
OCM-to-DDR memory controller for VirtexII-Pro FPGA
Jaap van Muijden, Georgi Kuzmanov, Georgi N. Gaydadjiev

Computer Engineering, EEMCS
TU Delft

Mekelweg 4, 2628CD Delft
e-mail: jaapvanmuijden@ce.et.tudelft.nl

Abstract— We consider the memory subsystem of the
Power PC 405 Processor embedded in a Xilinx Virtex-II Pro
FPGA chip. There are three processor bus interfaces that
can be used for memory access, namely: the On-Chip Pe-
ripheral Bus (OPB), the Processor Local Bus (PLB) and the
On-Chip Memory Controller (OCM) bus. We are interested
in fast memory transfers, therefore we consider the fastest
of the above interfaces, the OCM interface. In this paper,
we propose a design of a Dual Data Rate (DDR) Memory
controller that can be connected to the OCM bus. The con-
troller comprises an OCM bus interface module and a modi-
fied Xilinx DDR controller core. To implement time-efficient
data transfers between the PPC interface and the external
DDR chips, we finely synchronize the OCM interface and
the DDR. Our FPGA modules are developed using Xilinx
Project Navigator 6.3i and Xilinx Platform Studio 6.3i and
are described using VHDL. ModelTech Modelsim is used to
simulate and fine-tune the designs. The design has been sim-
ulated and synthesized. The results suggest that the hard-
ware costs of the proposed solution are trivial (1%-2% of the
available reconfigurable resources). Furthermore, the tim-
ing analisys report that the solution can run on a maximum
frequency fmax of 100 MHz. The controller can be employed
as part of a reconfigurable caching structure. The proposed
OCM DDR controller solves the size limitation problem of
the on-chip memory on Virtex II-Pro. It provides high band-
width to external memory which typically has a larger vol-
ume compared to the on-chip memory. Our proposal makes
it possible to build fast and cost efficient memory subsystems
including flexible caches.

Keywords— FPGA design, DDR memory controller,
VHDL, OCM bus

I. I NTRODUCTION

One of the key research projects of the Computer Engi-
neering laboratory from the TU Delft is MOLEN [1]. The
main goal of this project is to design a polymorphic proces-
sor that can be reconfigured at the hardware level during
runtime, depending on the target application, at runtime.
The processor is realized using existing FPGA technology.

A reconfigurable cache system has to be developed as
part of the MOLEN project. This cache memory is to
be directly connected to the Power PC Processor core
trough the On-Chip Memory interface (OCM). The OCM

bus only supports an interface to on-chip Block RAM
(BRAM). This type of RAM is very fast, however limited
in size. To access bigger volumes of data, external DDR
RAM memory can be used, but access to the DDR mem-
ory trough the OCM bus is not supported and no OCM
compatible DDR controller is provided by Xilinx. The
goal of this paper is to design and implement a system that
enables the OCM to communicate with the external DDR
memory module. This system consists of an existing DDR
controller in conjunction with a dedicated controller that
matches both protocols.

The system will be implemented on the ML310 devel-
opment platform[4], which consists of a Virtex-II Pro [3]
XC2VP30 FPGA (30,816 logic cells, two embedded IBM
PowerPC405 processor blocks, 2,448KB Block RAM),
256MB DDR RAM, System ACE Compact Flash (to store
bit stream configurations for the FPGA and programs/data
for the PowerPC) as well as various other components.
The Virtex-II Pro FPGA contains the processor that will
use the DDR memory interface as well as the DDR con-
troller that will be developed in VHDL and implemented
in the FPGA fabric. The synthesis results suggest that
the hardware costs of the proposed solution are trivial in
respect to the available reconfigurable resources(1%-2%).
The timing analisys report that the solution can run on a
maximum frequency fmax of 100MHz.

The remainder of this paper is structured as follows:
Section II will present some background, required for un-
derstanding the proposed design. This background cov-
ers the traditional interfaces of the DDR controller used
to communicate with the external DDR RAM and the in-
terface towards the rest of the system. The primary pro-
posal of this paper, the OCM2DDR controller design, is
proposed in Section III and an implementation of the con-
troller is presented. Section IV presents the validation of
the design through accurate VHDL simulations. Finally,
Section V summarizes the findings and presents the con-
clusions.

410



II. BACKGROUND

The external memory type used in this project is DDR
RAM (Dual Data Rate RAM). It is similar to SDRAM
(Synchronous Dynamic RAM), with the difference that it
achieves dual data transfer rate by utilizing both of the
clock edges, instead of just the rising or the falling edge
in the traditional SDRAM. To interface with such a mem-
ory, the existing Xilinx DDR IP core is used. The Dual
Data Rate clocking behaviour of the DDR RAM that is
used to double the throughput of the DDR interface also
brings some additional timing issues. To interface with
such dually clocked data bus, the Xilinx DDR controller
needs a special clocking infrastructure and uses specially
designed input and output buffers in order to process the
DDR signals. The External DDR Module is implemented
as a Dual In-line Memory Module (DIMM) inserted in the
DDR slot available on the ML310 Platform.

The controller logic needed to communicate with exter-
nal DDR memory is implemented in FPGA using the stan-
dard Xilinx DDR controller core. This core is suited for the
OPB or PLB bus. However, by removing the OPB or PLB
front end of the core, the DDR IP core can be directly inter-
faced with the more standard IP InterFace (IPIF)[5]. This
protocol is used by the proposed OCM2DDR controller to
communicate with the Xilinx DDR controller core. The
DDR controller is designed using the VHDL language and
the core is part of the standard soft core library distributed
with the Xilinx Embedded Design Kit (EDK). It can be
customized by changing it’s parameters or by editing the
source code. We will prefer the former method in our ap-
proach. The controller takes care of resetting, initialising
and refreshing the external DDR memory and provides an
easy interface for reading and writing using the IPIF inter-
face. All clock signals are generated with Digital Clock
Manager (DCM) modules outside the DDR controller IP;
the Controller IP contains only the necessary controller
logic.

The IP InterFace (IPIF) protocol is part of the CoreCon-
nect bus architecture developed by IBM. It allows reusabil-
ity of FPGA (soft) cores over different buses. This is ac-
complished with the creation of an common IP interface
standard that can be connected to any bus supported by
the CoreConnect framework, namely the PLB and OPB
buses. All EDK peripherals made for these busses con-
sist of an IP core which connects to an IPIF module using
the corresponding protocol. Such an IPIF module handles
the translation from IPIF to the appropriate bus protocol.
The OCM (On Chip Memory) bus of the 405 Power PC
is one of the three data buses available for communica-
tions to the Power PC microprocessor. It is specifically

designed for a fast interface with the on-chip Block RAM
memory. The OCM bus is connected to the OCM con-
troller inside the PPC core. It is split up in two parts, the
data- and instruction side, usually referred to as DSOCM
and ISOCM. Both sides have similar control signals, but
the data bus of the instruction side is 64 bits wide, and
the data bus of the data side is only 32 bits. This project
concentrates only on the DSOCM. The DSOCM has a
simple protocol and does not support handshaking of any
kind, therefore it only supports fixed access times1. The
BRAM access time is usually one clock cycle of the PPC
system clock, This is referred to as Single Cycle mode.
However, it is possible to run the DSOCM bus in a Multi
Cycle mode which results in access times of two, three
or four clock cycles. This can be used when the BRAM
memory block grows too big, since larger BRAM mem-
ories usually require two clock cycles or more. The ad-
dress bus has a width of 22 bytes and the data bus is 32
bits wide. This allows the DSOCM to address 16kb of
memory. The address bus of the PPC is originally 32 bits
wide: the upper 8 bits are used as an address mask to se-
lect the internal DSOCM controller and the lower two bits
are dropped, since all DSOCM access is 32-bit aligned.
The clock signal used to time the DSOCM bus has to be
generated externally by a Digital Clock Manager (DCM).
The DSOCM bus features a byte mask containing 4 write
enable signals (DSOCMBRAMBYTEWRITE), one line for
every byte. All DSOCM transactions are perform both a
read and a write access. The DSOCM side does not have
a read/write indicator and all transactions are both a read
and write operations: the masked bytes are written, and
the new modified data is copied to the read bus. Since
the PowerPC does not support this functionality (it only
knows separate read and write operations), the data read
back during writes is discarded. This results in the fact
that all transactions are considered write transactions with
theDSOCMBRAMBYTEWRITEas a byte enable signal, ex-
cept for the case where the byte mask is completely empty:
this indicates a read transactions, where all the read data is
presumed valid.

III. D ESIGN DESCRIPTION

The OCM2DDR controller is implemented in a setup
composed of a single PPC connected to a the PLB bus. In
this design, both the data and instruction side of the OCM
are used: the instruction side is used to store the testing
program and the data side is used to test the OCM2DDR
controller. The program data itself is stored in the BRAM

1The newer Virtex4 does support a non-fixed access time OCM inter-
face.

411



DCM_2

OCM2DDR
DDR_init_done

DCM_locked_in

Clk

Clk90_in

Clk_n

Clk90_in_n

DSOCM

DDR_Clk90_in

DDR_Clk90_in_n

DCM_1

RST

CLKIN

CLKFB

CLK0

CLK90

CLK180

CLK270

LOCKED

RST

CLKIN

CLKFB

CLK0

CLK90

CLK270

LOCKED

Reset Logic
Rst ext_reset

External DDR
Clk_n

Clk

Data

Control signals

DCM_0

CLK0

 (4x)CLKDV

LOCKED

RST

CLKIN

CLKFB

Clk 100Hmz

DDR_clk_n

DDR_clk

Data

Control signals

Power PC

PCMC405CLK

ISOCM

PLB

DSOCM

BRAM
instructions

BRAM
data

IS_BRAM_cntrl

ISOCM BRAM interface

PLB_BRAM_cntrl

PLB BRAM interface

PLB OPB
bridge

PLB OPB

GPIO
OPB GPIO interface

UART
OPB UART interface

DCM_locked

Fig. 1. The organisation of the proposed design.

connected to the PLB bus, making the execution of the
program independent of the data side OCM.

Clock Architecture

The standard timing architecture used to create a system
with a DDR interface consists of two DCM’s: one is used
to create main system clock, including the phase shifted
versions of the main clock signal. A second DCM is used
to create separate phase shifted versions of the incom-
ing DDR clock used to drive the internal DDR controller
logic[2]. In order to support a multi-cycle OCM bus, a
third DCM is needed to generate the divided CPU clock
signal. Another timing issue that is a direct result of the
fixed OCM access time is the fact that the system boots im-
mediately after all DCM’s are initialised while the External
DDR memory needs 200us to initialise. This is resolved
by incorporating the DDR2OCM controller into the DCM

DSOCMBRAMABUS[29]

M
ultiplexer

D
em

ultiplexer
D

em
ultiplexer

Mask
conversion

Address
conversion

Bus2ip_address[0:31]DSOCMBRAMABUS[8:29]

DSOCMBRAMBYTEWRITE[0:3]

DSOCMBRAMRDDBUS[0:31]

DSOCMBRAMWRDBUS[0:31] ip2bus_data[0:63]

[0:31]

[32:63]

bus2ip_data[0:64]

[0:31]

[32:63]

bus2ip_be[0:7]

[0:3]

[4:7]

Fig. 2. The data flow of the signal translation logic

boot chain. The first OCM starts up automatically since it’s
reset signal is connected to ground. When the first OCM is
initialised, the second OCM’s reset is deasserted, and starts
up. Additional OCM cores are linked together in this fash-
ion to ensure that all clock signals are initialised before the
system boots up. By inserting the OCM2DDR controller
into this system, the system boot can be delayed until the
DDR has been initialised. this results in the system organi-
sation shown in Figure 1. The CPU clock runs at 100Mhz,
with the Multi-Cycle OCM working at 25Mhz. The DDR
controller logic runs at 100Mhz.

Signal Translation

The OCM2DDR controller has to translate the signals
created by the OCM controller into the corresponding
IPIF signals and vice versa. The Address signals of the
DSOCM can be directly translated to address signals on
the IPIF side. The IPIF has an address width of 32 bytes,
the DSOCM has a width of only 22 bits. Since the IPIF
address is byte aligned and the DSOCM is 32-bit aligned,
the two lower bytes of the IPIF address will be zero and the
22 bits of OCM address will be placed behind that. The re-
maining 8 bits will be constantly set to zero. This results
in the fact every address of the DSOCM address space is
mapped to a subgke address of the DDR controller. In the
future, the upper 8 bits can be used to make multiple ad-
dress spaces and to differentiate between Instruction Side-
and Data Side OCM access. The IPIF protocol uses a sys-
tem called ”Byte Steering”. This means that the peripheral
can address the memory space byte aligned, but the data
must be provided in the correct byte lanes, in compliance
to the base bit alignment of the bus. This means that the ad-
dress is given is a byte address, but the byte mask and data
are aligned to the width of the data bus (in this case 64 bit).

412



Fig. 3. Simulation of the OCM2DDR controller

The address generated from the DSOCM is always aligned
to 32 bits, leaving only two possibilities: the data is aligned
on 64 bit, meaning that the data is copied to the lower 32
bits of the IPIF data bus, or the data has an offset of 32 bits
from the nearest 64 bit alignment boundary, meaning that
the data is put in the upper 32 bits of the IPIF bus. This de-
pends on the Least Significant Bit (LSB) of the DSOCM
data bus, when this bit is ’0’, the address is 64-bit aligned,
if it is ’1’, the data has to be put in the higher 32 bit of the
IPIF data bus. This conversion holds for both the incom-
ing, and outgoing data, and the data mask has to be shifted
accordingly. Both the data mask of the IPIF and the OCM
mask the data on a byte level. The byte mask of the IPIF
masks the bytes that contain valid data and the DSOCM
mask masks the bytes that are to be written to the BRAM.
For write operations, this means that the byte mask can
be simply copied. However, for reading operations, the
meaning of the byte mask differs: The DSOCM byte mask
is completely empty, but all the data on the bus is expected
to be valid. The IPIF bus has separate read/write indicator
signals, and the byte mask validates the data in both a read
and a write operation. This means that in the case of a read
operation, the DSOCM byte mask is empty, but the trans-
lated IPIF byte mask should be completely asserted. This
leads to the signal translation as shown in Figure 2.

IV. SYNTHESIS DATA AND SIMULATION

The design has been synthesized using Xilinx Platform
Studio 6.3i. Synthesis results, presented in table I suggest
that the hardware costs are trivial in respect to the avail-
able reconfigurable resources (1%-2%). The reported de-
lays suggest a maximum frequency fmax of 100 MHz. The
design has been tested using multiple simulations done in
ModelTech ModelSim 6.2 SE. The biggest issue is the fact

that the DDR access time can vary greatly and are very
difficult to simulate correctly. For simulation purposes, a
test program is created that writes and reads into the ad-
dress space of the DSOCM to test the functionality of the
OCM2DDR controller. A variety of peripherals are con-
nected to both the OPB and PLB to provide extra func-
tionality to facilitate the testing process: General Purpose
IO drivers to enable the manipulation of the various GPIO
interfaces including the led array on the development plat-
form and an UART interface peripheral to communicate
with an external PC. This latter is the main debugging in-
terface used by the running software. The standard input
and output streams of the running C programs are redi-
rected to this peripheral to create an effective interface sys-
tem to the user. The program reads and writes linearly
into the DSOCM address space, resulting in the data flow
shown in Figure 3.

As can be seen in Figure 3, the DDR access is com-
pleted within the OCM bus assertion. The OCM runs in
4x Multi Cycle Mode. The DDR simulation model has a
CAS latency of two. The simulation implies that the sys-
tem works, although it will not work as soon as the DDR
access time rises above the best-case access time. In order
to fix this, the system clock frequency has to be lowered,
or the fixed-access time problem of the OCM has to be
resolved.

V. CONCLUSIONS

In this paper we presented a feasible and efficient way
to access a large memory volume trough the OCM bus
with the VirtexII-pro. This interface can be used in future
projects e.g. as starting point for the design of a caching
subsystem in the FPGA fabric. The modular construction
of this system enables the user to change the DDR inter-

413



TABLE I
SYNTHESIS DETAILS OF THEOCM2DDR CORE

Minimum clock period 9.613ns
Minimum input arrival time before clock 7.285ns
Maximum output required time after clock1.480ns
Maximum combinational path delay 2.097ns

Logic Type Amount Prercentage
Number of Slices 311 2%
Number of Slice Flip Flops 394 1%
Number of 4 input LUTs 22 1%

face without changing the rest of the system. Optionally,
any data interface that implements the IPIF protocol can
be connected to the OCM2DDR controller. In this context,
the OCM2DDR controller can be used as a universal solu-
tion to connect IPIF compatible peripherals to the OCM.
The synthesis details are presented in Table I.

At this time, the fact that the OCM bus doesn’t not sup-
port all functions of the IPIF makes it impossible to sup-
port a non-fixed access time. Interrupts and DMA accesses
are also not supported at this time. Since the OCM does
not support these systems natively, a workaround has to be
found outside the current OCM interface.

Future work will include the development of a config-
urable caching system using the OCM2DDR interface as
a basis for communication with the DDR controller. To
make full use of the Dual Data Rate of the DDR memory,
burst-access should be introduced. In addition, the access
time of this cache subsystem will be variable. This is not
possible with the current OCM controller implementation,
A possible solution is to use a different base architecture.
(e.g. the Virtex4) which does support a non-fixed access
time on the OCM.

REFERENCES

[1] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuz-
manov, and E. M. Panainte. The molen polymorphic processor.
IEEE Transactions on Computers, pages 1363– 1375, November
2004.

[2] H. Winkler. Clocking strategy for a virtex-ii-pro ddr sdram con-
troller.

[3] Xilinx. Virtex-II Pro platform FPGA handbook. Xilinx, October
2002.

[4] Xilinx. Xilinx ml310 development board. Xilinx,
http://www.xilinx.com/products/boards/ml310 2002.

[5] Xilinx. Plb ipif (v2.01.a. Xilinx Logicore,
http://www.xilinx.com/bvdocs/ipcenter/datasheet/plbipif.pdf
2004.

414


