
The TM3270 Media-Processor

*Philips Semiconductors

San Jose, CA, USA

+Delft University of Technology

Delft, the Netherlands

Stamatis@dutepp0.et.tudelft.nl

Abstract

We present the TM3270 media-processor, the latest

TriMedia VLIW processor, tuned to address the

performance demands of standard definition video
processing, combined with embedded processor

requirements for the consumer market. We discuss the

architecture, implementation, and its first realization

in a 90 nm process technology. The processor

incorporates instruction set architectural (ISA)
extensions and a load/store unit optimized for the

video-processing domain. The ISA extensions improve

the performance on video processing kernels. The data

cache policies and prefetching techniques allow for

efficient access to multimedia data. Finally, power

consumption and performance data are presented.

1. Introduction

It is well established that high-frequency General-

Purpose Processors (GPP) provide the computational

performance to meet the requirements of the latest

video standards, such as MPEG4, and H.264. They are

easy to program, and appear to offer a steadily

increasing performance level with each new processor

generation. Furthermore, SIMD-style instruction set

architecture (ISA) extensions have been added that

target the multimedia domain, e.g. Intel’s MMX

extensions [2], and the AltiVec extensions to the

PowerPC architecture [3]. Multiple approaches exist

that suggest vector-processing enhancements to GPP

architectures, see for example [4, 5, 6, 7, 8]. These

enhancements try to exploit the assumed regular

memory access pattern and streaming nature of

multimedia applications. Typically, the enhancements

are closely connected to the GPP, but have a dedicated

access path to memory and their own register-file

structure. The efficiency of these approaches relies on

a certain regularity in memory accesses, and a stream-

based processing of multimedia data. Whereas this

may have been typical for older video codec standards,

this assumption is less true for newer standards. As an

example, consider the granularity at which video

codecs transmit motion vector data. For MPEG2, a

single motion vector is present for every 16x16 block

of image pixels. For MPEG4, a motion vector may be

present for every 8x8 block, and for H.264, a motion

vector may be present for every 4x4 block. In general

we can observe a decrease in block size and an

increase in control overhead. Furthermore, the

dependencies between blocks is increasing, which

prohibits the parallel processing of multiple blocks,

e.g. for H.264, processing a 4x4 block may require that

the blocks to its left and above it have already been

processed. It could be stated that video codecs are

getting more control intensive. As a result, approaches

that rely on stream-based processing on large vectors

become less efficient.

It can be contented that in most cases silicon cost

and power consumption of the GPP processor based

approaches may prohibit successful application in the

embedded processor market. A fixed function

implementation in dedicated hardware is a different

approach. It allows for a low cost implementation of a

specific standard, but may be less efficient when a

large variety of standards have to be supported. The

increased multimedia workload, especially in the video

processing domain, has given rise to its own class of

processors: the media-processor. Unburdened by

binary code compatibility issues, these new processors

typically have a VLIW architecture to allow for a low

cost silicon implementation. Examples are Texas

Instruments’ VelociTI architecture [16], Philips’

TriMedia architecture [9], and Equator’s MAP-CA

[17]. These processors have been built from the ground

up to address the requirements of video processing.

Like GPPs, their ISA includes SIMD-style operations,

but also their memory infrastructure has been

optimized to address multimedia requirements, e.g.

efficient support for nonaligned memory access, data

prefetching and DMA-style memory transfers can be

found in these processors. Whereas GPPs typically

have a distinct register-file for SIMD-style operation,

media-processors typically have a unified register-file

Jan-Willem van de Waerdt*
+
, Stamatis Vassiliadis

+
, Sanjeev Das*, Sebastian Mirolo*,

Chris Yen*, Bill Zhong*, Carlos Basto*, Jean-Paul van Itegem*, Dinesh Amirtharaj*,

Kulbhushan Kalra*, Pedro Rodriguez* and Hans van Antwerpen*

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

structure. Furthermore, media-processors have register-

file sizes that exceed those of GPPs. As a result, a large

data working set can be kept in registers, preventing

the generation of load and store operations as a result

of spilling due to register-pressure.

The programmability of media-processors gives a

flexibility advantage over a dedicated hardware

approach: it enables algorithmic changes after design,

multiple applications can be mapped to the same

platform, faster time-to-market, etc. Furthermore, their

architecture allows for an efficient handling of both

control- and media-processing tasks, as required by the

latest video processing applications such as H.264.

This paper presents the TM3270, the latest Philips

media-processor based on the TriMedia architecture. It

addresses the requirement of multi-standard video

processing (en-/de-coding) at standard resolution and

the associated audio processing requirements.

Additionally to adequate processing performance, area

and power consumption were the main design

constraints.

The remainder of this paper follows the separation

of computer design into architecture, implementation,

and realization, as introduced by Blaauw in [10].

Section 2 introduces the TM3270 architecture: the user

view of the processor. This section includes some of

the ISA enhancements. Sections 3 and 4 discuss

implementation: the logical organization of the

processor’s inner structure. These sections include a

description of the processor pipeline and load/store unit

organization. Section 5 discusses realization: the

physical mapping of the implementation on a certain

process technology. This section includes a description

of the processor floorplan, and presents area and power

numbers. Section 6 presents some performance

statistics. Finally, Section 7 presents the conclusions.

2. Architecture

The TM3270 is a VLIW-based media-processor,

which is backward source code compatible with other

processors in the TriMedia family [9]; i.e. C-code

written for previous TriMedia processors can be re-

compiled to run on the TM3270. Re-compilation is

required, since binary compatibility is not guaranteed

between all members of the family. Typically, the

TM3270 is used as an embedded processor in a

System-on-a-Chip (SoC). Table 1 gives an overview of

the main architectural features.

2.1. Operation encoding

A VLIW instruction may contain up to five

operations, which are template-based encoded in a

compressed format to limit code size. Every VLIW

instruction starts with a 10-bit template field, which

specifies the compression of the operations in the next

VLIW instruction. As a result, an instruction’s

compression template is available one cycle before the

instruction’s compressed encoding, which relaxes the

timing requirements of the decoding process. Jump

target VLIW instructions are not compressed and do

not require an explicit template field in the preceding

instruction. The 10-bit template field has five 2-bit

compression sub-fields, which are related to the

processor’s issue slots 1 through 5. An issue slot’s 2-

bit compression field specifies the size of the operation

encoding. Figure 1 gives an example of a VLIW

instruction containing three operations in slots 2, 3, and

5. Issue slots 1 and 4 are not used, as specified by the

“11” encoding of the related compression fields. Since

issue slot 1 is not used, the first encoded operation is

Table 1. TM3270 Architecture

Architectural feature Quantity

Architecture 5 issue slot VLIW
guarded RISC-like operations

Pipeline depth 7-12 stages
Address width 32 bits
Data width 32 bits
Register-file Unified, 128 32-bit registers
Functional units 31
IEEE-754 floating point yes
SIMD capabilities 1 x 32-bit, 2 x 16-bit, 4 x 8-bit
Instruction cache 64 Kbyte, 128-byte lines,

8 way set-associative,
LRU replacement policy

Data cache 128 Kbyte, 128-byte lines
4 way set-associative,
LRU replacement policy,
Allocate-on-write miss policy

11 10 10 11 00

Template sub-field

00: 26 bits

01: 34 bits

10: 42 bits

11: not used/encoded

previous VLIW INSTRUCTION (5 operations)

VLIW INSTRUCTION (3 operations)

slot 2

operation

slot 3

operation

slot 5

op.

15 bytes (10 + 42 + 42 + 26 bits = 120 bits)

Issue slot

1: NOP,

2: IF r34 MUL r87 r54 -> r123,

3: IF r45 QUADUMIN r3 r67 -> r23,

4: NOP,

5: LD32D (4) r22 -> r14;

10 bit template field

Figure 1. VLIW instruction encoding.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

for issue slot 2. A VLIW instruction without any

operations is efficiently encoded in 2 bytes, with a

“11:11:11:11:11” template field. A VLIW with all

operations of the maximum size of 42 bits is encoded

in 28 bytes, with a “10:10:10:10:10” template field and

5 * 42 bits for the operation encoding. This

compression scheme allows for an efficient encoding

of code with a low amount of instruction level

parallelism.

2.2. ISA enhancements

The TM3270 enhances the ISA of its predecessor,

the TM3260, with roughly 40 new operations. The

TM3260 finds commercial use in e.g. the PNX1500 IC

[15]. In the following subsections we describe some of

the new operations.

2.2.1. Two-slot operations

The concept of two-slot or super-operations was

first introduced in [11], but only finds first application

in the TM3270. Two-slot operations are executed by

functional units that are situated in two neighboring

issue slots. As a result, these operations have twice the

register-file bandwidth, allowing for operations with up

to four source operands, and up to two destination

operands. We describe two of these operations:

SUPER_DUALIMIX and SUPER_LD32R (Table 2). The

SUPER_DUALIMIX operations perform a pairwise 2-

taps filter on 16-bit signed values. Each of the two

filter results is clipped to the signed 32-bit range, and

returned in a separate destination register. The

SUPER_LD32R operation retrieves two consecutive

32-bit values from memory. It has two source

operands, which are encoded as part of the second

operation in the operation pair, and two destination

registers. The operation doubles the processor’s

bandwidth to data memory. The restriction to two

consecutive address locations limits the applicability of

this operation, when compared to two separate

unrestricted 32-bit load operations. However, the

SUPER_LD32R is easily supported by our cache

implementation (as described in Section 4), whereas

the support for two separate 32-bit load operations is

more expensive [18]. Similar to our SUPER_LD32R
operation, Texas Instruments’ VelociTI architecture

Table 2. TM3270 two-slot operations, collapsed load operation and CABAC operations.

Operation Description
Issue slot(s)

(latency)

SUPER_DUALIMIX
rsrc1 rsrc2 rsrc3 rscr4 -> rdest1 rdest2

temp = rsrc1[31:16]*rsrc2[31:16] + rsrc3[31:16]*rsrc4[31:16];
rdest1[31:0] = min (max (-2^31, temp), 2^31-1);
temp = rsrc1[15:0]*rsrc2[15:0] + rsrc3[15:0]*rsrc4[15:0];
rdest2[31:0] = min (max (-2^31, temp), 2^31-1);

2 and 3
(4)

SUPER_LD32R
rsrc3 rsrc4 -> rdest1 rdest2;

Semantics: Two-slot load operation;
load two 32-bit words, big endian.

rdest1[31:24] = Mem[rsrc3 + rsrc4];
rdest1[23:16] = Mem[rsrc3 + rsrc4 + 1];
rdest1[15:8] = Mem[rsrc3 + rsrc4 + 2];
rdest1[7:0] = Mem[rsrc3 + rsrc4 + 3];
rdest2[31:24] = Mem[rsrc3 + rsrc4 + 4];
rdest2[23:16] = Mem[rsrc3 + rsrc4 + 5];
rdest2[15:8] = Mem[rsrc3 + rsrc4 + 6];
rdest2[7:0] = Mem[rsrc3 + rsrc4 + 7];

4 and 5
(4)

LD_FRAC8
rsrc1 rsrc2 -> rdest1;

Semantics: Collapsed load operation;
load combined with two-taps filter
function

data0 = Mem[rsrc1]; data1 = Mem[rsrc1 + 1];
data2 = Mem[rsrc1 + 2]; data3 = Mem[rsrc1 + 3];
data4 = Mem[rsrc1 + 4];
rdest1[31:24] = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) / 16;
rdest1[23:16] = (data1*(16-rsrc2[3:0]) + data2*rsrc2[3:0] + 8) / 16;
rdest1[15:8] = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) / 16;
rdest1[7:0] = (data3*(16-rsrc2[3:0]) + data4*rsrc2[3:0] + 8) / 16;

5
(6)

SUPER_CABAC_STR
rsrc1 rsrc2 rsrc4 -> rdest1 rdest2

rsrc1: DUAL16* (value, range)
rsrc2: stream_bit_position
rsrc4: DUAL16 (state, mps)
< Functionality as described in Figure 2 >
rdest1: stream_bit_position
rdest2: bit

2 and 3
(4)

SUPER_CABAC_CTX
rsrc1 rsrc2 rsrc3 rscr4 -> rdest1 rdest2

rsrc1: DUAL16 (value, range)
rsrc2: stream_bit_position
rsrc3: stream_data
rsrc4: DUAL16 (state, mps)
< Functionality as described in Figure 2 >
rdest1: DUAL16 (value, range)
rdest2: DUAL16 (state, mps)

2 and 3
(4)

*DUAL16 (a, b) = (a << 16) | (b & 0xffff)

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

supports the LDDW operation to double the load

bandwidth. However, the two destination registers of

the LDDW operation are restricted to a pair of

successive registers in the register-file, which puts

additional constraints on the register allocator in the

compiler/scheduler.

2.2.2. Collapsed load operations with interpolation

A significant part of the computational complexity

of a video encoder is found in the motion estimation

kernel. The TM3270 ISA includes collapsed load

operations that involve memory collapsing rather than

the ALU collapsing presented in [21]. The new

operations perform a memory load with interpolation

on the retrieved data, which allows for efficient

calculation of pixels at fractional horizontal image

positions. As a result, the computational complexity of

motion estimation is significantly reduced [12]. The

collapsed load operations combine the functionality of

an ordinary load operation with a linear interpolation

function, as defined by a fractional position. Table 2

gives the definition of the LD_FRAC8 operation. The

operation retrieves five consecutive bytes from

memory, performs a pair-wise interpolation based on a

fractional position, and returns four interpolated byte

values. A more traditional architecture would require at

least two 32-bit loads to retrieve the five bytes from

memory, and multiple arithmetic operations to perform

the interpolation. Not only is the amount of required

operations reduced, but also the register-file pressure is

relaxed, which prevents spilling.

2.2.3. CABAC operations

A significant part of the computational complexity

of the H.264/AVC video standard is found in the

Context-Based Adaptive Binary Arithmetic Coding

(CABAC) [18]. The intrinsic sequential behavior of the

coding process prohibits an efficient implementation

on a multi-issue SIMD processor. Performance

evaluations of an optimized decoder indicate that a

LpsRangeTable[64][4] /* range table for least probable symbol (LPS) */
MpsNextStateTable[64], LpsNextStateTable[64] /* MPS, LPS state transition tables */

biari_decode_symbol (/* decodes a single binary value “bit” from the CABAC coded bitstream. */
inout value, /* coding value, 10-bit value */
inout range, /* coding range, 9-bit value */
inout state, /* modeling context state, 6-bit */
inout mps, /* modeling context MPS, 1-bit */
in stream_data, /* bitstream data */
inout stream_bit_position, /* bit position in "stream_data" */
out bit) /* decoded binary value */

{
 stream_data_aligned = stream_data << stream_bit_position;
 range_lps = LpsRangeTable[state][(range >> 6) & 3)];
 temp_range = range - range_lps

if (value < temp_range) { /* MPS: most probable symbol */
 value = value;
 range = temp_range;
 bit = mps;
 mps = mps;
 state = MpsNextStateTable[state];
 } else { /* LPS: least probable symbol */
 value = value - temp_range;
 range = range_lps;
 bit = !mps;
 mps = mps ^ (state != 0);
 state = LpsNextStateTable[state];
 }

while (range < 256) { /* renormalization, at most 8 bits can be consumed */
 value = (value << 1)
 | ((stream_data_aligned >> 31) & 1);
 range <<= 1;
 stream_data_aligned <<= 1;
 stream_bit_position += 1;
 }

}
Figure 2. Context-based adaptive binary arithmetic coding (CABAC), “biari_decode_symbol”

function.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

significant part of the overall decoding time may be

spent in the CABAC process. For I-fields, which

require a relatively high amount of bits to encode a

field, CABAC decoding may constitute up to 50% of

the decoding time. To reduce these computational

requirements, specific CABAC operations were

introduced in the TM3270.

Figure 2 gives the biari_decode_symbol function,

taken from the H.264 reference code. This function

decodes a single binary value bit from a CABAC

coded bitstream. Ideally, we would like to implement

the above functionality with a single new operation.

However, the amount of input and output function

arguments exceeds the capability of our two-slot

operations. Closer investigation of the function shows

that by grouping of semantically related arguments as

16-bit sub-operands of a 32-bit operand, an

implementation with two two-slot operations is

possible. The value (10-bit value) and range (9-bit

value) arguments are both related to a context, and are

grouped in a two-way 16-bit representation. The state
(6-bit value) and mps (1-bit value) arguments define

the state of a probability model for a context, and are

grouped in a two-way 16-bit representation. The other

arguments are represented by dedicated operation

operands. We introduce two new operations:

SUPER_CABAC_CTX and SUPER_CABAC_STR
(Table 2). The SUPER_CABAC_CTX operation

calculates the new values of the context modeling:

rdest1 contains (value, range) and rdest2 contains

(state, mps). Note that for this calculation, all function

input arguments are required: rsrc1 contains (value,
range), rsrc2 contains stream_bit_position, rsrc3
contains stream_data and rsrc4 contains (state, mps).
The SUPER_CABAC_STR operation calculates the

new values related to the bitstream processing: rdest1
contains stream_bit_position and rdest2 contains bit.
Note that for this calculation, only a subset of the

function input arguments are required (stream_data is

not required): rsrc1 contains (value, range), rsrc2
contains stream_bit_position, rsrc3 is not used and

rsrc4 contains (state, mps).
We measured the performance of the complete

CABAC decoding process (including decoder data

structure maintenance and context computation) for a

standard resolution 4.5 Mbits/sec bitstream with and

without the use of the new CABAC operations. Table 3

gives the results for the different field types: the use of

the new CABAC operations results in a speed up in the

range of [1.5, 1.7].

2.3. Prefetching

Our prefetch approach is based on memory regions.

It allows for a prefetching pattern that reflects the

access pattern of a data structure mapped onto a certain

address space. The TM3270 supports four separate

memory regions. The identification of these memory

regions and the required prefetch pattern is under

software control, and defined by the following

parameters (n = 0, 1, 2, 3):
- PFn_START_ADDR
- PFn_END_ADDR
- PFn_STRIDE
The first two parameters, PFn_START_ADDR and

PFn_END_ADDR, are used to identify a memory

region. The third parameter, PFn_STRIDE, is used to

specify the prefetch pattern for the associated region.

When the processor hardware detects a load from an

address A within a prefetch region x, a prefetch request

for address A+PFx_STRIDE is sent to the prefetch unit,

if the prefetch address is not yet present in the cache.

MEMORY

im
a

g
e

 h
e

ig
h

t

PFx_START_ADDR

PFx_END_ADDR

ADDRESS A

ADDRESS

A+PFx_STRIDE

image width

processing order

PFx_STRIDE

Figure 3. Memory region based prefetching.

Table 3. Performance measurements of the CABAC decoding process for I, P, and B-fields of a
4.5 Mbits/sec bitstream at standard resolution (60 720*240 NTSC fields/sec).

Non-optimized
Optimized

(CABAC operations) Field-type Average
bits/field

VLIW instr. VLIW instr./bit VLIW instr. VLIW instr./bit

Speedup

I 215,408 4,535,945 21.1 2,686,787 12.5 1.7
P 103,544 2,901,381 28.0 1,799,559 17.4 1.6
B 153,035 1,439,821 33.8 951,545 22.3 1.5

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Prefetched data is put directly into the data cache. The

large data cache capacity of 128 Kbyte and its 4-way

set-associativity make it unlikely that useful data is

victimized. Furthermore, no dedicated prefetch storage

structures, such as stream buffers or stream caches

[19], are required.

Traditional next-sequential cache line prefetching is

realized by setting the prefetch pattern to the cache line

size of 128 bytes. The effectiveness of the prefetch

approach becomes apparent when we consider e.g. the

block-based processing of an image (Figure 3).

Assume an image of byte element in memory. The

image is processed at 4x4 block-size granularity.

Starting with the upper-left block, the blocks are

processed in a left-to-right, and top-down order. The

memory region (PFx_START_ADDR and

PFx_END_ADDR) is set to include the image, and the

associated prefetch pattern (PFx_STRIDE) is set to the

INSTRUCTION FETCH UNIT

LOAD/STORE UNIT

REGISTER-FILE

- 128 32-bit registers

- 5 1-bit read ports

- 10 32-bit read ports

- 5 32-bit write ports

8 tags

INSTRUCTION

CACHE TAGS

(8-WAY ASSOCIATIVE)

INSTRUCTION

CACHE DATA

(64 KBYTE)

INSTRUCTION

FETCH

CONTROL

VLIW INSTRUCTION ALIGNMENT &

OPERATION EXTRACTION

TAG

COMPARISON
REFILL UNIT

OPERATION

DECODE

INSTRUCTION

 BUFFER

- 4 256 bits

 entries

256 bits

OPERATION ISSUE &

OPERAND BYPASS

slot1 slot5slot3slot2 slot4

DATA

CACHE

ADDRESS

CALCULATION

REFILL UNIT

COPY BACK

UNIT

TWO-SLOT

FUNCTIONAL UNIT

WRITE

BUSSES

F
IL

T
E

R

B
A

N
K

O
p

e
ra

ti
o

n
 l
a

te
n

c
y

5 OPERATIONS 5x guard register identifiers

5x2 source register identfiers

5x destination register identifiers

5x destination data

to the REGISTER-FILE

BUS

INTERFACE

UNIT

Asynchronous

clock

domain

transfer

CPU clock SoC clock

J
u

m
p

 o
p

e
ra

ti
o

n
 (

5
 d

e
la

y
 s

lo
ts

)

I1

I2

I3

P

D

X1

X2

X6

X5

X4

X3

W

PIPELINE STAGES

S
o

C
 I

N
T

E
R

F
A

C
E

PREFETCH

UNIT

Figure 4. TM3270 media-processor pipeline partitioning.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

image width times the block height of 4. While

processing a certain row of blocks, the lower row of

blocks is prefetched into the data cache. If the time to

process a row of blocks exceeds the time to prefetch

the lower row of block, the processor will not incur any

stall cycles due to data cache misses.

3. TM3270 pipeline

This section gives an overview of the TM3270

pipeline (Figure 4). The pipeline has a depth of 7

stages for single cycle latency operations. Stages I1
through I3 hold the sequential instruction cache design:

the access of cache tags (stage I1) and cache instruction

information (stage I3) proceed in sequence to limit

power consumption. Every cycle, a 32-byte aligned

chunk of instruction information can be retrieved from

the instruction memory. These chunks are stored in a

4-entry instruction buffer in stage P. The instruction

buffer decouples the progress of the front-end of the

pipeline (stages I1 through I3) from the back-end of the

pipeline (stages D through W). In stage P a VLIW

instruction is pre-decoded from the information in the

instruction buffer. Stage D decodes the individual

operations, and determines operations’ operands

through register-file access and operand bypassing. To

support the maximum issue rate of five operations per

VLIW instruction, the register-file has five 1-bit guard

read ports, and ten 32-bit source read ports. Stages X1
through X6 are the execute stages. The amount of

execute stages is dependent on an operation’s latency.

Single cycle operations have a single execute stage

(X1); collapsed load operations with interpolation have

six execute stages (X1 through X6). Two-slot

functional units are depicted in two neighboring issue

slots. Conditional and unconditional jump operations

are executed in the X1 stage. Jump operations have five

architectural delay slots, reflecting the pipeline

distance from the first stage of instruction retrieval

(stage I1) to the X1 stage. As a result, no stall cycles

are observed during control flow changes, eliminating

the need for branch prediction techniques. The

scheduler tries to fill the 25 operations in the five jump

delay instructions using aggressive predication,

possibly based on program profile information. The

load/store unit includes the data cache, and is located

in issue slots 4 and 5. Section 4 discusses the load/store

unit in greater detail. Separate cache line refill, copy

back, and prefetch units connect this unit to the

processor’s bus interface unit (BIU). The BIU is the

interface to the rest of the SoC. It includes an

asynchronous clock domain transfer, which allows for

flexibility when deciding upon processor and SoC

operating frequency. Stage W gathers the operation

results from the functional units, and allows for up to

five simultaneous 32-bit updates to the register-file.

4. Load/store unit

This section describes the organization of the

TM3270 load/store unit.

4.1. Cache parameters and policies

The TM3270 has a 128 Kbyte data cache, which is

organized as a 4-way set associative cache with 128

byte cache lines. The cache supports penalty-free (no

stall cycles) non-aligned accesses. The cache has a

least-recently-used (LRU) replacement policy, a copy-

back write policy, and an allocate-on-write-miss

policy. The allocate-on-write-miss policy reduces the

write miss penalty (when compared to a fetch-on-

write-miss policy), and results in less bandwidth to off-

chip memory. A cache byte-validity structure is used to

keep track of the validity of the individual bytes in a

cache line. When an allocated cache line is victimized,

only the validated bytes are copied back to the off-chip

memory. The TM3270 and its SoC bus protocol

support the transfer of cache lines with byte-validity

indicators.

4.2. Load and store operations

Store operations can be issued in slots 4 or 5. Only a

single load operation can be issued in slot 5. The two-

slot SUPER_LD32R operation increases load

bandwidth. It is issued in slots 4 and 5 (but the cache

access path is restricted to slot 5, as illustrated by

Figure 5), and retrieves two consecutive 32-bit words

from memory into two destination registers. The

collapsed LD_FRAC8 operation is issued in slot 5.

Figure 5 gives an overview of the data cache

pipeline, partitioned into execute stages X1 through X6.

Normal load operations have a 4-cycle latency and

produce a result in stage X4. Collapsed load operations

with interpolation have a 6-cycle latency and produce a

result in stage X6. Stage X1 calculates the effective

address for both the first and last byte referenced by an

operation (Figure 5: addr_lo and addr_hi). Both

addresses are required for non-aligned accesses. Stage

X2 performs access arbitration to the cache tag and

data memory structures. Although the functionality

provided by this stage is limited, the delay in this stage

is significant. This is because a large amount of

relatively wide address and data busses need to be

multiplexed and routed to the different SRAMs.

Furthermore, the large SRAM setup time extends their

presence from stage X3 into stage X2. Stage X3

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

contains the cache tag and data memory structures

(LRU and byte validity structures are not depicted).

The data memory structures have a maximum clock-

frequency that is close to the processor clock-

frequency. The tag memory structures are somewhat

faster, and allow for the inclusion of tag comparison

logic in stage X3. Stage X4 contains the data cache way

selection logic. Stages X5 and X6 contain the filter

bank for collapsed load operations. On the right side of

the pipeline we find the Cache Write Buffer (CWB),

which is used to keep pending writes to the data cache.

The cache memory structures use single ported

SRAMs with bit write functionality, to allow for a

selective update of memory bits as identified by a bit

mask. The available SRAMs had a maximum data

width restriction of 128 bits.

In stage X2, store operations request access to the

tag memory structure, but not to the data memory

structure, since stores do not produce a register result.

Load operations request access to both the tag and data

memory structures. Since load operations are only

supported in slot 5, the data memory structure access

path is restricted to slot 5. To support two simultaneous

stores, both slot 4 and 5 have a dedicated copy of the

tag memory structure. Note that to support two

simultaneous loads would require costly duplication of

the data memory structure [20]. In stage X4, the control

state machines act upon the retrieved cache control

information, such as the cache hit signal. For loads, the

validity of the requested bytes needs to be checked,

somewhat complicating the generation of the hit signal

(when compared to a cache without byte-validity). In

case of a load hit, way selection is performed on the

retrieved cache data. In case of a load miss, a cache

line is retrieved from off-chip memory by the refill

unit. In case of a store hit, data is sent to the CWB. In

case of a store miss, a cache line is allocated. Note that

non-aligned accesses may result in two cache misses

FILTER BANK

SLOT5

TAGS

TAG

SRAM

TAG

SRAM

SLOT4

TAGS

TAG

SRAM

TAG

SRAM

CACHE

DATA

DATA

SRAM

DATA

SRAM

DATA

SRAM

DATA

SRAM

SLOT4

OPERATION CONTROL

STATE MACHINE

SLOT5

OPERATION CONTROL

STATE MACHINE

slot4: rdest (latency: 4)

128 128128128

slot5: rdest (latency: 6)

slot5: rsrc2[3:0]

slot5: rsrc2slot5: rsrc1slot4: rsrc1 slot4: rsrc2

refill unit

pre-fetch unit

copy back unit

slot5: rdest (latency: 4)

addr_lo, addr_hi addr_lo, addr_hi

TAG

COMPARISON (2x)

TAG

COMPARISON (2x)

CACHE WAY SELECTION &

LOAD ALIGNER &

SIGN EXTENSION

ADDRESS

CALCULATION

ADDRESS

CALCULATION

SLOT4 TAG

ACCESS ARBITER

SLOT5 TAG

ACCESS ARBITER

PIPELINE

STAGE

slot4

store

data

CACHE

WRITE

BUFFER

6

PENDING

WRITES

slot5

store

data

ACCESS

ARBITER

ACCESS

ARBITER

ACCESS

ARBITER

ACCESS

ARBITER

X1

X2

X3

X4

X6

X5

Figure 5. TM3270 load/store unit pipeline.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

when the data crosses a cache line boundary. For load

operations, two cache lines are retrieved from memory,

and for store operations, two cache lines are allocated.

5. Realization

The TM3270 is a fully synthesizable, static design.

It uses off-the-shelf single ported SRAM memories.

The first realization is in a low power 90 nm process

technology. Under worst case operating conditions

(125 C, worst-case voltage of 1.08 V, worst case

process corner) the processor reaches a frequency of

350 MHz. Figure 6 gives the processor floorplan, and

its partitioning into the major design modules. The

SRAM memories were hand-placed. The placement of

the standard cell logic was tool-driven; i.e. no labor-

intensive hierarchical placement of the modules was

required to come to a placed and routed design. The

synthesizability and tool-driven place and route make it

relatively easy to port the design to a different process

technology.

5.1. Area

Table 4 gives an area breakdown of the major

modules as found in the floorplan (Figure 6). The

complete processor measures 8.08 mm
2
. This number

includes the SRAMs for the implementation of the 64

Kbyte instruction caches and 128 Kbyte data cache,

which constitute roughly 50% of the overall area. The

load/store unit is the largest module, when the data

cache SRAMs are included. The data cache LRU is

implemented in standard cell logic. The execute

module has the largest standard logic area. The 128-

entry register-file is a relatively large module, due to

the routing inefficiency of the 15 read and 5 write

ports. To reduce area, a custom implementation of this

module could be considered. However, such a custom

implementation would increase the effort of porting the

design to a different process technology.

5.2. Power consumption

One of the main TM3270 design constraints is

power consumption. Low power consumption is

important to allow for 1) application in battery-

operated devices, 2) a low-cost package, and 3) a fan-

less system solution. The initial realization uses a low

power 90 nm process technology with a relatively high

threshold voltage Vt. Although this limits the

maximum operating frequency, it results in a low static

power consumption since transistor leakage current is

proportional to inverse exponential Vt. Dynamic power

consumption is defined by CV2f, C is the switched

capacitance, V is the supply voltage, and f is the

operating frequency. The capacitance C is determined

by process technology and activity level. Activity is

addressed during processor design. E.g. the sequential

instruction cache design for a 8-way set associative

cache greatly reduces the power consumption over a

more traditional parallel cache design. Furthermore,

the processor design has been heavily clock-gated;

roughly 70 different functional clock domains exist.

For example, all stages of all functional units are

separately gated: when they are not used, they are not

clocked. Typical supply voltage V for our process

technology is 1.2 V, but functional operation at 0.8 V

is guaranteed at a lower frequency. This allows for

dynamic voltage scaling based on computational

requirements. Since the processor has a fully static

design and asynchronous bus interfaces to the rest of

DATA

DATA

INSTRUCTION

INSTRUCTION

DATA TAG

INSTR. TAG

INSTR. TAGILRU

DATA

DATA

B
Y

T
E

 V
A

L
.

B
Y

T
E

 V
A

L
.

B
Y

T
E

 V
A

L
.

B
Y

T
E

 V
A

L
.

DATA TAG

DATA TAGDATA TAG

B
U

S
 I

N
T

E
R

F
A

C
E

 U
N

IT

REGISTER-FILE

MMIO

D
E

C
O

D
E

LOAD/STORE

UNIT

FUNCTIONAL

UNITS

INSTRUCTION

FETCH UNIT

Figure 6. TM3270 floorplan.

Table 4. TM3270 area/power breakdown.

Module Description Area
MP3 decoder

power
(mW/MHz at 1.2 V)

IFU Instruction
fetch unit.

1.46 0.272

Decode Decoding of
operations.

0.05 0.022

Regfile Register-file. 0.97 0.170

Execute All functional
units.

1.53 0.255

LS Load/store unit. 3.60 0.266

BIU Bus interface
unit.

0.24 0.002

MMIO
Memory
mapped IO
peripherals

0.23 0.012

Total 8.08 0.935

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

the SoC, the operating frequency can be changed on

the fly, independent of the rest of the SoC.

We used Synopsys’ Power Compiler to measure

gate level power consumption, including the power

grid. Power consumption is derived for a MP3 decoder

(384 Kbits stereo decoding at 44.1 KHz). Table 4 gives

a power breakdown at an operating voltage of 1.2 V.

The contribution of static power consumption is

negligible. Reducing the voltage from 1.2 V to 0.8 V

reduces the power consumption to 0.935 * (0.8
2

/ 1.2
2
)

= 0.415 mW/MHz, as a result of the quadratic

dependency on voltage. MP3 decoding is performed in

approximately 8 MHz with a OPI around 4.5 and a CPI

close to 1.0, thanks to the large caches and the high

efficiency of data cache prefetching. As a result, MP3

decoding requires 8 MHz * 0.415 mW/MHz = 3.32

mW at 0.8 V. Measurements on other applications

have shown that power consumption is more

dependent on effective operations per VLIW

instructions (OPI), and cycle per VLIW instruction

(CPI), than on the specific application. Applications

with similar OPI and CPI have a similar mW/MHz

rating. As the amount of stall cycles increases (larger

CPI), the mW/MHz number decreases as the processor

performs clock gating when it stalls. Applications with

a larger CPI use relatively more power in the bus

interface unit (BIU).

6. Performance

For the evaluation of new processor designs, we use

a suite of about 50 applications and kernels from the

media-processing domain. We made a selection of the

applications, focusing on video processing (Table 5),

and compare TM3270 performance to that of it

predecessor: the TM3260. The applications were

optimized for the TM3260, and re-compiled for the

TM3270 without modifications. The performance

results do not include improvements that could be

achieved by applying TM3270 specific features (non-

aligned memory access, advanced data prefetching,

new operations, etc.). As such, the results are a lower

bound for achievable performance improvement.

Table 6 lists the main characteristics of the TM3260

and TM3270 that cause difference in performance. The

most notable are the operating frequencies and data

cache capacity. To evaluate the impact of these

characteristics, we measured four processor

configurations. Configuration A represents the

TM3260. Configuration D represents the TM3270.

Configuration B represents the TM3270, with TM3260

cache sizes and a TM3260 frequency of 240 MHz.

Configuration C represents the TM3270, with TM3260

cache sizes and a frequency of 350 MHz. Note that to

achieve the higher operating frequency of the TM3270

(350 vs. 240 MHz), the amount of jump delay slots and

the load latency is increased. As a result, the TM3270

has a deeper pipeline than the TM3260, which has a

negative impact on the CPI. However, this is more than

compensated by the TM3270 improved data cache

design and its higher operating frequency, as is

illustrated by the performance numbers (Figure 7). The

measurements were performed with a 32-bit off-chip

DDR SDRAM memory operating at 200 MHz.

Typically, the TM3260 (configuration A) has the

lowest performance. However, for the MPEG2

application, configuration A outperforms

configurations B and C. This is explained as follows.

MPEG2 decoding is heavily dependent on the ability

of the data cache to capture the working set. Although

all configurations A, B and C have the same data cache

capacity, the line size is different. The TM3270

doubles the line size to 128 bytes (this decision was

Table 6. TM3260 and TM3270 characteristics.

Feature TM3260 TM3270

Operating frequency* 240 MHz 350 MHz
Instruction cache 64 Kbyte, 64-byte lines

Parallel cache design
3 jump delay slots

64 Kbyte, 128-byte lines
Sequential cache design
5 jump delay slots

Data Cache 16 Kbyte, 64-byte lines
8 way set-associative
Fetch-on-write-miss
3-cycle load latency
2 loads / VLIW instr.

128 Kbyte, 128-byte lines
4 way set-associative
Allocate-on-write-miss
4-cycle load latency
1 load / VLIW instr.

*under similar operating conditions: same process technology, 125 C, worst-case voltage 1.08 V, worst-case process corner.

Table 5. Performance evaluation
kernels/applications.

Kernel/
application Description

memset Sets a 64 Kbyte region to a pre-defined
value.

memcpy Copies a 64 Kbyte region.
filter
rgb2yuv
rgb2cmyk
rgb2yiq

Four kernels taken from the EEMBC
consumer suite.

mpeg2_a
mpeg2_b

mpeg2_c

MPEG2 decoder application, run on
different streams. “mpeg2_a” is
characterized by a highly disruptive motion
vector field.

filmdet Film detection algorithm, as used in TV
sets.

majority_sel De-interlacer algorithm, as used in TV sets.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

based on a 128 Kbyte data cache), resulting in more

capacity misses for MPEG2 decoding, increasing the

amount of stall cycles. Furthermore, the ability to

perform two loads / VLIW instruction and the 3-cycle

load latency, give the TM3260 an advantage over the

TM3270. As illustrated by configuration D, the larger

TM3270 data cache capacity more than makes up for

this TM3260 advantage.

The memcpy kernel shows the largest performance

gain going from configuration A to B. The main reason

is the TM3270’s write miss policy. The kernel is

memory bound for both configurations. Since the

TM3270 generates less memory traffic, its

performance is significantly higher (fetch-on-write-

miss policy).

On average, the TM3270 gives a performance gain

of 2.29 over the TM3260. This number is achieved

through re-compilation of applications optimized for

the TM3260. Not all applications benefit to the same

extent from a larger data cache. Whereas the MPEG2

application shows a large performance gain, the

EEMBC kernels and TV algorithms show a modest

performance gain. These applications benefit most

from a higher operating frequency.

TM3270 specific optimizations allow for larger

performance gains. In [12] an optimized and non-

optimized implementation of a motion estimation

kernel on the TM3270 was evaluated. An additional

performance gain of more than a factor two can be

achieved, when taking advantage of non-aligned

memory access, advanced data prefetching techniques,

and new operations. In [13] a MPEG2 encoder

application was evaluated. New operations improve the

performance of a MPEG2 8x8 texture pipeline by 50%.

In [14] a state-of-the-art temporal upconversion

algorithm was evaluated. New operations improve

performance by 40%, data prefetching improves

performance by more than 20%.

7. Conclusions

We have presented an overview of the architecture,

implementation, and first realization of the TM3270

media-processor. It is applied as an embedded

processor in SoCs targeting the video and audio

processing domains in the cost-driven connected and

portable consumer markets. It provides a

programmable platform on which a variety of video

and audio processing applications are implemented.

With the introduction of new operations to the

TriMedia ISA, and an increase in operating frequency

when compared to its predecessor, it is able to either

encode or decode H.264 video material at standard

definition resolution. Especially the CABAC specific

operations and collapsed load operations with

interpolation contribute heavily to this ability. To our

knowledge, the TM3270 is the first processor that

supports two-slot operations. These operations open up

the possibility to directly support functions that have

up to four inputs and produce up to two outputs.

Furthermore, they allow for the combining of multiple

two input operations, possibly reducing overall

function latency and register pressure.

We discussed an overview of the organization of the

processor pipeline and load/store unit. The discussion

illustrates the trade-offs made between architecture and

1
.4

2

2
.0

6

1
.2

6 1
.4

3 1
.6

0

1
.4

7

0
.7

9

0
.9

2

0
.6

9

1
.4

8

1
.5

4

1
.3

3

1
.6

7

2
.8

2

1
.8

4 2
.0

5 2
.2

5

2
.1

1

0
.9

5 1
.1

7

0
.8

1

2
.0

1 2
.1

8

1
.8

0

2
.5

7

3
.3

8

1
.8

7 2
.1

2

2
.8

2

2
.3

3

1
.8

6

1
.9

7

1
.9

1

2
.0

4 2
.2

9

2
.2

9

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

m
em

se
t

m
em

cp
y

fil
te

r

rg
b2

yu
v

rg
b2

cm
yk

rg
b2

yi
q

m
pe

g2
_a

m
pe

g2
_b

m
pe

g2
_c

fil
m

de
t

m
aj
or

ity
_s

el

A
ve

ra
ge

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n

c
e

A: TM3260 (64 KB / 16 KB, 240 MHz.)

B: TM3270 (64 KB / 16 KB, 240 MHz.)

C: TM3270 (64 KB / 16 KB, 350 MHz.)

D: TM3270 (64 KB / 128 KB, 350 MHz.)

Figure 7. Relative performance numbers.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

implementation of processor design, e.g. efficiency of

implementation of a feature such as two stores per

VLIW instruction results in a semi dual ported cache

design. The processor achieves an average 2.29

performance gain over its predecessor, the TM3260,

through re-compilation only. Further TM3270 specific

optimizations allow for an additional performance gain

of more than a factor two for certain applications.

8. Acknowledgements

We would like to acknowledge the significant

contribution of Gerrit A. Slavenburg to the TriMedia

architecture. Furthermore, we would like to thank those

in the TriMedia application and compiler teams.

9. References

[1] I.E.G. Richardson, “H.264 and MPEG-4 video

compresson, video coding for next-generation multimedia”,

Wiley, 2003.

[2] Ravi Bhargava, Lizy John, Brian L. Evans, Ramesh

Radhakrishnan, “Evaluating MMX technology using DSP

and multimedia applications”, Proc. of the 31st International

Symposium on Microarchitecture, pp. 37-46, November

1998.

[3] K. Diefendorff, P.K. Dubey, R. Hochsprung, and H.

Scales, “Altivec extensions to PowerPC accelerates media

processing”, IEEE Micro, pp. 85-95, March-April 2000.

[4] P. Ranganathan, S. Adve, and N.P. Jouppi, “Performance

of image and video processing with general-purpose

processors and media ISA extensions”, Proc. of the 26th

annual International Symposium on Computer Architecture,

pp. 124-135, May 1999.

[5] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J.

Morris, M. Schuette, and A. Saidi, “The reconfigurable

streaming vector processor (RSVP)”, Proc. of the 36th

International Symposium on Microarchitecture, pp. 141-150,

December 2003.

[6] C. Kozyrakis, and D. Patterson, “Vector vs. superscalar

and VLIW architectures for embedded multimedia

benchmarks”, Proc. of the 35th International Symposium on

Microarchitecture, pp. 283-293, November 2002.

[7] D. Talla, and L.K. John, “A decoupled architecture for

accelerating multimedia applications”, Proc. of the

International Conference on Parallel Architectures and

Compilation Techniques, September 2001.

[8] B. Juurlink, D. Tcheressiz, S. Vassiliadis, and H.A.G.

Wijshoff, “Implementation and evaluation of the complex

streamed instruction set”, Proc. of the International

Conference on Parallel Architectures and Compilation

Techniques, September 2001.

[9] S. Rathnam, and G. Slavenburg, “And architectural

overview of the programmable multimedia processor, TM-

1”, Proc. of the 41st IEEE International Computer

Conference, pp. 319-326, February 1996.

[10] G.A. Blaauw, and F.P. Brooks, “Computer architecture:

concepts and evolution”, Addison Wesley Longman Inc,

1997.

[11] J.T.J. van Eijndhoven, et. al., “TriMedia CPU64

architecture” , Proc. of the International Conference on

Computer Design, pp. 593-599, October 1999.

[12] J.W. van de Waerdt, J.P. van Itegem, G. Slavenburg, and

S. Vassiliadis, “Motion estimation performance of the

TM3270”, ACM Symp. on Applied Computing, pp. 850-856,

March 2005.

[13] J.W. van de Waerdt and S. Vassiliadis, “Instruction set

architecture enhancements for video processing”, Proc. of the

16th IEEE International Conference on Application-specific

Systems, Architectures and Processors, pp. 146-153, July

2005.

[14] J.W. van de Waerdt, S. Vassiliadis and E.W. Bellers,

“Temporal video up-conversion on a next-generation media-

processor”, Proc. of the 7th IASTED International Conference

on Signal and Image Processing, pp. 434-441, August 2005.

[15] http://www.semiconductors.philips.com/pip/

PNX1502E_G.html

[16] N. Seshan, “High VelociTI processing”, IEEE Signal

Processing Magazine, vol. 15, issue 2, pp. 86-101, March

1998.

[17] C. Basoglu, W. Lee, and J. O’Donnell, “The Equator

MAP-CA DSP: an end-to-end broadband signal processor

VLIW”, IEEE Trans. on Circuits and Systems for Video

Technology, vol. 12, no. 8, pp. 646-659, August 2002.

[18] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based

adaptive binary arithmetic coding in the H.264/AVC video

compression standard”, IEEE Trans. on Circuits and Systems

for Video Technology, vol. 13, no. 7, pp. 620-636, July 2003.

[19] N. Jouppi, “Improving direct-mapped cache

performance by the addition of a small fully-associative

cache and prefetch buffers”, Proc. of the 17th International

Symposium on Computer Architecture, pp. 364-373, June

1990.

[20] J.A. Rivers, G.S. Tyson, E.S. Davidson, and T.M.

Austin, “On high-bandwidth data cache design for multi-

issue processors”, Proc. of the 30th International Symposium

on Microarchitecture, pp. 46-56, December 1997.

[21] S. Vassiliadis, J. Phillips, and B. Blaner, “Interlock

collapsing ALU’s”, IEEE Trans. on Computers, vol. 42, issue

7, pp. 825-839, July 1993.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

