
νMOS Enhanced Differential Current-Switch Threshold
Logic Gates

K.C. Li(∗), M. Padure(∗∗), S.D. Cotofana(∗)
(∗) Delft University of Technology, The Netherlands

Mekelweg 4, 2628 CD, Delft, The Netherlands
email:{kwok, sorin}@ce.et.tudelft.nl

(∗∗) Politehnica University of Bucharest,
Laboratory of Microelectronic Systems,

Blvd. Iuliu-Maniu 1-3, Bucharest, Romania
email:marius@messnet.pub.ro

Abstract— This paper presents a way to enhance the Differential
Current-Switch Threshold Logic gate (DCSTL) in order to allow the gate
to perform more complex functions. This enhancement is achieved by
replacing the MOS-transistors at the data- and threshold mapping bank
of the DCSTL gate with neuronMOS transisors. First, we introduce the
neuronMOS-enhanced DCSTL gate. Then, the results of HSPICE simula-
tions of a 7-input parity and a 3-bit addition function implemented with the
enhanced DCSTL gate is presented, along with a comparison with the same
functions implemented using the original DCSTL gate. These simulations
indicate that the designs based on enhanced DCSTL gates can achieve a
12.5% speed-up over the conventional DCSTL gate designs for both addi-
tion and parity. HSPICE power estimations also suggest that the standard
DCSTL gate dissipates 30% more power when performing a 7-bit parity,
and 5% in the case of a 3-bit addition.

Keywords—Threshold logic, neuron-MOS transistors, parity, addition

I. I NTRODUCTION

Threshold Logic (TL) constitutes an alterative way for imple-
menting logic and arithmetic functions. The main theoretical ad-
vantage of TL [5][9] stands in its powerful computational capa-
bilities when compared with standard Boolean gates. Therefore,
TL based implementations require less gates and shallower net-
works when compared with traditional Boolean gate networks
for a broad range of functions [5][9]. However, while TL gates
are more powerful, their theoretical advantage comes at the ex-
pense of more basic circuit elements (e.g., MOS transistors).
Therefore, in practice, depending on the specific TL gate circuit
and manufacturing technology the theoretical advantage may be
lost. Up to date, several TL implementations have been pro-
posed in either CMOS [1][2] and emerging technologies, e.g.,
SET [6][7], and it was demonstrated that for some functions
(mainly population counters - basic building blocks for multipli-
ers) they outperform Boolean gate implementations [1][6][7][8].

Even though these studies suggests that TL may provide ef-
fective practical circuits, state of the art CMOS based TL gates
are rather expensive in terms of area and one should seek ways
to further reduce their area by proposing less complex circuits.
In this paper we address this issue however form a different
prospective. Instead of attempting to reduce the number of cir-
cuit elements in a TL gate implementation we propose a way
to increase the gate computational capabilities. Our proposal is
based on the observation that the up to date TL gate implemen-
tations in CMOS are differential in nature, and usually require
comparators to perform a part of the computations. For TL gates

with small fan-in and weights values the comparator may dom-
inate the gate area and delay. While this overhead cannot be
reduced as such, as the comparator is a crucial component in the
TLG, one can embed more computations in the gate such that
the overhead induced by the comparator, relative to the achieved
computation power, is reduced.

In this paper we propose to increase in computational capabil-
ity of a TL gate by combining two existing TL implementations:
the Differential Current-Switch Threshold Logic gate (DCSTL)
[1][3], and the neuronMOS transistor (νMOS) [2][10][11]. The
basic idea is to useνMOS transistors to replace the standard
NMOS transistors in the data- and threshold mapping bank of
the DCSTL gate. In this way we obtain aνMOS enhanced DC-
STL gate which can evaluate functions that are more complex
than simple threshold functions. One singleνMOS enhanced
DCSTL gate can actually evaluate functions which would other-
wise require depth-2 implementations built with more than one
TL gate. Thus, simply speaking, more complex functions can
be evaluated with just one comparator.

In order to evaluate the modified DCSTL gate, we assumed
7-input parity and 3-bit addition and implemented them both
with standard DCSTL gates and with enhanced DCSTL gates.
For comparison purposes we simulated all the designs with
HSPICE. Our simulations indicate that the designs based on en-
hanced DCSTL gates can achieve a 12.5% speed-up over the
conventional DCSTL gate designs for both addition and parity.
HSPICE power estimations also suggest that the standard DC-
STL gate dissipates 30% more power when performing a 7-bit
parity, and 5% in case of a 3-bit addition.

This paper is organized as follows: Section II provides some
Threshold logic background and briefly introduces the DCSTL
gate and theνMOS transistor. Then, theνMOS-enhanced DC-
STL gate is introduced in Section III. As examples, implemen-
tations of a 7-input parity and a 3-bit adder are presented in Sec-
tion IV, together with results of HSPICE simulations and a com-
parison of the designs based onνMOS-enhanced DCSTL gates
with the designs using standard DCSTL gate. Section V closes
this paper with some concluding remarks.

530



II. BACKGROUND

A Threshold Logic Gate (TLG) is a device that is able to com-
pute any linearly separable Boolean function given by:

F (X) = sgn{F(X)} =
{

0 if F(X) < 0
1 if F(X) ≥ 0 (1)

whereF(X) =
∑n

i=1 ωixi−ψ, xi are then Boolean inputs and
wi are the correspondingn integer weights. The TLG performs
a comparison between the weighted sum of the inputsΣn

i=1ωixi

and the threshold valueψ. If the weighted sum of inputs is
greater than or equal tothe threshold, the gate produces a logic
’1’. Otherwise, the output is a logic ’0’. Up to date, many gate
implementations are able to evaluate functions lik in Equation
(1) are available, but for the purpose of the current paper, two of
them are relevant: the DCSTL gate, and theνMOS transistor.

The DCSTL gate is depicted in Figure 1. It features a com-
parator, and two sets of parallel connected NMOS transistors.
The two sets of NMOS transistors are called the data bank, and
the threshold mapping bank. These banks draw a certain amount
of current, and the comparator compares the two currents. Each
input is connected to a the gate of a transistor in the data map-
ping bank. The weights are implemented by dimensioning the
transistor such, that, for example, a transistor that implements a
weight of 2 should draw twice as much current as a transistor
that implements a weight of 1. The total current drawn by the
data mapping bank is

Idata =
n∑

i=1

Ii, (2)

wheren is the number of inputs attached to the data mapping
bank, andIi is the on current controlled by the inputxi. The
threshold is programmed by hardwiring the gates of the tran-
sistors in the threshold mapping bank either to the ground, or
Vdd. The ouput of the comparator is high if the current drawn by
the data mapping bank exceeds the current drawn by the thresh-
old mapping bank, implementing a TL function as described in
Equation (1).

The comparator itself works as follows: The comparator is
in its precharge phase when the clock is low. TransistorsM10,
M11 are on, andM5,M8 andM9 are switched off, pulling nodes
X and Y up. When the clock switches to high, the comparator
enters its evaluation phase.M10 , M11 closes, whileM5, M8

andM9 switches on. Note thatM1, M2, M3 andM4 now act
as a pair of cross-coupled inverters. Because nodes X and Y
were precharged high, inverterM1, M3 will try to pull down
node Y, while inverterM2,M4 will try to pull down node X. At
the beginning of evaluation phase,M6 andM7 are also on, due
to node X and Y being precharged high in the precharge phase.
This causes the data mapping bank to draw current from node X,
while the threshold mapping bank draws current from node Y.
The voltage at node X drops faster than the voltage at node Y, if
the currentIdata is stronger thanIT , causing Y to go up. In the
reverse situation, ifIT > Idata, the exact opposite happens, and
Y goes down, pulling X back up. The Nand gates X1 and X2
make up a latch, and are in place to hold the results of the cur-
rent evaluation during the next precharge phase. We note here,

that this gate is also capable of implementing TL functions with
negative weights and/or a negative threshold. Inputs with nega-
tive weights are simply connected to transistors in the threshold
mapping bank, and a negative threshold is programmed in the
data mapping bank instead of in the threshold mapping bank.

Fig. 1. DCSTLgate

A νMOS transistor [3], is basically a standard MOS transistor
with an electrically floating gate. A number of inputs are cou-
pled to the floating gate through capacitors. A schematic repre-
sentation of theνMOS transistor withn inputs and input capac-
itors is illustrated in Figure 2. The transistor switches on when
the voltage of the floating gate exceeds the transistor threshold
voltage, and switches off otherwise. The voltage on the floating
gateVf , can be calculated as

Vf =
∑n

i=1 CiVi∑n
i=1 Ci + C0

, (3)

whereC0 stands for the capacitance between the floating gate
and the substrate,Vi stands for the voltage of inputi, andCi for
the capacitors associated with input i. Note thatVth is propor-
tional to the sum of inputs, weighed by the capacitors associated
with each input, thus the structure in Figure 2 is able to evaluate
threshold functions.

III. NEURONMOS ENHANCED DCSTL GATE

We propose to enhance the DCSTL gate by replacing the stan-
dard NMOS transistors in its data- and threshold mapping bank
with νMOS transistors. Due to this change, the currentIdata

andIT , can not be any longer evaluated with an expression sim-
ilar to Equation (2). Unlike the standard transistor, theνMOS
accomodates more than one input, and the current drawn by a

531



C1

C2

Floating Gate

Drain

Source

.
.
.

Cn

Fig. 2. neuronMOS transistor

νMOS is no longer limited to two values. Let us assume that
the MOS transistor in the data mapping bank corresponding to
input xk is replaced by aνMOS transistor withn inputsXk =
[xn

k ,...,x1
k, x0

k], and thatV k
f andV k

th are the floating gate voltage,
and threshold voltage of theνMOS, respectively. TheνMOS
transistor draws no current ifV k

f < V k
th. WhenVf > Vth,

theνMOS transistor will draw a current that is proportional to
V k

f −V k
th. Recalling Equation (3), the current draw by theνMOS

can actually be expressed as

Ik =





0 for V k
f < V k

th∑n

i=1
Cix

i
k∑n

i=1
Ci

k
+C0

k

− V k
th otherwise

(4)

In other words, theνMOS transistor is capable of computing the
following function:

F k(Xk, Tk) =
{

(Xk − Tk) for Xk ≥ Tk,
0 for Xk < Tk

(5)

whereXk is the sum of the weighted inputs of theνMOS, and
Tk the threshold of theνMOS. Given this, the enhanced DCSTL
gate is capable of evaluating the following function:

F = sgn{
2k∑

i=1

wkF
k(Xk, Tk)} (6)

wk is a factor that corresponds to the dimensions of the transistor
at positionk. This value is negative, if theνMOS is connected
to the threshold mapping bank instead of the data mapping bank.
The enhanced DCSTL gate still behaves as a TL gate, as it eval-
uates ansgn function. However, the functionality has been en-
hanced by theνMOS transistors, which evaluate the weighted
sum of its own inputs. For convenience, in the remainder of this
paper, aνMOS transistor that performs the following function

F (X,T ) =
{

(X − T ) for X ≥ T
0 for X < T.

(7)

will be referred to as(T )+=.
Although the threshold value of the standard DCSTL gate can

be programmed easily, theνMOS transistor as depicted in Fig-
ure 2 does not share this property. The threshold value of the

νMOS transistor depends on its threshold voltageVth, which
in turn, depends on physical properties such as the type of gate
metal, oxide thickness, and sillicon doping levels. Thus, chang-
ing Vth in order to alter the threshold value in Equation (5), will
involve changing the named physical properties. This approach
is not very attractive, as this doesn’t allow the programming of
the threshold values in a practical way. In [4], a scheme for
a νMOS with threshold setting via inputs commutation is dis-
cussed. The basic idea is to use the input capacitors during its
precharge phase to set the threshold value. This method was
used in [4] for the implementation of aνMOS based threshold
gate, and produces only two levels at the output: either a high,
or a low voltage, instead of performing the function described
in Equation (5) that we actually need in our case. Therefore,
we slightly modified the scheme in order to obtain the required
behaviour. An example schematic of our implementation of the
νMOS transistor is depicted in Figure 3.

T3

T2

T1

V3

V2

V1

Vbias

C3

C2

C1

Source

Drain

Fig. 3. neuronMOS transistor with programmable threshold

The structure in Figure 3 assumes 3 data inputs V1, V2 and
V3. However, during the precharge phase, the switches connect
the input capacitors to T1, T2 and T3 instead, and the floating
gate toVbias. T1, T2, and T3 are connected either to ground or
VDD, and are used to set the threshold value we want to pro-
gram for theνMOS transistor. In the evaluation phase, the float-
ing gate is left floating, and the input capacitors are connected
to normal data inputs V1, V2 and V3. Assuming the general
case when theνMOS transistors hasn inputs, the floating gate
voltage at the end of the evaluation phase can be calculated as:

Vf =
∑n

i=1(CiVi)−
∑n

i=1(CiTi)∑n
i=1 Ci + C0

+ Vbias. (8)

If we takeVbias = Vth, the transistor in Figure 3 will now
switch on when

∑n
i=1(CiVi)−

∑n
i=1(CiTi)∑n

i=1 Ci + C0
+ Vbias < Vth (9)

or ∑n
i=1(CiVi)−

∑n
i=1(CiTi)∑n

i=1 Ci + C0
< 0 (10)

or
n∑

i=1

(CiVi)−
n∑

i=1

(CiTi) < 0 (11)

532



If we assume

T =
n∑

i=1

(CiTi), (12)

then the circuit depicted in Figure 3 implements Equation (5).
Using this scheme, we can now useνMOS transistors, each

programmed with a different threshold T, to augment the DC-
STL gate in order to implement more complex functions.

For example, we can implement the following function.

(T − 1)+= − 2(T )+= + (T + 1)+= (13)

To implement this function wit a certain value T, we have to at-
tach oneνMOS with threshold T-1, and oneνMOS with thresh-
old T+1 to the data mapping bank, and aνMOS transistors with
multiplicity 2, and a threshold T to the threshold mapping bank
of the DCSTL gate. A transistor connected to the data- or thresh-
old mapping bank with multiplicitym, means that we dimension
the transistor such, that the transistor drawsm times the current
of what it normally would draw. Figure 4a shows the function
(T−1)+=, Figure 4b adds−2(T )+=, to the previous, and(T+1)+=
is added in Figure 4c.

T+1TT−1

T+1TT−1

T+1TT−1

(b)

(a)

(c)

Fig. 4. (T − 1)+= − 2(T )+= + (T + 1)+=

Note that Equation (13) results in an output 1 at X=T, and 0
for any other input X. Using Equation (13), we can implement
functions with 1’s and 0’s we desire. Consequently, in theory,
usingνMOS transistors instead of conventional ones at the data-
and threshold mapping banks, any symmetric Boolean function
can be implemented using only one (enhanced) DCSTL gate.

Unfortunately, aνMOS cannot accomodate too large a num-
ber of inputs. This is due to the fact, that Equation (5) is merely
an approximation of the behaviour of theνMOS transistor. Fig-
ure 5 shows the behaviour of a short-channelνMOS transistor,
together with the desired behaviour. The solid line is the desired
behaviour, while the dashed line represents the actual current
drawn by the transistor. The difference between the actual be-
haviour of theνMOS and the desired behaviour, is in the non-
linear region near the threshold of the gate. This difference be-
comes more significant as the number of inputs increase, and

this prevents us from using too many inputs. Figure 6 a and b
shows the situation of aνMOS transistor with few inputs, and a
νMOS transistor with a large number of inputs. One can observe
that in the case in Figure 6b, more values for inputX fall within
the nonlinear region. This prevents a proper implementation of
functions such as Equation (13).

X

Ids

T

Fig. 5. Desired and actual behaviour of theνMOS

I

X

ds

1 2 30

1
ds

1 2 3 4 5 6 7 8 90 10 11 12 13 14 15 16 17

X
18

0

0 (b)

(a)

I

Fig. 6. Impact of a large fan-in onνMOS behaviour.

IV. EXPERIMENTAL RESULTS

To evaluate our proposal, a 7-input parity and a 3-bit binary
adder are implemented in both standard, and enhanced DCSTL,
and are compared in terms of delay and area. HSPICE was used
to verify correct operation and evaluate the delays.

The 7-input parity function is ’1’ for X=1, X=3, X=5 and
X=7, and ’0’ otherwise. Using Equation (13), the 7-input parity

533



can be implemented with the enhanced DCSTL gate as follows:

XOR7 = sgn{(0)+= − 2(1)+= + (2)+=
+(2)+= − 2(3)+= + (4)+=
+(4)+= − 2(5)+= + (6)+=
+(6)+= − 2(7)+= + (8)+=} (14)

As the inputX , whereX =
∑7

i=1 xi, is limited to 7, the terms
-2(7)+= and +(8)+= are unnecesary. The observation leads to the
simplification of the inplementation as follows:

XOR7 = sgn{(0)+= + 2(2)+= + (4)+=
+2(6)+= − 2(1)+= − 2(3)+=

−2(5)+= − 1
2} (15)

The extra term -12 is added for two reasons:sgn{0} is usu-
ally defined as 1. Furthermore, in case of the DCSTL gate, it
also means that, in the case of evaluatingXOR7(0), the data
bank, and threshold mapping bank both draw an equal amount
of current, which may result in an unstable output of the DCSTL
gate.

The 3-bit adder is implemented in a similar fashion, except
that the inputs are now two 3-bit numbers, and a carry-in, and
the inputs are weighted according to the significance of each bit:

X =
2∑

i=0

si(ai + bi) + Cin (16)

The output of the 3-bit adder is a 3-bit sums[2 − 0] and a
carry-out. We need one enhanced DCSTL gate for each out-
put bit. The Carry-out can be generated without the need for an
enhanced DCSTL gate, a standard one will suffice:

Carry − out = sgn{X − 8} (17)

The highest bits[2] can be expressed as:

s[2] = sgn{(3)+= − (4)+= − (7)+= + (8)+=

+(11)+= − (12)+= − (15)+= −
1
2
} (18)

s[1] can be generated using the function:

s[1] = sgn{(1)+= − (2)+= − (3)+= + (4)+=

+(5)+= − (6)+= − (7)+= −
1
2
} (19)

Note that the two highest bits are not needed to generates[1].
These two bits are not connected to the gate that generatess[1].

The least significant bit is the result of a 3-bit parity of the
two lowest bits and the carry-in, and is implemented in much
the same way as the 7-input parity above.

s[0] = sgn{(0)+= − 2(1)+= + (2)+= −
1
2
} (20)

In order to evaluate our results, both the 7-bit parity, and 3-bit
adder were also implemented using the standard DCSTL gate.
The 7-input parity, and the 3-bit addition can be implemented
in 2 levels of threshold logic with standard DCSTL. This is

precharge evaluation total delay avg power

7-bit parity, eDCSTL 3ns 5ns 8ns 291mW
7-bit parity, sDCSTL 3ns 3ns 9ns 377mW
3-bit adder, eDCSTL 3ns 5ns 8ns 557mW
3-bit adder, sDCSTL 3ns 3ns 9ns 586mW

TABLE I

RESULTS OFHSPICESIMULATIONS

achieved either by using Minnick[5], or Muroga[5] schemes.
Considering that the performance of both schemes are compara-
ble in terms of delay, a Minnick network was chosen as it uses
a smaller number of threshold gates when compared to Muroga.
Equation (21), implements the 7-bit parity:

XOR7 = sgn{ X − 2sgn{X − 6}
−2sgn{X − 4}
−2sgn{X − 2}

−1} (21)

Equation (21) also shows, that we need 4 standard DCSTL
gates to implement the 7-input parity, compared to only 1, when
implemented using the enhanced DCSTL gate. Equations (22),
(23), (24), and (25) generate carry-out, and the sum bits.

carry − out = sgn{X − 8} (22)

s[2] = sgn{X − 8sgn{X − 8} − 4} (23)

s[1] = sgn{X − 4sgn{X − 4} − 2} (24)

s[0] = sgn{X − 2sgn{X − 2} − 1} (25)

According to Equations(22), (23), (24), and (25) indicate that 7
standard DCSTL gates are needed, while we only need 4 when
using the enhanced DCSTL gate.

Table I shows the time needed during the precharge phase
and evaluation phase of the DCSTL gate, the total delay and
estimated average power dissipation. Although we need 2 levels
of threshold logic in standard DCSTL, it is possible to overlap
the precharge phase of the second level with the evaluation phase
of first level. The delay would be only 112 clock cycles instead
of 2.

V. CONCLUSIONS

Aa way to enhance the Differential Current-Switch Thresh-
old Logic gate (DCSTL) was presented in order to allow the
gate to perform more complex functions. This enhancement
was achieved by replacing the MOS-transistors at the data- and
threshold mapping bank of the DCSTL gate with neuronMOS
transisors. First, we introduced the neuronMOS-enhanced DC-
STL gate. Then, the results of HSPICE simulations of a 7-input
parity and a 3-bit addition function implemented with the en-
hanced DCSTL gate was presented, along with a comparison
with the same functions implemented using the original DCSTL
gate. These simulations indicated that the designs based on en-
hanced DCSTL gates can achieve a 12.5% speed-up over the
conventional DCSTL gate designs for both addition and parity.
HSPICE power estimations also suggested that the standard DC-
STL gate dissipates 30% more power when performing a 7-bit
parity, and 5% in the case of a 3-bit addition.

534



REFERENCES

[1] M. Padure, S. Cotofana, S. Vassiliadis, “A CMOS flip-flop featuring em-
bedded Threshold logic functions”, 13th ProRISC workshop on Circuits,
Systems and Signal Processing, ProRISC2002, Veldhoven, The Nether-
lands, 2002

[2] T. Shibata, T. Ohmi, “A functional MOS Transistor Featuring Gate-Level
Weighted Sum and Threshold Operations”, IEEE Transactions on elec-
tron devices, vol. 39, no.6, june 1992

[3] D. Somasekhar, K. Roy, “Differential Current Switch Logic: A low
Power DCVS Logic Family”, IEEE journal of solid-state circuits, vol
31, No. 7, July 1996

[4] R. Lashevsky, K. Takaara, M. Souma, “The efficiency of neuron-MOS
transistors in threshold Logic”, Soft Computing 3, Springer-Verlag, 1999

[5] S. Muroga, “Threshold logic and its applications”, New York, Wiley-
Interscience, 1971

[6] C. R. Lageweg, S. D. Cotofana, S. Vassiliadis, “Binary addition based
on single electron tunneling devices”, Proceedings of the 2004 Fourth
IEEE Conference on Nanotechnology, pp. (CD proceedings), Munich,
Germany, August 2004

[7] C. R. Lageweg, S. D. Cotofana, S. Vassiliadis, “A linear threshold
gate implementation in single electron technology” , Proceedings. IEEE
Computer Society Workshop on VLSI 2001: Emerging Technologies for
VLSI Systems, pp. 93-98, Orlando, USA, April 2001

[8] M. D. Padure, S. D. Cotofana, S. Vassiliadis, “High-speed hybrid
threshold-Boolean logic counters”, 45th International Midwest Sympo-
sium on Circuits and Systems, pp. 457-460, Tusla, Oklahoma, USA, Au-
gust 2002

[9] S. D. Cotofana, “Addition Related Arithmetic Operations with Threshold
Logic”, PhD Thesis, Delft, January 1998, PhD Thesis

[10] T. Shibata, T. Ohmi, “Neuron MOS binary-logic integrated circuits. I.
Design fundamentals and soft-hardware-logic circuit implementation”,
Electron Devices, IEEE Transactions on Volume 40, Issue 3, March 1993

[11] T. Shibata, T. Ohmi, “Neuron MOS binary-logic integrated circuits. II.
Simplifying techniques of circuit configuration and their practical appli-
cations”, Electron Devices, IEEE Transactions on Volume 40, Issue 5,
May 1993

[12] H. Ozdemir, A. Kepkep, B. Pamir, Y. Leblebici, U. Cilingiroglu, “A
capacitive threshold-logic gate”, Solid-State Circuits, IEEE Journal of
Volume 31, Issue 8, Aug. 1996

535


