
Efficient Vectorization of the FIR Filter

Asadollah Shahbahrami Ben Juurlink Stamatis Vassiliadis
Computer Engineering Laboratory

Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology, The Netherlands
Phone: +31 15 2787362. Fax: +31 15 2784898.

E-mail: {shahbahrami,benj,stamatis}@ce.et.tudelft.nl.

Abstract—The Finite Impulse Response (FIR) filter is one
of the most important digital signal processing (DSP) ker-
nels. It performs filtering of speech signals in modern voice
coders such as the ETSI GSM EFR/AMR or ITU G.729, as
well as in many other signal processing areas. Many contem-
porary digital signal processors as well as general-purpose
microprocessors employ SIMD instructions to exploit the
data-level parallelism present in media kernels such as the
FIR filter. An important question is, therefore, how can the
FIR filter be effectively vectorized to exploit the SIMD capa-
bilities of the architecture?

In this paper the performance of different methods for
vectorizing the FIR filter such as vectorizing the inner loop
and vectorizing the outer loop algorithms using C program-
ming and SIMD instructions are compared. Additionally,
we present another method to vectorize the FIR filter. It
vectorizes the inner loop as well as the outer loop. All of
these methods suffer from misaligned memory accesses. To
overcome this problem we use four copies of filter coeffi-
cients that are aligned to 8-byte in memory. Our results
show that the MMX implementation that vectorizes the in-
ner loop is up to 3.34 times faster than the corresponding
C implementation. Furthermore, the MMX implementation
that vectorizes the inner loop as well as the outer loop and
avoids misaligned memory accesses is up to 2.2 times faster
than the MMX implementation that only vectorizes the in-
ner loop. Finally, MMX implementation that vectorizes both
loops and also avoids misaligned memory accesses is up to
1.69 times faster than the version that does not avoid mis-
aligned memory accesses.

Keywords—FIR, SIMD, Multimedia applications, data reuse.

I. INTRODUCTION

One of the most important practical problems in high-
performance computing is the design of efficient imple-
mentations of Digital Signal Processor (DSP) operations.
DSP operations computing problems have grown in size
and complexity following the increased capability of hard-
ware. For efficient using of available hardware resources,
the designers need a deep understanding of DSPs algo-
rithms as well as a complete knowledge of the capabilities
of the specific microarchitecture.

Digital filters are the firmness of most DSP systems.

Among the digital filters, the Finite Impulse Response
(FIR) filter is the most common DSP function in many
multimedia applications such as audio, image, and video
processing and pattern recognition. So efficient implemen-
tation of this algorithm either in hardware or in software is
very important for providing higher performance and re-
duced energy consumption for multimedia processors and
embedded systems which include portable devices such as
Personal Digital Assistants (PDAs), digital cameras, and
cellular phones. This is because these kind of devices have
limitations such as low computational power, low memory
capacity, and short battery life.

The FIR filter is a continuing computation over time of
the form:

output(n) =
L−1∑

k=0

coef(k) ∗ input(n − k) (1)

Each output value requires L multiplications and L − 1
additions. The filter coefficients are denoted coef(k) for
k = 0, ..., L−1, where L is the filter length, and the signal
length is N samples. Figure 1 depicts the signal-flow dia-
gram of the FIR filter. It represents the direct calculation
of Equation (1) and is called a direct structure [11].

delay delay delay. . .

+ + +

input(n)

. . .

input(n-1) input(n-2) input(n-L+1

coef(0) coef(1) coef(2) coef(L - 1)

output(n)

Fig. 1. Direct structure of an FIR filter.

The goal of the implementation is to have a minimun
cycle time algorithm. This means that to do the filtering
as fast as possible in order to achieve the highest sampling
frequency. Figure 2 depicts a C implementation of the FIR
filter. In all of algorithms in this paper we suppose that
input data are stored in reversed order.

Designing high-performance implementations of DSP
algorithms is a complex and difficult task. Implement-
ing filters in software is a nontrivial problem because of
the complex architecture of modern computers, multilevel

432

void fir()
{
int *y_ptr, *c_ptr, *x_ptr;
register int temp;
int n, k;
y_ptr = &output[0];
for (n = 0; n < N; n++) {
c_ptr = &coef[0];
x_ptr = &input[n];
temp = *c_ptr++ * *x_ptr++;
for (k = 1; k < L; k++)
temp = temp + *c_ptr++

* *x_ptr++;
*y_ptr++ = temp;

}
}

Fig. 2. C program for FIR filter.

memory hierarchy, and deficiencies of modern compilers.
Our goal is to implement high-performance FIR filters. We
focus on general-purpose processors enhanced with mul-
timedia extensions vectorization issues that arise because
of multimedia application characteristics such as Intel’s
MMX [15], [16].

This paper is organized as follows. Section II elabo-
rates on different methods for vectorization. MMX im-
plementations of the different algorithms are discussed in
Section III. In Section IV is explained about performance
evaluation of MMX code and C programs. Some related
work is indicated in Section V. Finally, conclusions are
drawn in Section VI.

II. VECTORIZATION OF THE FIR FILTER

DSP algorithms benefit from the multimedia extensions
if and only if they are be vectorized. In [13], it has been
indicated that the FIR filter can be vectorized in two ways:
by vectorizing the inner loop (VIL), in which case the inner
loop calculates several terms of a single output in parallel,
or by vectorizing the outer loop (VOL), in which case the
inner loop computes one term of several outputs in parallel.

Figure 3 depicts the C implementation of the VIL al-
gorithm. This algorithm has been implemented in [2] us-
ing the VIS multimedia extension, where the FIR filter
has been implemented as a matrix-vector multiplication
on quad-words. The filter coefficients (coef(k)) were in
a matrix of N × N , and input data was stored in a vector
of N × 1.

This method, however, has some disadvantages. First,
it is necessary that the filter coefficients are repeated many
times in matrix, and some elements of the matrix should

for (n=0; n<N; n++)
{

out_temp0 = out_temp1 = out_temp2
= out_temp3 = 0;

for (k=0; k<L ; k+=4) {
out_temp0 += coef[k] *input[n+k];
out_temp1 += coef[k+1]*input[n+k+1];
out_temp2 += coef[k+2]*input[n+k+2];
out_temp3 += coef[k+3]*input[n+k+3];

}
output[n] += out_temp0+out_temp1

+ out_temp2+out_temp3;
}

Fig. 3. C program for vectorizing the inner loop (VIL) method.

for (n=0; n<N; n+=4)
for (k=0; k<L; k++) {
output[n] += coef[k]*input[n+k];
output[n+1] += coef[k]*input[n+k+1];
output[n+2] += coef[k]*input[n+k+2];
output[n+3] += coef[k]*input[n+k+3];

}

Fig. 4. C program for vectorizing the outer loop (VOL) method.

be padded with zeros and a lot of multiplications are done
with zero. Second, it increases the data traffic between the
memory hierarchy and the register file of the processors,
since the filter coefficients have to be loaded many times.
This is because of lack of reusing coefficients for calcu-
lations of outputs. Furthermore, based on characteristics
of multimedia applications [17] that have small data types
this kind of algorithm is not suitable for SIMD architec-
tures.

The C program of the second method (VOL) is depicted
in Figure 4. Four outputs are computed in parallel. So
four data values of input(n+k) are multiplied with single
coefficient coef(k). That means, each filter coefficient is
used for calculation of the four outputs at the same time.
This algorithm has been implemented in [6], [5]. Although
there is reusing coefficients in this algorithm, there is not
any reusing of input data. This algorithm like previous
method is not good for SIMD processing for multimedia
applications.

Here, we use third method to vectorize the FIR filter: by
vectorizing the inner and outer loops (VIOL) simultane-
ously. This method increases data reuse and facilitates ef-
ficient vectorization. So this method is suitable for SIMD
architectures. In this algorithm the FIR implementation
is considered as a multiplication of vector by vector. In

433

for (n=0; n<N; n+=4)
for (k=0; k<L; k +=4) {
output[n] += coef[k] * input[n+k] + coef[k+1] * input[n+k+1]

+ coef[k+2] * input[n+k+2] + coef[k+3] * input[n+k+3];
output[n+1] += coef[k] * input[n+k+1] + coef[k+1] * input[n+k+2]

+ coef[k+2] * input[n+k+3] + coef[k+3] * input[n+k+4];
output[n+2] += coef[k] * input[n+k+2] + coef[k+1] * input[n+k+3]

+ coef[k+2] * input[n+k+4] + coef[k+3] * input[n+k+5];
output[n+3] += coef[k] * input[n+k+3] + coef[k+1] * input[n+k+4]

+ coef[k+2] * input[n+k+5] + coef[k+3] * input[n+k+6];
}

Fig. 5. C program for vectorizing the inner and outer loops (VIOL) method.

each iteration of inner loop 4 filter outputs are calculated.
Figure 5 depicts the C program of this algorithm. As this
figure illustrates, in the inner loop four output are calcu-
lated with same coefficients, so coefficients are the same
in each iteration for all of them. Additionally, three of the
four input data, which are used for compute one output,
are also used for calculation of next output, so reusing of
coefficients and input samples are very good in this algo-
rithm.

III. MMX IMPLEMENTATION OF THE ALGORITHMS

For 16-bit data, vector dot-product calculations are ef-
ficiently implemented using MMX instructions by loading
and processing four data elements at the same time. In the
FIR filter, the relative alignment of the input and filter ele-
ments changes from one vector dot-product calculation to
the next element. Figure 6 shows the relative alignment of
the input and filter data. The arrows show elements which
are multiplied together. The relative alignment changes by
one element for each vector dot-product calculation. This
implies that in three out of four vector dot-product calcula-
tions, all accesses to one of the vectors will be misaligned
(8-byte data accesses which are not on 8-byte-aligned ad-
dresses).

The MMX implementation of the first method (VIL) is
easy. But its performance is not good because of the fol-
lowing reasons. First, there is not any reusing of input data
and coefficients in this algorithm. Second, because of sum
and pack sequence in this implementation. After the four
multiply-accumulate operation (MAC) (pmaddwd instruc-
tion in MMX instruction set), each accumulator includes
a packed doubleword, each half of which contains half of
the result in 32 bits. These halves must be summed to-
gether and packed to 16-bit for storing in memory. That
means the calculation one result in each iteration is not
efficient. These instructions are shown in Figure 7. Ad-
ditionally, there is misaligned access for both reading in-

put data and storing output data. Consecutive elements are
loaded in registers in each iteration. For example, in one
iteration mm1=x15 x14 x13 x12 and mm2=x14 x13 x12
x11 are loaded. Hence, misalignment is a big problem in
this method. The number of dynamic instructions of this

MMX implementation is N(12 +
7L

4
).

input(-4) input(-3) input(-2) input(-1) input(0) input(1) input(2) input(3) input(4)

input(-4) input(-3) input(-2) input(-1) input(0) input(1) input(2) input(3) input(4)

.... coef(4) coef(3) coef(2) coef(1) coef(0)

calculation for output(-1)

.

. . .

. . .

calculation for output(0)

. . .

calculation for output(1)

.... coef(4) coef(3) coef(2) coef(1) coef(0)

.... coef(4) coef(3) coef(2) coef(1) coef(0)

input(4) input(-3) input(-2) input(-1) input(0) input(1) input(2) input(3) input(4)

Fig. 6. Relative alignment of input and coefficients data for FIR
filter.

The implementation of the second method (VOL) (Fig-
ure 4) using the MMX architecture is more difficult than
the first method (VIL) and needs more instructions. Be-
cause to put one coefficient in 4 quadwords we have to use
many overhead instructions. Additionally, multiplication
of one coefficient that has been located in four part of a reg-
ister with four different input samples is difficult, because
there is no full multiplication instruction for 2 16-bit num-
bers. If we use low/high multiply instructions (pmulhw
and pmullw) the number of executed instruction will be in-

434

;mm7 is an accumulator
movq mm6 , mm7 ; mm6 = mm7
psrlq mm7 , 32 ; shift right
paddd mm7 , mm6 ; add double
packssdw mm7 , mm7 ; pack
movd output , mm7 ; store result

Fig. 7. Sum and pack operations for one accumulator.

; mm4, mm5, mm6, and mm7
; are four accumulators
movq mm3 , mm7 ; mm3 = mm7
punpckhdq mm3 , mm6 ; unpack high
punpckldq mm7 , mm6 ; unpack low
paddd mm7 , mm3 ; add doubleword
movq mm3 , mm5 ; mm3 = mm5
punpckhdq mm3 , mm4 ; unpack high
punpckldq mm5 , mm4 ; unpack low
paddd mm3 , mm5 ; add doubleword
packssdw mm7 , mm3 ; pack
movq output , mm7 ; store results

Fig. 8. Sum, pack operation, and combining writes into quad-
words for four accumulators.

creased.
The MMX implementation of the third method (VIOL)

(Figure 5) is more efficient than the two previous methods.
As we mentioned above, reusing of coefficients in this al-
gorithm is possible. In each iteration of outer loop four
outputs are calculated. Summing and packing results of
the MAC instructions are more efficient than their imple-
mentation in previous algorithms. Because the calculated
results are in four accumulators, they can be packed with
one packssdw instruction and the result for all four can
be stored with one movq instruction. These instructions
are shown in Figure 8. The number of executed instruc-

tions in this implementation is
N

4
(20 +

19L

4
). However,

there is misaligned access for just reading input data in
this MMX code. This is the most important disadvantage
of this method.

To avoid misaligned data accesses we use different
copies of the filter data. That means there are four copies
of the filter data, each one with a different alignment rela-
tive to an 8-byte boundary. Figure 9 shows this structure.
This method was implemented in [10], [8], for example.
In [10] the filter length is 13 and in [8] a 16-tap FIR filter
is used. In both implementations the filter data is copied
four times and padded with zeros and aligned differently,
as in Figure 9.

The performance of the MMX implementation of this

c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 0 0 0

 0 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 0 0

0 0 0 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0

0 0 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 0

Input[0]

Input[32]

Input[64]

Input[96]

MMX SSE

Input[0]

Input[64]

Input[128]

Input[192]

Fig. 9. Multiple copies of filter data for filter length of 13 (ci =
coef(i)).

method which has no any misaligned access neither in
reading input data nor storing result in memory, is bet-
ter than three the previous methods as will be discussed
in next section. We refer to this algorithm as vectorizing
the inner and outer loops without misaligned (VIOLWM)
access. The number of dynamic instructions of its MMX

implementation is
N

4
(20 +

16L

4
).

IV. PERFORMANCE EVALUATION

All programs have been implemented using C pro-
gramming and in line assembly language for MMX
code. They will be referred to as C VIL, C VOL, and
C VIOL for C programs, and MMX VIL, MMX VIOL,
and MMX VIOLWM for MMX programs. C programs
were compiled using the gcc compiler with optimization
level -O2.

In the MMX implementation, input samples and coeffi-
cients are represented as 16-bit values, using the short
data type. But for C programs we use int data type.
According to ANSI semantics, all short integers are auto-
matically promoted to register-length integers before con-
ducting any arithmetic operations. This is known as in-
tegral promotion [14] and is implemented in most com-
mercial compilers. That means in most cases the imple-
mentation that uses ints is faster than the program that
employs shorts. Accordingly, we compare our results to
the C programs that represents coefficients and input data
as ints.

Performance was measured using the cycle counters [9].
Cycle counters provide a very precise tool for measuring
the time that elapses between two different points in the
execution of a program [1]. The IA-32 counter is accessed
with the rdtsc (read time stamp counter) assembly instruc-
tion. In order to eliminate the effects of context switch-
ing and compulsory cache misses, the K-best measurement
scheme and a warmed up cache have been used, as ex-
plained in [1].

Figure 10 depicts the speedup of the MMX imple-
mentation of the VIL and VIOL algorithms over their
C programs. As this figure shows, the MMX VIL and
MMX VIOL programs are up to 3.34 and 4.37 faster than

435

C VIL and C VIOL, respectively. As the number of input
samples are increased from 20 to 16384 the speedup in-
creases. That means for larger input sample there is higher
speedup compare to small input sample. This is because
reading and storing data are more efficient in MMX im-
plementation, where short data type is used compared to
integer data type which is used in C programs.

Fig. 10. Speedup of MMX implementation over C programs in
VIL and VIOL algorithms.

Figure 11 shows the speedup of MMX VIOLWM pro-
gram over other MMX implementations. As this figure
shows, MMX implementation of the vectorizing the in-
ner loop as well as the outer loop and avoids misaligned
memory accesses is up to 2.2 and 1.69 times faster than
the MMX implementation that only vectorizes the inner
loop and the version that does not avoid misaligned mem-
ory accesses, respectively. That means alignment access to
memory is very important for getting higher performance
in SIMD implementation of algorithms.

Fig. 11. Speedup of MMX implementation of the VIOLWM
algorithm over MMX implementations of the VIL and VIOL
methods.

Although using four copies of filter data can solve the
memory alignment, it uses four times more memory than
other methods. Furthermore, the coefficients and input
data are both not reused in each iteration. That means four
copies of four coefficients should be read in each iteration.
It increases the data traffic between the memory hierarchy

and the register file of the processors, as filter coefficients
have to be loaded many times. This is because of lack of
reusing coefficients for calculations of outputs.

V. RELATED WORK

As in previous section it was indicated vectorizing inner
loop algorithm was implemented in [2] using the VIS mul-
timedia extension. The second method (VOL) has been
implemented in [6], [5]. Although there is reusing coeffi-
cients in this algorithm, but there is not any reusing of in-
put data. In [4], for calculation of each output, it is splited
into four sequences. After the calcution of four sequences,
they are added each other and provide the final result of
the one output of the filter. For all of outputs of the filter
this algorithm is repeated.

In [3], [12], [7] have been explained one method for
reusing the coefficients of FIR filter by using vector point-
ers. So all of elements of a vector pointer point to the same
coefficient in a register and are incremented by one for next
coefficient. For the input data, each item is used in the four
equations at a different place in the Figure 4. Therefore, all
of elements in a vector pointer point to consecutive entries
in a register and like vector pointer to coefficients are in-
cremented by one after each use is suitable for addressing
the data. Figure 12 illustrates this algorithm. As this figure
shows, Vp0 index the coefficient coef [0] and Vp1 indices
the input data. As output filter processing continues, the
vector values will be updated by the indicated stride one,
so that sequential coefficients and input values are used as
inputs to the vector multiply-accumulate operations.

In this method, there are overhead both on hardware and
on software. Because in hardware, vector pointer registers
and a vector pointer unit are needed. In software, the pro-
grammer or the compiler has to use initializations instruc-
tions for loading pointers to two source vector pointers and
a destination vector pointer.

VI. CONCLUSIONS

The performance of different methods for vectorizing
the FIR filter has been evaluated using C programming and
MMX instructions. These algorithms are vectorizing the
inner loop, vectorizing the outer loop, and vectorizing the
inner loop as well as the outer loop with and without mis-
alignment access. Based on our results MMX implemen-
tation of vectorizing the inner loop is up to 3.34 faster than
the corresponding C implementation. Additionally, MMX
implementation of vectorizing the inner and outer loops
without misaligned access is up to 2.2 and 1.69 faster than
MMX implementation of the vectorizing the inner loop
and vectorizing the inner and outer loops algorithms, re-
spectively. That means that aligned access to memory is an

436

16 16 16 16
Vp0

stride

 Vp0 Vp1
for for

Vp1
1 1 32 33 34 35

coef(0) coef(1) coef(2) coef(3)
0 1

. . .
16 17 18 19

. . .
32

input(n) input(n-1) input(n-2) input(n-3) . . .
33 34 35

MAC MAC MAC MAC

Vector elements of registers

Fig. 12. Using vector pointers for reusing coefficients of the FIR filter and input data.

important factor for getting higher performance in SIMD
implementation of DSPs algorithms.

REFERENCES

[1] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Pro-
grammer’s Perspective. Prentice Hall, 2003.

[2] W. Chen, H. J. Reekie, S. Bhave, and E. A. Lee. Native Sig-
nal Processing on the Ultrasparc in the Ptolemy Environment. In
IEEE Conf. on Signals Systems and Computers, volume 2, pages
1368–1372, November 1996.

[3] J. H. Derby and J. H. Moreno. A High-Performance Embedded
DSP Core With Novel SIMD Features. In Proc. IEEE Int. Conf.
on Acoustics Speech and Signal Processing, volume 2, pages
301–304, April 2003.

[4] J. Fridman. Data Alignment for Sub-Word Parallelism in DSP. In
Proc. IEEE Workshop on Signal Processing Systems, pages 251–
260, October 1999.

[5] J. Fridman. Sub-Word Parallelism in Digital Signal Processing.
IEEE Signal Processing Magazine, 17:27–35, March 2000.

[6] J. Fridman and Z. Greenfield. The TigerSHARC DSP Architec-
ture. IEEE Micro, 20:66–76, January-February 2000.

[7] H. C. Hunter and J. H. Moreno. A New Look at Exploiting Data
Parallelism in Embedded Systems. In Proc. IEEE Int. Conf. on
Compilers Architectures and Synthesis for Embedded Systems,
pages 159–169, 2003.

[8] Intel Corporation. Real and Complex FIR Filter Using Streaming
SIMD Extensions, 1999. Order Number: 243643-002.

[9] Intel Corporation. The IA-32 Intel Architecture Software Devel-
oper’s Manual Volume 3 System Programming Guide, 2004. Or-
der Number: 253668.

[10] Intel Corporation. Using MMX Technology Instructions to Com-
pute a 16-Bit FIR Filter, 2004. www.intel.com/IDS.

[11] S. M. Kuo and W. S. Gan. Digital Signal Processors Architec-
tures, Implementations, and Applications. Prentice Hall, 2005.

[12] J. H. Moreno, V. Zyuban, U. Shvadron, F. D. Neeser, J. H.
Derby, M. S. Ware, K. Kailas, A. Zaks, A. Geva, S. Ben-David,
S. W. Asaad, T. W. Fox, D. Littrell, M. Biberstein, D. Naish-
los, and H. Hunter. An Innovative Low-power High-performance
Programmable Signal Processor for Digital Communications.
IBM Journal of Research and Development, 47(2/3):299–326,
March/May 2003.

[13] D. Naishlos, M. Biberstein, S. B. David, and A. Zaks. Vectorizing
for a SIMdD DSP Architecture. In Int. Conf. on Compilers Archi-
tectures and Synthesis for Embedded Systems, volume 2, pages
2–11, November 2003.

[14] International Standard Organization. Programming Languages -
C. ISO/IEC 9899, 1999.

[15] A. Peleg, , and U. Weiser. MMX Technology Extension to the
Intel Architecture. IEEE Micro, pages 42–50, August 1996.

[16] A. Peleg, S. Wiljie, and U. Weiser. Intel MMX for Multimedia
PCs. Communications of the ACM, pages 25–38, January 1997.

[17] A. Shahbahrami, B.H.H. Juurlink, and S. Vassiliadis. A Com-
parison Between Processor Architectures for Multimedia Appli-
cations. In Proc. 15th Annual Workshop on Circuits, Systems and
Signal Processing (ProRISC), pages 138–152, November 2004.

437

