
Parallel Merge Sort on a Binary Tree On-Chip Network

Stephan Wong, Stamatis Vassiliadis, and Jae Young Hur
Computer Engineering Laboratory

Electrical Engineering Department Delft University of Technology
Mekelweg 4, 2628 CD, Delft, The Netherlands

Email: {J.S.S.M.Wong | S.Vassiliadis | J.Y.Hur }@ewi.tudelft.nl

Abstract— Recently, advances in the microelectronics
technology enable us to integrate increasingly more pro-
cessor cores in a single chip. As the chip density continues
to grow, the communication latency compared to the com-
putation time is becoming a dominant factor in modern
single chip multiprocessors systems. Consequently, net-
works on a chip (NoC) have been introduced as an alter-
native to shared busses in order to provide higher scal-
ability, higher abstraction levels, and increased modular-
ity. However, many challenges remain in the design of the
NoC, e.g., maintain a certain quality of service (QoS) with
limited bandwidth, incorporate deadlock-free routing, and
implement congestion-free flow control. In order to meet
these challenges, network topologies play an important role
in multiprocessor systems. In this paper, we present a
case study encompassing the implementation of an NoC
based on the binary tree in a field-programmable gate ar-
ray (FPGA) and the parallel merge sort as an application.
A hardware design for a packet switched source router with
a worm-hole flow control and a round-robin arbitration is
described. The implemented platform provides a homo-
geneous, deadlock-free, congestion-free, cost-efficient com-
munication mechanism and application-specific synchro-
nization. In addition, the distributed shared memory or-
ganization allows for easier application programming. The
experiments indicate that a single 32-bit sorting-specific
processing element consumes less than 1% of the chip area.
In addition, each binary tree router requires less than 3%
of the area of the FPGA, while providing up to 2.9Gbps
at 180 MHz.

Keywords— networks on a chip, field-programmable
gate array, topology, parallel sorting.

I. Introduction

As technology advances, the latency of the net-
work interconnect is increasingly becoming the most
prominent latency factor in modern on-chip multi-
core systems [1]. Conventional on-chip communica-
tion schemes based on shared buses do not provide
sufficient scalability. Recently, networks on a chip
(NoC) have appeared as a promising design paradigm
providing better scalability, different abstraction lev-
els, and modularity [2]. However, there are still open
issues in the design of an NoC system, e.g., main-
tain congestion-free flow control and a specific qual-

ity of service (QoS) with limited bandwidth, incor-
porate distributed dead-lock free/starvation free/live-
lock free routing, and provide fault-tolerance and load
balanced routing. These issues must be resolved while
minimizing latencies and maximizing the throughput.
In order to meet these challenges, network topologies
play an important role and greatly influence the be-
havior of systems. In this paper, we present a case
study that entails the implementation of an on-chip
network in a field-programmable gate array (FPGA).
The parallel merge sorting algorithm is considered
as an application since the sorting is one of most
well-studied areas and is relatively simple. A merge
sorting-specific 32-bit processing element and a spe-
cific simple synchronization scheme have been im-
plemented. The on-chip network has been modeled
based on the tree topology. The tree topology has
been adopted since the topology offers a minimum
hop count and congestion-free traffic for merge sort.
The network component is generic, i.e., it is inde-
pendent from the computational components. The
routing schemes are tailored for the tree topology.
Input queued packets are arbitrated with a round-
robin policy. In addition, each network component
communicates with neighboring components using a
handshaking protocol. A flit-based wormhole flow
control is adopted for efficient buffer utilization and
pipelined message transmission. The implemented
platform provides a homogeneous and deadlock-free
routing mechanism. Furthermore, the memory orga-
nization entails a distributed shared memory allowing
much easier application programming. Experimental
results indicate that the binary tree is indeed suitable
for the parallel merge sort algorithm.

The organization of this paper is as follows. In Sec-
tion 2, related works are described. In Section 3, par-
allel merge sorting algorithm is reviewed. The imple-
mentation for the case study and experimental results
are described in Sections 4 and 5, respectively. In
Section 6, conclusion is made and future work is pre-
sented.

II. Related Work

Various NoC-based systems have been publicized
and are chronologically listed in the following. aSOC
(mesh, 2000) [3], Æthereal (mesh, 2002) [4], SOCIN
(mesh, 2002) [5], SPIN (fat-tree, 2003) [6], T-SoC (fat-
tree, 2003) [7], HERMES (mesh, 2004) [8] have been
previously introduced among others. It can be ob-
served that the mesh topology has been utilized for the
majority of the proposed systems as the main under-
lying topology. In 2005, a MultiNoC system [9] based
on the HERMES [8] switch has been introduced. Our
system is similar to MultiNoC system [9] in that the
handshaking protocol and flow control are managed in
a similar way. However, the followings are still differ
from the MultiNoC [9] in several ways. First, the net-
work is based on the tree topology. Second, we focus
on sorting-specific application and 32-bit processing
element has been implemented. Third, the tree rout-
ing scheme is based on source routing. Fourth, the
synchronization scheme is optimized for merge sort.
Fifth, the system consists of completely homogeneous
nodes.

III. Parallel Merge Sort

A. Basic Definitions

Some terminologies of the interconnection network
are given in the following. Latency refers to the av-
erage packet delay, measured from header departure
to arrival of last packet from the network. Through-
put refers to the average number of packets routed
through the network per clock cycle. The diameter of
a network is the maximum distance between any two
processing nodes, where distance refers to the number
of links within the shortest path. Area cost is in terms
of the number of communication links. The definition
of the sorting can be formally re-stated as follows [10]:

Definition Given a sequence S = {x1, x2, ..., xn} of n
items on which a linear order is defined, the purpose
of sorting is to arrange the elements of S into a new
sequence S′ = {x′1, x′2, ..., x′n} such that x′i < x′i+1 for
i = 1, 2, ..., n− 1.

B. Merge Sort

An example of the parallel merge sort is illustrated
in Fig. 1. Consider 7 nodes N0, N1,..., N6 are ar-
ranged in a binary tree and the address space is di-
vided over the 7 nodes as depicted in Fig. 1 (a). Fig.
1 (b) depicts the initially arranged un-sorted elements
in N3,N4,N5,N6. Elements {4, 3}, {5, 7}, {6, 2} and

3 4 5 7 2 6 1 8

(c) Step1 : local sequential sort

3 4 5 7 2 6 1 8

3 4 5 7 1 2 6 8

3 4 5 7 2 6 1 8

3 4 5 7 1 2 6 8

1 2 3 4 5 6 7 8

(d) Step 2 : move and merge sort (e) Step 3: move and merge sort

4 3 5 7 6 2 1 8

000 001 002 003 004 005 006 007

200 201 202 203 400 401 402 403

600 601 800 801 A00 A01 C00 C01

(b) Initial memory values(a) Network organization

N3 N4 N5 N6

N1 N2

N0

000 - 1FF

200 - 3FF 400 - 5FF

600 - 7FF 800 - 9FF A00 - BFF C00 - DFF

Fig. 1. Merge Sort - an example.

{1, 8} are located at the addresses (600H, 601H) in
N3, (800H, 801H) in N4, (A00H, A01H) in N5 and
(C00H, C01H) in N6, respectively. In step 1 of par-
allel merge sort, a local sequential sort in N3 to N6
is performed as depicted in Fig. 1 (c). After that,
each of the elements in {3, 4}, {5, 7} is moved up to
N1. Similarly, each of the elements in {2, 6}, {1, 8} is
moved up to N2. As soon as these remote elements
are loaded, the local merge sort in each of N1 and
N2 is parallelly performed and the resulting array is
stored in each of the address space in N1 and N2, re-
spectively as depicted in Fig. 1 (d). Similarly, in step
3, each element is moved up to the topmost node N0
from N1,N2 and merge sort is performed as depicted
in Fig. 1 (e), resulting in the final sorted array. As
the algorithm intuitively indicates, the tree topology
is the most suitable for the implementation.

IV. Implementations

A. System Overview

The following assumptions were made in the im-
plementation and system design. First, the intercon-
nection network is assumed to be static, i.e., the un-
derlying direct network is composed of pairs of pro-
cessing node and router. Second, adjacent nodes are
connected by a pair of unidirectional channels in op-
posite directions. Third, there is no traffic load other
than merge sort. Consider the application program
is chosen as depicted in Fig. 1. Based on the above-
mentioned assumption, the underlying network is or-
ganized as depicted in Fig. 2. Note that PN (pro-
cessing node) refers to the combination of processing

element (PE), network interface (N/I) and memory.
Node (N) refers to the combination of the processing
node (PN) and router (R).

PN : processing node

R : router

R0
 PN0

R1
 R2

R3
 R4
 R5
 R6

PN1
 PN2

PN3
 PN4
 PN5
 PN6

Buffer(s)
 Arbiter
 Controller
 PE

Memory

Network

Interface

Fig. 2. Underlying Organization of System.

The network is indeed an interconnection of routers
and these routers are interconnected within certain
topologies. The processing nodes and the network
are independent each other. Each processing node
and router assumed to be homogeneous in this work.
The network component is modular, considered as
an IP (intellectual property) and can be replaced by
other networks without having to change the process-
ing node. The memory in each node is physically
distributed but logically shared. The communication
with a neighboring component is implemented using a
handshaking protocol. The N/I handles the packeti-
zation (or segmentation) and de-packetization (or as-
sembly), together with the distributed shared memory
management. The synchronization is achieved using
the dedicated ‘en’ and ‘sorted’ signal ports.

B. Processing Node

The PE is implemented utilizing a merge sort-
specific state machine with 13 states. In this imple-
mentation, it is assumed that the number of element
and the first address in each array are pre-defined in
the state machine. Once the ‘en’ (enable) port is ac-
tivated, the state machine starts remote loading to
perform merge sorting. Once the merge sort is fin-
ished, the ‘sorted’ pin is activated. The PE performs
the sorting of unsigned integers.

The major part of the N/I is a state machine to deal
with the packet and memory management. For merge
sort, 2 types of packets are required. First, a request
packet is used to send a load request to a remote node.
Second, a data packet is used to return with the data
to the requesting node. Each packet is composed of
flits, 6 flits for the request packet and 8 flits for the
data packets. Each flit is 8 bits in size. The first flit
of each packet is a header containing the target node
address. When packets from the network are received,
the N/I identifies the packet. If the arrived packet is

a data packet, then the packet is forwarded to the PE
(after assembly) and if the arrived packet is a request
packet, then the packet is forwarded to memory mod-
ule (after assembly). When a PE accesses the mem-
ory, N/I checks the address. If the address is a local
address, the PE directly reads (or writes to) the local
memory. If the address is a remote address, then the
N/I generates a request packet to the corresponding
node by utilizing an address map.

The memory component is located in each process-
ing node. The memory module is used for following 2
purposes. First, the PE locally stores data after the
merge sort is performed. Second, the memory mod-
ule receives a request packet and directly returns the
data packet to the remote requesting node. The Xil-
inx Block RAM primitive, RAMB16 S36 is utilized
as our memory component, providing a single port
and 512 entries with each 32-bit data.

C. Tree Router

As a key component in the network, the router de-
termines the path for packet flows to the destination.
Two main operations in the router are input port
selection process and output port selection process.
The input port selection process is performed in ar-
biter and the output selection process is performed
in the controller. In this work, flit-based wormhole
flow control has been adopted for efficient buffer uti-
lization. As soon as the header arrives at the router,
the header is stored in the input buffer and waits for
the acknowledgement from the controller to flow to
the output port. This input port selecting process is
performed based on the round-robin arbitration pol-
icy. Once the header is granted access to the output
port, the controller determines an output port based
on the routing scheme and header information. The
implemented routers are dead-lock free, since there is
no cyclic path.

As depicted in Fig. 3, there are 4 ports in each
tree router, namely, PR (parent), LC (left child), RC
(right child) and Local port. Each port contains two
unidirectional ports for handshaking protocol. The
FIFO buffer is located in the input port. Round-robin
scheduling is done in the sequence with PR, LC, RC,
Local, PR, and so on. As an example, the routing
scheme at the router R1 in Fig. 2 is implemented
based on the following table.

Destination N0 N1 N2 N3 N4 N5 N6

Port name PR Local PR LC RC PR PR

buffer

controller

arbiter

Local

PR

LC
 RC

PR (parent)

LC (left child)

RC (right child)
Arbitration

PR -> LC -> RC -> Local -> PR

output port

Fig. 3. Tree Router.

V. Experimental Results

The experimental results are presented in Fig. 4.
For the experiments, Modelsim has been used for the
behavioral (pre-synthesis) and timing (post-synthesis)
VHDL simulation. The Xilinx ISE [11] tool has
been used for the synthesis, mapping and place-
ment/routing. For the prototyping, the Digilent XUP
V2P board with Virtex II Pro FPGA has been used.
Xilinx ChipScope Pro tool [11] was used for on-chip
verification. The experimental results for the 7-node
tree are shown in Fig. 4 (a). 66824 cycles are required
for 512 elements to be sorted. Fig. 4 (b) shows the
synthesis result for single router. 2.7% of slices are
required for the single router. The clock frequency is
180.4MHz, number of port per router is 4, flit size is 8,
hence, the peak bandwidth for tree can be derived as
(180.4 MHz / 2) · (4 ports) · (8 bits) = 2.9Gbps. Note
that it takes 2 cycles for buffer to store and forward
each flit. The PE is area efficient requiring less than
1% of the logic in FPGA. In addition, the N/I in the
processing node and buffer in the router component
are most area-consuming. Fig. 4 (d) shows the #cy-
cle (latency) with respect to the number of elements
(traffic load). As the number of elements increases,
the latency grows linearly since the routing latency
grows linearly to #router.

VI. Conclusion

In this work, a binary tree based on-chip network for
the merge sort is implemented in FPGA hardware and
analyzed. The tree is indeed, as expected, suitable in
a merge sort traffic. Up to 15 nodes have been mapped
to FPGA and verified. The implemented NUMA
(non-uniform memory access)-model multiprocessors
platform provides an area-efficient and dead-lock free
communication.

(a) Merge Sort on Tree

(b) Tree Single Router

(c) Area of Components

in Single Router

(Buffer Size=8)
(d) Latency vs Load

- 7 node Tree

Router # port #Cycle Area Max. Clock Peak

(header) Slice (%) Freq. (MHz) BW (Gbps)

TREE 4 13 2.7 180.4 2.9

#element #cycle

8 1054

32 4012

64 8188

128 16540

256 33244

512 66824

Topology #node # total # Cycle Max. Clock Min. Clock Area (%)

port Freq. (MHz) period (ns) Slice BRAM

TREE 7 28 66824 168.3 5.943 30.1 5.3

Component Slice(%)

Single Buffer 0.57

Ariter 0.22

Controller 0.37

Fig. 4. Experimental Results.

References

[1] International Technology Roadmap for Semiconduc-
tor - Interconnect, 2004 Update, pp. 1-21, 2004,
http://www.itrs.net.

[2] G. D. Micheli and L. Benini, “Networks on Chips: A New
SoC Paradigm,” IEEE Computer, vol. 35, pp. 70–78, Jan.
2002.

[3] J. Liang, S. Swaminathan, and R. Tessier, “aSOC: A Scal-
able, Single-Chip Communications Architecture,” in IEEE
Int’l Conference on Parallel Architectures and Compilation
Techniques, pp. 37–46, 2000.

[4] E. Rijpkema, K. Goossens, and A. Radŭlescu, “A Trade
Offs in the Design of a Router with Both Guaranteed and
Best-Effort Services for Networks on Chip,” in Proceedings
of Design, Automation and Test in Europe (DATE’03),
pp. 350–355, 2003.

[5] C. Zeferino and A. Susin, “SoCIN: A Parameteric and Scal-
able Network-on-Chip,” in 16th Symposium on Integrated
Circuits and Systems Design (SBCCI’03), pp. 169–174,
2003.

[6] A. Andriahantenaina, H. Charlery, A. Greiner, L. Mortiez,
and C. Zeferino, “SPIN: a Scalable, Packet Switched, On-
Chip Micro-network,” in Proceedings of Design, Automa-
tion and Test in Europe (DATE’03), pp. 70–73, 2003.

[7] P. Pande, C. Grecu, A. Ivanov, and R. Saleh, “Design of
a Switch for Network on Chip Applications,” in Int’l Sym-
posium on Circuits and Systems (ISCAS’03), pp. 217–220,
2003.

[8] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost,
“HERMES: an Infrastructure for Low Area Overhead
Packet-switching Netwoks on Chip,” in Integration, the
VLSI Journal, pp. 69–93, 2004.

[9] A. Mello, L. Möller, N. Calazans, and F. Moraes,
“MultiNoC: A Multiprocessing System Enabled by a Net-
work on Chip,” in Proceedings of Design,Automation and
Test in Europe (DATE’05), pp. 234–239, 2005.

[10] S. G. Akl, Parallel Sorting Algorithms. Academic Press,
1985.

[11] Xilinx, Inc., http://www.xilinx.com.

