
Sparse Matrix Storage Format
Fethulah Smailbegovic, Georgi N. Gaydadjiev, Stamatis Vassiliadis

Computer Engineering Laboratory,
Electrical Engineering Mathematics and Computer Science

Mekelweg 4, 2628CD Delft
TU Delft

fethulah@computer.org
{stamatis,georgi}@ce.et.tudelft.nl

Abstract— Operations on Sparse Matrices are the key
computational kernels in many scientific and engineering
applications. They are characterized with poor substanti-
ated performance. It is not uncommon for microproces-
sors to gain only 10-20% of their peak floating-point perfor-
mance when doing sparse matrix computations even when
special vector processors have been added as coprocessor fa-
cilities. In this paper we present new data format for sparse
matrix storage. This format facilitates the continuous reuse
of elements in the processing array. In comparison to other
formats we achieve lower storage efficiency (only an extra bit
per non-zero elements). A conjuncture of the proposed ap-
proach is that the hardware execution efficiency on sparse
matrices can be improved.

Keywords—Sparse Matrix Formats, Operation Efficiency,
Hardware

I. I NTRODUCTION

Many numerical problems in real life applications such
as engineering, scientific computing and economics use
huge matrices with very few non-zero elements, referred to
as sparse matrices. As there is no reason to store and oper-
ate on a huge number of zeros, it is often necessary to mod-
ify the existing algorithms to take advantage of the sparse
structure of the matrix. Sparse matrices can be easily
compressed, yielding significant savings in memory usage.
Several sparse matrix formats exist, like the Compressed
Row Storage [9], the Jagged Diagonal Format [8] or Com-
pressed Diagonal Storage format [2]. Each format takes
advantage of a specific property of the sparse matrix, and
therefore achieves different degree of space efficiency. The
operations on sparse matrices are performed using their
storage formats directly [1], [5], [6], [4]. This suggests that
formats can influence the efficiency of the executed oper-
ations. The algorithms for least square problems or im-
age reconstruction, for example, need to solve sparse lin-
ear systems using iterative methods involving large num-
ber of sparse matrix vector multiplications. Operations on
Sparse Matrices tend to yield lower performance on gen-

eral purpose processors due to sparse nature of data struc-
ture, which causes large number of cache misses and large
number of memory accesses. As consequence, it leaves
the processing elements not fully utilized.

Recently, Field Programmable Gate Arrays showed
promising platform for implementation of operations on
sparse matrices, like Sparse Matrix Vector Multiplication
[1], [10]. Growing FPGA capacity in terms of on-chip
memory, embedded elements, I/O pins and high floating
point performance, make FPGA attractive platform for im-
plementation.

Considering the recent achievements in implementation
of operations on sparse matrices we propose a simple and
efficient format, an extended Sparse Block Compressed
Row Storage (SBCRSx) for sparse matrices. The format
allows high degree of data reuse and therefore the format
will enable us to achieve substantial performance gains
over the recent implementations of operations on Sparse
Matrices.

Therefore, the contribution of our work can be summa-
rized as Simple Sparse Matrix format for efficient hard-
ware implementation of arithmetic operations such as ma-
trix by vector multiplication. The existing formats do not
provide the hardware with essential information about the
sparse matrix layout, since their primary focus is on space
efficiency. We identify the need for formats to provide ad-
ditional information on sparse matrix to the hardware. This
is to enable efficient implementation of arithmetic opera-
tions on Sparse Matrices.

The remainder of the paper is organized as follows: In
section II a brief background information on Sparse Ma-
trix Formats is presented. Section III describes and gives
evaluation of the proposed format. Finally, section IV con-
cludes the paper.

II. BACKGROUND

One widely used, space efficient sparse matrix repre-
sentation is Compressed Row Storage [9] (see figure 1).

445

Fig. 1. Compressed Row Storage

The matrix is represented with three vectors: rowAI, col-
umnAJ and matrix valuesAN vectors. An 1-dimensional
vector AN is constructed that contains all the values of
the non-zero elements taken in a row-wise fashion from
the matrix. The next vector, 1-dimensional vectorAJ of
length equal to the length ofAN is constructed that con-
tains the original column positions of the corresponding
elements inAN . Each element in vectorAI is a pointer to
the first non-zero element of each row in vectorsAN and
AJ . The main advantage of using this format is that it is
rather intuitive and straightforward, and most toolkits sup-
port this format on most sparse matrix operations. How-
ever, since it focuses on matrices of general type, it does
not takes into account particular sparse matrix patterns that
may be inherent to specific application types.

A more efficient way to store the information is the
Sparse Block Compressed Row Storage format [7]. Sparse
Block Compressed Row Storage is presented in figure 2.
The matrix is divided into blocks. The final output is the
block compressed matrix where each element is a block
from the original matrix. In each block we store every ma-
trix element, with its value and position information using
a single vector. On the block compressed matrix the stan-
dard compressed row storage scheme is performed. There-
after, the vector with block coding is added where each
block coding is represented.

The problem of implementation of operations on sparse
matrices raises the following question:What information
a sparse matrix format should provide hardware with, to
enable subsequent efficient implementation?The current

Fig. 2. Sparse Block Compressed Row Storage

formats cope with the problems like, short vectors, in-
dexed accesses, and positional information overhead, but
essential problem is how to influence hardware to yield at
the end execution of efficient operations. The difficulty
with sparse matrix storage schemes is that they include
additional overhead (to store indices as well as numerical
values of nonzero matrix entries) than the simple arrays
used for dense matrices[3], and arithmetic operations on
the data stored in them usually cannot be performed as ef-
ficient either (due to indirect addressing of operands). To
address the above questions, we have extended previously
proposed Sparse Block Compressed Row Storage.

III. T HE PROPOSED FORMAT AND EVALUATION

In this section we propose an extension of the SPBCRS
format described in II – the Extended Sparse Block Com-
pressed Row Storage (SPBCRSx). Our goal is to enable as
much as possible spatial reuse of on-chip resources. The
existing formats store the positional and value informa-
tion in three separate entities. Through indirect operands
addressing we connect the value information with corre-
sponding positional information. We believe that value
and positional information must be seen as a unique en-
tity and stored as a short linked list. Therefore, matrix
storage scheme would consist of short linked lists as ele-
ments. Accessing one element of the matrix would mean
accessing the value and positional information in subse-
quent manner. Also, these lists for every matrix element
should connect between each other in case the elements

446

 i
–
 row index, j
-
column
 index

for each
 element of
 matrix
 N
x
N

 for i = 0 to
N
-
1 loop

 for j = 0 to
N
-
1 loop

 if
value_
matrix(i,j) is non zero then
 /* if non zero element found

 write the values and positi
on information*/

 position (i,j) <=
position_matrix
(i,
j
);

 value (i,j) <=
value_
matrix (i,j);

 seen_nonzero_element <= seen_nonzero_element + 1;

 chain_bit_tmp(i,j) <= ‘1’; /*set temporary
 chain bit to 1*/

 else

 NULL;

/*
if zero element found
do nothing*/

 end if;

 end loop;

 if seen_nonzero_element > 1 then
 /* when completed
 a
 row look if

 there were non
 -
zero elements*/

 for j = 0
 to N
-
1 loop

 chain_bit (i,j) <=
chain_bit_tmp(i,j)
;
 /* if yes than commit
*/

 end loop;

 /* temporary chain bits to real chain bits
 */

 else

 NULL; /* otherwise do nothing*/

 end if;

 end loop;

 end loop;

Fig. 3. Sparse Matrix to SPBCRSx transformation

are from the same row. By doing this, we create short
data vectors, referred to as chunks, with their known be-
ginning and ending address. Since these chunks have dif-
ferent lengths and only finite number of chunks can fit on
the available on-chip resources, we augment the value and
the positional information with another field (the chaining
bit). The chaining bit tells the hardware if there are more
elements of the same row to follow. In case not, the hard-
ware can conclude the summation off the row and store
the result in the outgoing vector. The algorithm for the
SPBCRSx transformation is presented in figure 3. The al-
gorithm would be executed runtime on the host processor.
In the algorithm, we scan each element in the current row
and search for the non-zero elements. If a non-zero ele-
ment is found then the value and position data are stored
into linked list for the matrix element. We count each non-
zero element in the row. The chaining bit at this moment is
temporary set to ’1’. After we finish a row, we examine the
counter of non-zero elements. If the counter is greater than
1, we then commit the temporary chain bits to real chain
bits for every found non-zero matrix element. This proce-
dure is repeated for each row in the sparse matrix. After we
finish with the Extended Sparse Block Compressed Row
Storage transformation, we divide the non-coded matrix
into blocks ofSxS, and take for eachSxS block coded
representation. This representation is now an element in

Non zero element

Storage of SxS matrix sub-block

(S=8)

1
 2
 3

4
 5

6
 7

8
 9

10
10
 11

1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 0

chaining data

positional data

value data

B = [ba1, ba2, ba3, …, ba11]

chunk0 chunk1 chunk2 chunk3 chunk4 chunk5 chunk6 chunk7

Fig. 4. The Extended Sparse Block Compressed Row Storage

the compressed matrix. How we store any sparse matrix
in Extended Sparse Block Compressed Row Storage (SP-
BCRSx) is presented in the figure 4.

To clarify the discussion we consider the same matrix
as in figure 1. As shown on figure 5, for each element

447

Fig. 5. Example of SPBCRSx

in the matrix a linked list is created. In this example ten
elements are with chaining bits set to ’1’. This informa-
tion is important for the hardware to get the information
about the matrix structure. The chaining information tells
the hardware that there more than one non-zero elements
are present in the matrix row. As a consequence, we have
created for the rows, with more than one non-zero element,
the chunks. For example, the elements with values 6, 9 and
4 build one chunk of data. The elements 3, 5 and 8 built
another chunk of data. The chunks represent data group
of the same row matrix elements and bundled with other
chunks built a group with increased spatial data locality.

The proposed SPBCRSx format stores the sparse matrix
into the same entities as SPBCRCS with an additional bit
for having the value ’1’ for all but the last non-zero ele-
ments in a row. These extra bits allow for the hardware
to detect the ”end” of a row and avoid idle execution time
when performing arithmetic operations. The above pro-
vides the capabilities to speed-up execution and facilitate
the hardware unit design. The conjuncture suggested in
the previous paragraph constitutes further research topic
and its validity will be considered and tested for common
sparse vector arithmetic operations such as matrix by vec-
tor multiplication.

IV. CONCLUSIONS

Operation on Sparse Matrices are important part in com-
putational sciences. In this paper we proposed a new
sparse matrix format and explained the expected benefits
for the hardware execution units. We suggest that at ex-
penses of an extra bit per value representation when com-
pared to existing techniques that the design and speed-up
of sparse matrix operations could be facilitated.

REFERENCES

[1] M. deLorimier and A. DeHon. Floating-point sparse matrix-
vector multiply for fpgas. InProceedings of the International
Symposium on Field-Programmable Gate Arrays, February 2005.

[2] J. Dongarra. Sparse matrix storage formats. InTemplates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide,
SIAM, 2000.

[3] Y. Dou, S. Vassiliadis, G. Kuzmanov, and G. N. Gaydadjiev. 64-
bit floating-point fpga matrix multiplication. InProceedings of
the International Symposium on Field-Programmable Gate Ar-
rays, February 2005.

[4] P. Stathis, S. D. Cotofana, and S. Vassiliadis. Sparse matrix vector
multiplication evaluation using the bbcs scheme. InProc. of 8th
Panhellenic Conference on Informatics, pages 40–49, November
2001.

[5] S. Vassiliadis, S. D. Cotofana, and P. Stathis. Vector isa extension
for sprase matrix multiplication. InProceedings of EuroPar’99
Parallel Processing, pages 708–715, September 1999.

[6] S. Vassiliadis, S. D. Cotofana, and P. Stathis. Bbcs based
sparse matrix-vector multiplication: initial evaluation. InProc.
16th IMACS World Congress on Scientific Computation, Applied
Mathematics and Simulation, pages 1–6, August 2000.

[7] S. Vassiliadis, S. D. Cotofana, and P. Stathis. Block based
compression storage expected performance. InProc. 14th Int.
Conf. on High Performance Computing Systems and Applications
(HPCS 2000), June 2000.

[8] Y.Saad. Krylov subspace methods on supercomputers. InSIAM
Journal on Scientific and Statistical Computing, 1989.

[9] J. D. Z. Bai, J. Dongarra, A. Ruhe, and H. van der Vorst. Tem-
plates for the solution of algebraic eigenvalue problems: A prac-
tical guide. InSociety for Industrial and Applied Mathematics,
2000.

[10] L. Zhuo and V. K. Prasanna. Sparse matrix-vector multiplication
on fpgas. InFPGA ’05: Proceedings of the 2005 ACM/SIGDA
13th international symposium on Field-programmable gate ar-
rays, pages 63–74, New York, NY, USA, 2005. ACM Press.

448

