and applications. At
the core, capabilities must exist to create and delete peer
groups, to advertise them to potential members, to enable
others to find them, and to join or leave them. At the next
layer, the core capabilities can be used to create a set of
peer services, including indexing, searching, and file shar-
ing. In the third layer peer applications can be built using
these facilities[28].

VI. CHALLENGES IN P2P SYSTEMS

Peer-to-peer systems offer a number of advantages over
conventional client-server systems such as scalability, fault
tolerance, performance. However, there are some chal-
lenges that these systems are dealing with:



A. Security

Distributed implementations create additional chal-
lenges for security compared to client-server architecture.
Since in peer-to-peer systems the set of active peers is dy-
namic and also peers don’t trust each other, achievement
a high level of security in peer-to-peer systems is more
difficult than non-peer-to-peer systems. Traditional secu-
rity mechanisms to protect data and systems from intrud-
ers and attacks such as firewalls can not protect peer-to-
peer systems since they are essentially globally distributed
and also these mechanisms can inhibit peer-to-peer com-
munication. Therefore new security concepts are required
that allows interaction and distributed processing in peer-
to-peer systems. [39]

B. Reliability

A reliable system is a system that can be recovered when
a failure occurs. The factors which should be taken into
account for reliability are data replication, node failure de-
tection and recovery, existence of multiple guarantees for
location information to avoid a single point of failure and
the availability of multiple paths to data. Data replication
increases reliability by increasing redundancy and locality.
There are two strategies for replication, owner replication
and path replication. In owner replication, when the search
is successful, the data is stored at the requester node only.
In path replication, when a search succeeds, the data is
stored in all nodes along the path from requester node to
provider node [22]. P2P communities can also replicate
and replace the data as a function of their popularity to
achieve satisfactory performance[17].

In structured peer-to-peer overlay networks the mes-
sages are routed in a small number of hops using small
per-node routing state. The overlays should update rout-
ing state automatically when nodes join or leave, and it
should route messages correctly even when a large fraction
of the nodes crash or the network partitions. To achieve
reliability in such systems, nodes must consume network
bandwidth to maintain routing state, so to reduce this cost
the techniques should be employed that adapt to operating
condition[23]. For increasing fault-tolerance and reliabil-
ity in unstructured P2P systems, dynamically adding re-
dundant links to the system has been addressed [24]. In
this way no single disconnection should cause disconnec-
tion of system or too much increase of routing steps.

C. Flexibility

One of the important aspects in P2P systems is the au-
tonomy of peers so that they can join and leave at their will.
Recent peer-to-peer (P2P) systems are characterized by de-
centralized control, large scale and extreme dynamism of

their operating environment. To deal with the scale and dy-
namism the properties of adaptation and self-organization
are required to be considered in building p2p systems.

More recent unstructured P2P systems, like KaZaA and
GIA [11] address the dynamic nature of the environment.
In Kazaa queries are forwarded only to supernodes, which
maintain a list with the file names of their connected peers,
avoiding overloading all peers of the system. GIA is a
Gnutella like system which aims to respond to high ag-
gregate query rates. In GIA each peer calculates the maxi-
mum number of queries it can handle per second and based
on this metric the number of neighbors to which the peer
can connect or forward a request is computed [16].

In standard structured P2P systems, static identifiers are
assigned to peers and distributed data structures are con-
structed based on these identifiers, so the overlay network
structure is determined by the choice of these identifiers
and in turn any self-organization of the system is pre-
vented. Structured systems based on distributed hash ta-
bles (DHTs) should perform lookups quickly and consis-
tently while nodes arrive and leave the system [31], [21].
For instance Chord [35] adapts as nodes join and leave the
system, and answer queries even if the system is contin-
uously changing. Discovering that a node has joined is
achieved through a self-stabilization protocol that every
node runs periodically[37].

Complex Adaptive Systems (CAS) which commonly
used to explain the behavior of certain biological and so-
cial systems can be used as a model to build adaptive P2P
networks[27].

D. Load Balancing

Distribution of the data to be stored or computations to
be carried out by the nodes is a critical issue for the ef-
ficient operation of peer-to-peer networks. A particular
method for such distribution in peer-to-peer systems is the
distributed hash table (DHT), in which each data item that
is stored is mapped to unique identifier ID. The identifier
space is partitioned among the nodes and each node is re-
sponsible for storing all the items that are mapped to an
identifier in its portion of the space. In such approaches
load balancing should be considered in both address-space
balancing that balances the distribution of the key address
space to nodes and item balancing in the case that distribu-
tion of items in the address space can not be randomized.
In this method, each node is free to migrate anywhere and
it has no restriction to be in a certain number of virtual
node locations (it means the items can migrate among the
nodes) [18], [42], [29].

Load balancing among the computing nodes in p2p
systems can also be implemented by agent-based self-



organization models. Messor [26] is a Anthill load bal-
ancing algorithm. In Messor, ants adapt their behavior to
the load conditions, wandering about randomly when the
load is uniformly balanced and moving rapidly towards re-
gions of the network with highly unbalanced loads. They
are resilient to failures as jobs assigned to crashed nodes
are simply reinserted in the network by the nest that gen-
erated them and they are self-organized as new nests or
nodes may join to the system, and their computing power
is rapidly exploited to carry on the computation, as soon as
ants discover the nest and start to assign it jobs transferred
from other nests.

VII. CONCLUSION

Considering different architectures of peer-to-peer sys-
tems, system designers should evaluate the requirements
for their particular applications and choose a topology for
the platform that matches their needs. To compare them
briefly (see table I), we can say that in pure peer-to-peer
networks every peer is given equal responsibility irrespec-
tive of its computing/network capabilities, this can lead to
reduction of performance as less capable nodes are added.
Pure p2p systems lack manageability since every peer is its
own controller. Unstructured pure p2p systems in which
blind flooding search is used are not salable since in large
scale systems the large number of exchange messages lim-
its the scalability. Using structured systems or intelligent
search approaches can solve scalability limitation. The
disadvantage of standard structured systems is that it is
hard to maintain the structure required for routing in a very
transient node population, in which nodes join and leave
at a high rate. It should be taken into account that some
structured systems like Chord have overcome to this prob-
lem and they can adapt efficiently as nodes join and leave
the system.

Pure p2p systems are fault tolerant, since failure of any
particular node does not impact the rest of the system. Hy-
brid p2p systems solve the manageability problem of pure
p2p systems, so that the control server/servers acts as a
monitoring agent for all the other peers and ensures infor-
mation coherence. regarding distributed indexing and cen-
tralized indexing systems, drawbacks associated to central-
ized indexing systems are single point of failure when cen-
tral server goes down and also not being scalable because
of capacity of server to maintain database and to respond
to queries. Distributed indexing systems alleviate these
shortcomings by using super-peers. Although super-peer
clusters are efficient, scalable and manageable, in order to
avoid a single point of failure for the clients in a cluster,
some policies of super-peer redundancy should be taken
into account. As in the case of fail over super-peer, these

strategies should be able to take over the job of the primary
super-peer.

REFERENCES

[1] The gnutella protocol specification v0.4.
[2] Gnutella2, http://www.gnutella2.com.
[3] Groove, http://www.groove.net.
[4] Jabber, http://www.jabber.org.
[5] Kazaa, http://www.kazaa.com.
[6] Morpheus, http://www.morpheus.com.
[7] Napster, http://www.napster.com.
[8] Project jxta, http://www.jxta.org.
[9] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and

Dan Werthimer. Seti@home: an experiment in public-resource
computing. Commun. ACM, 45(11):56–61, 2002.

[10] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-
peer file sharing technologies, 2002.

[11] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham,
and Scott Shenker. Making gnutella-like p2p systems scalable.
In SIGCOMM ’03: Proceedings of the 2003 conference on Appli-
cations, technologies, architectures, and protocols for computer
communications, pages 407–418. ACM Press, 2003.

[12] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W.
Hong. Freenet: A distributed anonymous information storage and
retrieval system. Lecture Notes in Computer Science, 2009:46+,
2001.

[13] B. F. Cooper and H. Garcia-Molina. Ad hoc, self-supervising
peer-to-peer search networks. Technical report, 2003.

[14] Luis Garces-Erice, Ernst W. Biersack, Keith W. Ross, Pascal A.
Felber, and Guillaume Urvoy-Keller. Hierarchical p2p systems.
In Proceedings of ACM/IFIP International Conference on Paral-
lel and Distributed Computing (Euro-Par), Klagenfurt, Austria,
2003.

[15] Nathaniel S. Good and Aaron Krekelberg. Usability and privacy:
a study of kazaa p2p file-sharing. In CHI ’03: Proceedings of the
conference on Human factors in computing systems, pages 137–
144. ACM Press, 2003.

[16] Evangelia Kalyvianaki and Ian A. Pratt. Building adaptive peer-
to-peer systems. In Peer-to-Peer Computing, pages 268–269,
2004.

[17] Jussi Kangasharju, Keith W. Ross, and et al. Adaptive content
management in structured p2p communities.

[18] David R. Karger and Matthias Ruhl. Simple efficient load balanc-
ing algorithms for peer-to-peer systems. In SPAA ’04: Proceed-
ings of the sixteenth annual ACM symposium on Parallelism in
algorithms and architectures, pages 36–43. ACM Press, 2004.

[19] Mandar Kelaskar, Vincent Matossian, Preeti Mehra, Dennis Paul,
and Manish Parashar. A study of discovery mechanisms for peer-
to-peer applications. In CCGRID, pages 444–445, 2002.

[20] Ulrike Lechner. Peer-to-peer beyond file sharing. In IICS, pages
229–249, 2002.

[21] David Liben-Nowell, Hari Balakrishnan, and David Karger. Anal-
ysis of the evolution of peer-to-peer systems. In PODC ’02: Pro-
ceedings of the twenty-first annual symposium on Principles of
distributed computing, pages 233–242. ACM Press, 2002.

[22] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search
and replication in unstructured peer-to-peer networks. In ICS ’02:
Proceedings of the 16th international conference on Supercom-
puting, pages 84–95. ACM Press, 2002.

[23] Ratul Mahajan, Miguel Castro, and Antony Rowstron. Control-
ling the cost of reliability in peer-to-peer overlays. In IPTPS’03,
February 2003.



[24] Leonardo Mariani. Fault-tolerant routing for p2p systems with
unstructured topolog. In proceedings of the 2005 International
Symposium on Applications and the Internet (SAINT 2005), IEEE
Computer Society, February 2005.

[25] Characteristics Andreas Mauthe. Peer-to-peer computing: Sys-
tems, concepts and.

[26] A. Montresor, H. Meling, and A. Montresor. Messor: Load-
balancing through a swarm of autonomous agents, 2002.

[27] Alberto Montresor, Hein Meling, and Özalp Babaoğlu. Towards
adaptive, resilient and self-organizing peer-to-peer systems. Lec-
ture Notes in Computer Science, 2376:300–??, 2002.

[28] Ra Ti On. Project jxta: An open, innovative collaboration.
[29] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana,

Richard M. Karp, and Ion Stoica. Load balancing in structured
p2p systems. In IPTPS, pages 68–79, 2003.

[30] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker. A scalable content addressable network, 2000.

[31] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatow-
icz. Handling churn in a DHT. In Proceedings of the 2004
USENIX Annual Technical Conference (USENIX ’04), Boston,
Massachusetts, June 2004.

[32] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella
network: Properties of large-scale peer-to-peer systems and im-
plications for system design. IEEE Internet Computing Journal,
6(1), 2002.

[33] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, 2001.

[34] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble.
A measurement study of peer-to-peer file sharing systems. In
Proceedings of Multimedia Computing and Networking 2002
(MMCN ’02), San Jose, CA, USA, January 2002.

[35] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable Peer-To-Peer lookup ser-
vice for internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149–160, 2001.

[36] In suk Kim, Yong hyeog Kang, and Young Ik Eom. An efficient
contents discovery mechanism in pure p2p environments. In GCC
(1), pages 420–427, 2003.

[37] C. Tryfonopoulos and M. Koubarakis. Distributed resource shar-
ing using self-organized peer-to-peer networks and languages
from information retrieval. In Proceedings of International
Workshop on Self-* Properties in Complex Information Systems
(SELF-STAR), Bertinoro, Italy, 2004.

[38] Dimitrios Tsoumakos and Nick Roussopoulos. A comparison of
peer-to-peer search methods. In WebDB, pages 61–66, 2003.

[39] Dan S. Wallach. A survey of peer-to-peer security issues. In ISSS,
pages 42–57, 2002.

[40] Beverly Yang and Hector Garcia-Molina. Improving search in
peer-to-peer networks. In ICDCS ’02: Proceedings of the 22
nd International Conference on Distributed Computing Systems
(ICDCS’02), page 5. IEEE Computer Society, 2002.

[41] Beverly Yang and Hector Garcia-Molina. Designing a super-peer
network. In Proceeding of 19th International Conference on Data
Engineering, page 49, 2003.

[42] Yingwu Zhu and Yiming Hu. Efficient, proximity-aware load bal-
ancing for structured p2p systems. In P2P ’03: Proceedings of the
3rd International Conference on Peer-to-Peer Computing, page
220. IEEE Computer Society, 2003.


