
An Input Weights Aware Synthesis Tool for Threshold
Logic Networks

Li Zhang and Sorin Cotofana
Computer Engineering Laboratory, Delft University of Technology, Delft, The Netherlands

{zhangli, sorin}@CE.ET.TUDelft.NL

Abstract— In this paper we present a TL specific synthesis tool that
aims to exploit the specific characteristics of TL gates, especially the
possibility to assign weights larger than one to TL gate inputs. More-
over, instead of confining network nodes with input fan-in restriction,
we employ the sum of weights as constraint, as this is more relevant to
the physical basis of TL implementations. To make a seamless concate-
nation with Boolean logic network access and synthesis, we embedded
our program into a widely applied existing logic synthesis tool, SIS from
University of Berkeley, by supplementing it with 8 new TL specific com-
mands. Several efficient heuristic synthesis methodologies are proposed,
tested, and implemented, and the user can change the synthesis approach
by simply specifying the required heuristic. To evaluate the proposed
tool we used 22 MCNC benchmark circuits. Our experiments suggest
that when compared with the state of the art our system can achieve,
on average, a 24.5% node count reduction (area), a 32.8% network depth
reduction (delay), and a 49.4% product of node count and network depth
(area delay product) reduction. Furthermore, our tool is able to provide
well-balance networks, which is highly important for practical designs.

Keywords— Threshold Logic, Logic Synthesis, Integer Linear Pro-
gramming

I. Introduction

Threshold Logic (TL), as a powerful alternative to
Boolean Logic (BL), was proposed in the late 1950’s as
a result of the development of neural network theory, and
was proven in theory to be more efficient than Boolean
Logic [1]. Recently, TL gates have been proposed in CMOS
technology, e.g., Capacitive Threshold Logic [2], Differ-
ential Current-Switch Threshold Logic [3], and emerging
nano-technologies, e.g., Single Electron Tunneling (SET)
[4], Resonant Tunneling Diodes (RTD) [5], etc. While im-
portant steps have been made towards the hardware im-
plementation of TL computing units the TL utilization in
Very Large Scale Integration (VLSI) also requires the ex-
istence of high-level TL synthesis tools. Up to date very
little has been done in this research direction [6]. Recently,
a synthesis tool has been proposed in [7], but it mostly
treats Threshold Logic Gates (TLG) as conventional BL
gates and the particularities of TL gates are almost com-
pletely ignored during the synthesis process.

In the view of the previously mentioned facts we focus
in this paper on effective TL network synthesis. More in
particular, we concentrate on the efficient utilization of TL
gate features, e.g., the capability to have input weight val-
ues larger than one in an Integrated Circuit (IC) implemen-
tation. Furthermore, we choose to embed our TL synthesis
tool into SIS [8], a Boolean logic synthesis tool for synthesis
and optimization of sequential and combinational circuits,
to make a seamless concatenation with Boolean Logic net-
work access and, at the same time, take advantage of SIS’s
powerful Boolean network optimization capability.

This paper is organized as follows. Section II introduces

Threshold Logic and discusses state of the art VLSI im-
plementations of TL. Additionally, the utilization of gate
sum of input weights instead of gate fan-in is proposed as
constraint for TL synthesis. Section III presents the basic
synthesis procedure we implemented. Section IV presents
in details the TL synthesis methodology. Various heuristic
algorithms are presented. Section V presents the experi-
mental results and comparisons among our various algo-
rithms and with the approach in [7]. Section VI presents a
summary of our work and some conclusions.

II. Background

A Threshold Logic Gate, or a threshold gate, is a
logic gate assuming Boolean inputs and operating such
that the output is 1 if the sum of the input quantities
x1, x2, ..., xn, weighted with real numbers w1, w2, ..., wn, at-
tains the threshold (t) (which is also a real number) and
the output is 0 if the sum does not. This can be formulated
as following:

F (X) = sgn{f(X)} =
{

1 if f(X) ≥ t
0 if f(X) < t

(1)

f(X) =
n∑

i=1

wixi − t (2)

Fig. 1. A Threshold Logic Gate

Figure 1 depicts such a threshold logic gate. For a given
TL gate with inputs x1, x2, ..., xn, and each input having
a weight of w1, w2, ..., wn, respectively, in case the thresh-
old for the gate is t, for the sake of notation simplicity
we denote this gate as [w1, w2, ..., wn; t] with respect to
x1, x2, ..., xn, or as [(x1)w1, (x2)w2, ..., (xn)wn; t].

TLGs are capable to efficiently realize complex Boolean
functions using fewer logic gates [9]. For example, a
Boolean function f = ab + bc can be implemented into

578



a single TLG instead of 2 logic gates with Boolean gates.
Due to its powerful capabilities in implementing Boolean
functions, a number of VLSI implementations are built
up to further explore the advantages of TLG. There are
three main state of the art TL implementations: Capac-
itive Threshold Logic (CTL), conductance/current mode
TL implementations, and implementations based on the
emerging nano-technologies.

Previous research in TL synthesis [7] is using the gate
fan-in as a synthesis constaint. We believe that fan-in is
not the most appropriate metric for TL synthesis as it does
not accurately reflect the physical phenomena that take
place in a TLG implementation. In order to demonstrate
that this is the case and to determine the most appropriate
metric for TL synthesis, we use Differential Current-Switch
TL (DCSTL) [3] as a discussion vehicle. DCSTL belongs to
the conductance/current mode TL implementation family.
As depicted in Figure 2, the circuit comprises a fast semi-
dynamic CMOS latch and two analog computation blocks
referred as data bank and threshold mapping bank. Both
data and threshold mapping banks consist of two parallel-
connected sets of unit nMOS transistors. In the precharge
phase, both Y1 and Y1 are precharged high. In the evalu-
ation phase, the total currents generated by the transistor
banks Idata and IT , corresponding to the data bank and the
threshold mapping bank, are compared with each other by
the latched comparator. Both Y1 and Y1 start dropping at
different speeds affected by Idata and IT . The node which
crosses the latch switching threshold decides the output
voltage of the TL gate. The input weights of the TLG
are represented via the data bank transistors’ geometric
properties, and the threshold is represented by the thresh-
old mapping bank transistors’ geometric properties and the
threshold mapping input values.

Fig. 2. A Differential Current-Switch Threshold Logic Gate

In Figure 2, the comparison between the sum of weighted
inputs and the threshold is actually carried out on current
level, and the currents that can be generated from the data
and threshold banks decide the output of the circuit. Since
different transistors in each bank represent different weights

and threshold values, the voltage drops at Y1 and Y1 are
linear to the currents that can be drained from threshold
and data banks, respectively. Thus, the voltage compari-
son in Y1 and Y1 can be redefined as the comparison on the
voltage drop on both points, which is Vdw = Vdu×

∑n
i=1 wi

and Vdt = Vdu × t, where Vdu represent the unit voltage
drop. Since in extreme conditions, Vdw cannot be larger
than Vdd, Vdu cannot be higher than Vdd/

∑n
i=1 wi. This

actually means that in order to make the circuit able to be
sensitive to a unit voltage difference, the sum of weights
has to be confined to a certain range. Thus, in a TL tai-
lored synthesis process, we should use the Sum Of Weights
(SOW) as a constraint instead of the fan-in. Actually, SOW
can be seen as the generalized fan-in metric, as when all
the weights are 1’s, it reduces to fan-in. We note here
that the fact that fan-in is not the most appropriate metric
for TL synthesis that holds fine in all TL implementation
classes. Instead, SOW is the metric most correlated with
the underlying physical structure of TLGs.

III. Threshold Logic Network Synthesis
Overview

The overall organization of the TL synthesis framework
we propose is depicted in Figure 3. Our proposal is based
on two main steps. The first step (the preprocessing) is
dedicated to the construction of a BL gate mapping for a
given network specification. As we decided to embed our
proposal in the SIS environment this can be taken care by
SIS, thus, no new dedicated modules are required for the
preprocessing. The second step is TL specific and consti-
tutes the augmentation we did to the SIS environment. In
the remainder of this section, we shortly describe the basic
blocks in Figure 3.

Fig. 3. Threshold Logic Synthesis Flow

First of all, the TL synthesis tool has to deal with tra-
ditional combinational Boolean logic (BL) network speci-
fications. Most combinational circuits utilized in SIS are

579



described in BLIF (Berkeley Logic Interchange Format).
Thus, in the synthesis process, BLIF has to be translated
into Boolean network structures, usable to and understand-
able by the TL synthesis tool. An original SIS command,
read blif, is capable of doing this translation.

Since SIS is equipped with many powerful operations and
algorithms for BL minimization and BL network mapping,
which can optimize BL networks on both metrics of area
and delay, we take advantage of SIS to apply a Boolean
mapping on network specifications to get a pre-optimized
network. This process is also done by original SIS com-
mands.

After this stage, our TL network synthesis tool takes the
control and starts a direct mapping to a TL network from
a BL network. This process is called TL Network Transfor-
mation. After this stage, an equivalent TL network is gen-
erated on the basis of a BL network, and each basic NOT,
AND, and OR gate is translated into the corresponding TL
gate.

Here we present a simple example of direct mapping op-
eration in Figure 4. On the graph, nodes and links are
corresponding to the TL gates and wires between gates in
the circuit, respectively. For instance, node n1 represents
a TL AND gate. Node a and b are corresponding to the
primary inputs of the circuits. Node n0 and n1 are called
sub-nodes of n2. In the tree graph, primary inputs are
represented as leaves, primary outputs are represented as
roots.

Fig. 4. A 2-input XOR Gate Direct Mapping

The directly mapped TL network has only simple TL
gates replicating Boolean AND, OR, and NOT gates. To
fully exploit the effectiveness of TL gates, a combination
process has to be applied on the available TL network.
At this stage, some simple TL gates can be combined to-
gether to create much more complex TL gates, which can
perform the same functions. Totally, four combination al-
gorithms (heuristics) are proposed to perform the TL gate
combination. They are all implemented in the TL Network
Combination module that is used to optimize the directly
mapped TL network.

The TL network synthesis suite we propose is aiming
the TL network optimization on metrics like circuit area,
delay, and area delay product. Based on the discussion

in Section II, the area of a TL gate depends on the sum
of its input weights. For instance, the area of a DSCTL
gate is composed out of the latch area (a constant area)
and the area of the transistors in the data and threshold
mapping banks. Thus, the area σ of a DSCTL gate can
be expressed as σ = σL + a× SOW , where σL is the latch
area, a is a constant, and SOW is the sum of the input
weights and threshold values. In this paper, for the sake
of simplicity, we assume that all TL gates have the same
unit area. We made this assumption mainly in order to
easily compare our results with the results in previous TL
synthesis researches [7], where the same assumption for TL
gates was utilized. We note here however that some precise
TL gate implementation specific area models can be easily
included in our framework.

Within certain limits, the propagation delay of TL gates
increases slowly when the gate fan-in increases. Compared
with Boolean gates, TL gate propagation delay dependence
with the fan-in number is logarithmic instead of linear or
a higher order [10]. Thus, for that reason and for the sake
of simplicity, we assume that each TL gate has a constant
delay. Holding these two assumptions, the metrics of area,
delay, and area delay product, are converted into the met-
rics of node count, network depth, and product of node
count and number of network levels. Later on, the two set
of metrics are regarded as interchangeable in this paper.

IV. Threshold Logic Network Combination

While TLGs are capable of implementing complex
Boolean functions, the TL network achieved from the di-
rect mapping stage is still using TL gates implementing
basic Boolean operations. To exploit the powerful capa-
bilities of TLGs, TL node combinations have to be carried
out to increase the nodes’ computation complexities and
reduce the total number of nodes and the number of levels
in the network. However not all the Boolean functions can
be expressed as threshold functions, which means that the
combination has to stop under some certain circumstances.
To find out whether or not a certain Boolean function can
be expressed as a TL function, Integer Linear Program-
ming (ILP) technique is utilized. Thus before introducing
the combination heuristics we first present the ILP formu-
lation methods, which are used to map Boolean functions
into TL functions. Before explaining the method, several
terms has to be clarified. A function f is positive (negative)
unate in variable xi if and only if f is monotone increasing
(decreasing) in xi, otherwise f is a binate function [11].
If f is positive (negative) unate in all its variables, f is
a positive (negative) unate function [11]. If f is unate in
all its variables, regardless of the fact that it is positive or
negative, f is a unate function. The ON-set of function is
the set of input vectors that make the function output to
be 1. Similarly, the OFF-set of function is the set of input
vectors that make the function output to be 0.

Since a binate function cannot be a threshold function
[12], the Sum Of Products (SOP) of the Boolean function
should also be checked for its unateness. However, not all
the unate funcions are threshold functions. For instance,

580



f = ab+ cd cannot be threshold function. Actually, only if
the ILP problem formulated from the SOP is solvable, can
the function be realized with a TLG.

In [6], ILP was proposed to determine the input weights
and threshold of a TL gate. A series of relationships
between the weights and the ON-set and OFF-set of a
Boolean function was developed.

The traditional algorithm can only handle positive unate
functions, thus some literal substitution has to be per-
formed to make the unate function positive unate. For
example, consider a unate function f , where f = a1∨ ā2a3.
In this case a2 is in inverted (negative) form. If we replace
ā2 with b2, we get a positive unate function f = a1 ∨ b2a3,
where b2 = ā2.

Then, the ILP formulation for f with respect to a1, b2, a3

and threshold t is as follows:

Minimize: w1 + w2 + w3

Subject to: wi ≥ 0, for i = 1, 2, 3.
t ∈ integer.

ON set: a1 ∨ b2a3

w1 + 0 + 0− t ≥ 0, for cube a1

0 + w2 + w3 − t ≥ 0, for cube b2a3

OFF set: ā1b̄2 ∨ ā1ā3

0 + 0 + w3 − t ≤ −1, for cube ā1b̄2

0 + w2 + 0− t ≤ −1, for cube ā1ā3

The detailed formulation method and proof of this formu-
lation method can be found in [9].

A. TL Non-Stop Recursive Constrained Combination

The basic idea of the Non-Stop recursive combination
method (Non-Stop method) is to recursively combine all
the sub-branches, whenever possible. For instance, in Fig-
ure 4 the tree led by node n1 is the sub-branche of the tree
led by node n2.

Before applying the method, the whole TL network G
consists of purely AND, OR, and/or NOT gates in TL ver-
sion. This Non-Stop method takes the sub-network from
each primary output node, poi, and supplies each primary
output to the recursive Non-Stop combination procedure.
In the procedure, the Sum Of Products (SOP) of the cur-
rent node is constructed. For instance, in Figure 4 the SOP
representation of node n2 is n0 + n1. Each sub-node ni of
the node n is tested for combinability into the top node
n. This test is carried out at the Boolean sum of products
level. In Figure 4, node n0 is first tested for the posibility
to be absorbed into node n2. After replacing the literal
ni with the function it represents into n’s SOP, the newly
created SOP is passed to a TL gate feasibility procedure
which employs ILP. In Figure 4, the new SOP of node n2

is ni0b + n1. If the SOP passes the TL feasibility proce-
dure and satisfies SOW constraint, the newly created SOP
will replace the current one, otherwise the current SOP is
kept on trail with next sub-nodes. This loop keeps run-
ning until all the sub-nodes are tested once. In Figure 4,
since the new SOP is a threshold function which satisfies

SOW constraint, the SOP on stack is updated. The other
sub-node n1 will be tried next in the same way. However,
in this case the new SOP cannot be a threshold function,
thus ni0b + n1 is still the SOP kept on stack.

After all the sub-nodes are processed and the SOP is
updated, if any sub-nodes were regarded as absorbable to
the top node n during the process, a node combination
occurs on node n and a new node n′ is created from SOP to
replace the original node n. In Figure 4, the new TL node
n′

2, [(ni0)1, (b)1, (n1)2; 2], can be created from ni0b + n1.
Then node n′ is supplied to the Non-Stop procedure again.
In case no branch of node n was successfully absorbed into
SOP, the node is then marked in order to signal that it
cannot be combined and each of the sub-nodes, ni, are
supplied into the recursive combination procedure.

Since some fan-out nodes provide signals for many suc-
cessors, which can be regarded as sharing nodes in the
network, the absorption on these nodes might lead to the
duplicating of some components. Basically, the Non-Stop
method is aiming to combine as many nodes as possible
regardless the original node sharing properties in the net-
work. Also due to the simple traversal sequence, some
nodes may be left unprocessed in the network.

B. Node-By-Node Level Priority Combination

The second heuristic is aiming to improve the perfor-
mance of the combination method by altering the travers-
ing sequence. Unlike the Non-Stop method, which can
be regarded as a partially Depth-First Traversal, Node-by-
Node Level Priority Recursive Combination is more likely
to be a Breadth-First Traversal.

Instead of traversing sub-nodes after finishing the ab-
sorption on the current node, the procedure can return
immediately and try next node on the same level. The
procedure starts from the root level (primary outputs) in
a network. After passing through the top level, the tra-
versing algorithm goes toward primary inputs downward
in a level-by-level fashion. Due to the accessing pattern of
this approach, we name this procedure Recursive Node-by-
Node Level Priority Combination method (LP method).
This strategy prevents the system from processing lower
level nodes before higher level nodes, and consequently can
avoid the situation when some nodes are left unprocessed.

C. Bottom-up Analysis Based Combination

In the first two algorithms, we tried to carry out as many
combinations as possible, while sacrificing some node shar-
ing properties. In this method, we proposed an alternative
approach, which is based on traversing the network from
primary inputs to primary outputs. From the bottom, the
system gets all the nodes in the current, which is the pri-
mary input level in the beginning, sort inputs for each node
in this level and try to combine all the nodes upon the
knowledge collected during an analysis step. Since after
the combination procedure on a level the network topology
might change, with regard to the original depth properties
marked on each nodes, the procedure might get incorrect
nodes for a certain level. In order to let the procedure al-

581



ways have access to the correct node list for a certain level,
the level property of combined nodes should always be up-
dated in time. Thus, this algorithm is called Bottom-up
Analysis Based Combination method (BAB method).

The real node absorption (combination) is carried out
upon the information gathered in an analysis step. For
each level, the combination is carried out in two phases,
analysis and absorption. Our strategy is trying to combine
the nodes that can only be absorbed by all their fan-out
nodes. In case a node can only be absorbed by part of
its fan-out nodes, this node is not absorbed by any of its
successors. In this way, the node sharing properties in the
network are well preserved.

D. Dual Direction 2-pass Analysis Based Combination

The first two combination algorithms are targeting on
more combination, and the third one is trying to preserve
the node sharing property in the network. Thus we propose
another algorithm and try to balance the two factors in the
combination process.

This new method is a two-pass method. It first applies
an analysis on the entire network, and implements the real
combination based on the analysis result. Unlike BAB
method, in which the analysis and combination are per-
formed for each level, both operations of the new method
are applied to the whole network. The analysis phase fol-
lows an algorithm similar to the LP approach from the
top of the network, primary outputs, to the bottom, pri-
mary inputs. The combination phase combines the net-
work in a bottom-up fashion. Thus, we name the algo-
rithm Dual Direction 2-pass Analysis Based Combination
method (DDAB method).

Although it is still an heuristic thus it does not produce
optimal solutions, it gives stable performance on the net-
works we used for its evaluation and provides balance on
the node sharing and node absorption. Due to this prop-
erty, the DDAB combination method is set as the default
option for the ILP based combination in our TL synthesis
tool.

V. Experimental Results

To evaluate our proposal we conducted a number of ex-
periments on a subset of the MCNC benchmarks [13]. In
order to be able to compare our proposal with previous art,
we utilize the same set of 22 benchmarks as in [7]. The ma-
jor comparison metrics we consider are node count, num-
ber of levels in network, and the product of node count
and number of levels, which are corresponding to the area,
delay, and area delay product.

To evaluate the efficiency of the proposed algorithms,
the result achieved from direct mapping and our heuristics
are compared. As presented in Table I and Table II, the
comparisons between direct mapping results and our pro-
posed heuristics results are made under two circumstance:
SOW constraint of 12 and SOW constraint of 100. While
comparing with the direct mapping results, combination al-
gorithms obviously show up their advantages. In the com-
parison, the smallest node counts, number of levels, and

TABLE I

Comparison Between Results from the Direction Mapping

and the Proposed Heuristics under SOW Constraint of 12

TABLE II

Comparison Between Results from the Direction Mapping

and the Proposed Heuristics under SOW Constraint of 100

the product of node count and number of levels that can
be achieved by the four proposed algorithms are selected
for each benchmark. Our experiments indicate that on av-
erage, the best results that can be achieved from our pro-
posed heuristics under SOW constraints of 12 and 100 pro-
vide a reduction of, respectively, 35.1% and 46.1% in node
count, 40.6% and 49.3% in number of levels, and 58.0% and
71.2% in area delay product. When compared with results
under an SOW constraint of 12, the result generated under
an SOW constraint of 100 makes an improvement of 15.0%,
15.9% and 30.3% on area, delay, and area delay product,
respectively.

582



TABLE III

Comparison with Previous Research under Fan-in

Restriction of 6

From the comparisons, each method shows its merits and
disadvantages. Basically, Bottom-up Analysis Based com-
bination method achieves better results in node count, but
it also gives larger number of levels in many cases, and
in area delay product, it also does not perform well when
compared with the other algorithms. Since the Dual Di-
rection 2-pass Analysis Based (DDAB) works similarly to
the Level Priority (LP) algorithms, both give good results
in number of levels where the LP method is slightly bet-
ter, however LP method does a little worse than the other
algorithms in node count. Basically, DDAB solution per-
forms a little better in area delay product, while the other
three algorithms give similar results on this metric in most
cases. Also Non-Stop method gives a stable performance
in all the metrics.

A comparison between our results and the results re-
ported in previous research [7] was also performed. As the
authors of [7] utilized in their experiments a fan-in restric-
tion of 6, a direct comparison between our results and theirs
may be unfair in some cases as, under our restriction, our
tool may generate gates with input number larger than 6,
and under their restriction, the maximum SOW resulted by
their tool might exceed our constraints. Thus we selected
from our experiments only the ones satisfying their fan-in
restriction of 6, and compare these results with theirs on
the issues of the node count, number of levels, and area
delay product.

In the comparison presented in Table III, 11 eligible
benchmarks are selected, where our methods generated net-
works with fan-in equal or smaller than 6. Our TL synthesis
tool performs better on all the three comparison metrics.
According to our calculation, the average node count reduc-
tion is 24.5%, the reduction on number of levels is 32.8%,
and the biggest gain is on area delay product, for which we
obtained a 49.4% reduction.

VI. Conclusion

In our work, we proposed a number of TL synthesis al-
gorithms and implemented them in a TL network synthesis
tool. Our tool was successfully and seamlessly embedded
into SIS. First of all, we proposed the utilization of the

Sum Of the Weights (SOW) as TL synthesis constraint in-
stead of the traditional gate fan-in. This decision made the
synthesis tool better aware of the basis of TL underlying
technologies. In view of the powerful capabilities of SIS in
Boolean logic (BL) minimization and BL network mapping,
we took the pre-processed result of BL network from SIS
as input to our TL synthesis tool and made as a first step
towards TL synthesis a direct mapping from BL networks
to TL networks. Aware of the lack of TL network synthesis
theory and the fact that the problem is NP-complete, we
implemented four heuristics for the TL network optimiza-
tion. The four combination algorithms make the network
far more efficient than the direct mapping network. When
compared with previous TL synthesis research in [7], using
the same benchmarks and similar restrictions, we achieved
a 25% reduction on node count, a 33% reduction on net-
work depth, and an almost 50% reduction on area delay
product on average.

References

[1] P. M. Lewis II and C. L. Coates. Threshold Logic. New York:
Wiley, 1967.

[2] Hakan Ozdemir, Asim Kepkep, Banu Pamir, Yusuf Leblebici,
and Ugur Cilingiroglu. A Capacitive Threshold-Logic Gate.
IEEE Transaction On Computer-Aided Design Of Integrated
Circuits And Systems, 31(8):1141–1149, August 1996.

[3] M. D. Padure, S. D. Cotofana, and S. Vassiliadis. Cmos im-
plementation of generalized threshold functions. In Proceedings
of the International Work-conference on Artificial and Natural
Neural Networks (IWANN2003), pages 65–72, June 2003.

[4] C. R. Lageweg, S. D. Cotofana, and S. Vassiliadis. A full adder
implementation using set based linear threshold gates. In Pro-
ceedings 9th IEEE International conference on electronics, cir-
cuits and systems - ICECS 2002, pages 665–669, September
2002.

[5] K. Maezawa, H. Matsuzaki, M. Yamamoto, and T Otsuji. High-
speed and low-power operation of a resonant tunneling logic gate
mobile. In IEEE Electron Device Letters, pages 80–82, March
1998.

[6] Michael Dertouzos. Threshold Logic: A Synthesis Approach.
M.I.T. Press, 1965.

[7] Rui Zhang, Pallav Gupta, Lin Zhong, and Niraj K. Jha. Thresh-
old Network Synthesis and Optimization and Its Application to
Nanotechnologies . IEEE Transaction On Computer-Aided De-
sign Of Integrated Circuits And Systems, 24(1):107–118, Janu-
ary 2005.

[8] Ellen M. Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho
Moon, Rajeev Murgai, Alexander Saldanha, Hamid Savoj,
Paul R. Stephan, Robert K. Brayton, and Alberto Sangiovanni-
Vincentelli. Sis: A system for sequential circuit synthesis. In
Electronics Research Laboratory, Memorandum No. UCB/ERL
M92/41, May 1992.

[9] Li Zhang. Threshold logic network synthesis suite, July 2005.
[10] M. D. Padure, C. Dan, S. D. Cotofana, M. Bodea, and S. Vassil-

iadis. Capacitive threshold logic: A design perspective. In 22nd
International Semiconductor Conference CAS 1999, pages 81–
84, October 1999.

[11] G. De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw Hill, 1993.

[12] S. Muroga. Threshold Logic and Its Application. Wiley and Sons
Inc., 1971.

[13] Krzysztof Kozminski. Benchmarks for layout synthesis - evolu-
tion and current status. In 28th ACM/IEEE Design Automation
Conference, pages 255–270, 1991.

583


