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Abstract 

We present the TM3270 media-processor, the latest 

TriMedia VLIW processor, tuned to address the 

performance demands of standard definition video 
processing, combined with embedded processor 

requirements for the consumer market. We discuss the 

architecture, implementation, and its first realization 

in a 90 nm process technology. The processor 

incorporates instruction set architectural (ISA) 
extensions and a load/store unit optimized for the 

video-processing domain. The ISA extensions improve 

the performance on video processing kernels. The data 

cache policies and prefetching techniques allow for 

efficient access to multimedia data. Finally, power 

consumption and performance data are presented. 

1. Introduction 

It is well established that high-frequency General-

Purpose Processors (GPP) provide the computational 

performance to meet the requirements of the latest 

video standards, such as MPEG4, and H.264. They are 

easy to program, and appear to offer a steadily 

increasing performance level with each new processor 

generation. Furthermore, SIMD-style instruction set 

architecture (ISA) extensions have been added that 

target the multimedia domain, e.g. Intel’s MMX 

extensions [2], and the AltiVec extensions to the 

PowerPC architecture [3]. Multiple approaches exist 

that suggest vector-processing enhancements to GPP 

architectures, see for example [4, 5, 6, 7, 8]. These 

enhancements try to exploit the assumed regular 

memory access pattern and streaming nature of 

multimedia applications. Typically, the enhancements 

are closely connected to the GPP, but have a dedicated 

access path to memory and their own register-file 

structure. The efficiency of these approaches relies on 

a certain regularity in memory accesses, and a stream-

based processing of multimedia data. Whereas this 

may have been typical for older video codec standards, 

this assumption is less true for newer standards. As an 

example, consider the granularity at which video 

codecs transmit motion vector data. For MPEG2, a 

single motion vector is present for every 16x16 block 

of image pixels. For MPEG4, a motion vector may be 

present for every 8x8 block, and for H.264, a motion 

vector may be present for every 4x4 block. In general 

we can observe a decrease in block size and an 

increase in control overhead. Furthermore, the 

dependencies between blocks is increasing, which 

prohibits the parallel processing of multiple blocks, 

e.g. for H.264, processing a 4x4 block may require that 

the blocks to its left and above it have already been 

processed. It could be stated that video codecs are 

getting more control intensive. As a result, approaches 

that rely on stream-based processing on large vectors 

become less efficient.  

It can be contented that in most cases silicon cost 

and power consumption of the GPP processor based 

approaches may prohibit successful application in the 

embedded processor market. A fixed function 

implementation in dedicated hardware is a different 

approach. It allows for a low cost implementation of a 

specific standard, but may be less efficient when a 

large variety of standards have to be supported. The 

increased multimedia workload, especially in the video 

processing domain, has given rise to its own class of 

processors: the media-processor. Unburdened by 

binary code compatibility issues, these new processors 

typically have a VLIW architecture to allow for a low 

cost silicon implementation. Examples are Texas 

Instruments’ VelociTI architecture [16], Philips’ 

TriMedia architecture [9], and Equator’s MAP-CA 

[17]. These processors have been built from the ground 

up to address the requirements of video processing. 

Like GPPs, their ISA includes SIMD-style operations, 

but also their memory infrastructure has been 

optimized to address multimedia requirements, e.g. 

efficient support for nonaligned memory access, data 

prefetching and DMA-style memory transfers can be 

found in these processors. Whereas GPPs typically 

have a distinct register-file for SIMD-style operation, 

media-processors typically have a unified register-file 
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structure. Furthermore, media-processors have register-

file sizes that exceed those of GPPs. As a result, a large 

data working set can be kept in registers, preventing 

the generation of load and store operations as a result 

of spilling due to register-pressure.  

The programmability of media-processors gives a 

flexibility advantage over a dedicated hardware 

approach: it enables algorithmic changes after design, 

multiple applications can be mapped to the same 

platform, faster time-to-market, etc. Furthermore, their 

architecture allows for an efficient handling of both 

control- and media-processing tasks, as required by the 

latest video processing applications such as H.264. 

This paper presents the TM3270, the latest Philips 

media-processor based on the TriMedia architecture. It 

addresses the requirement of multi-standard video 

processing (en-/de-coding) at standard resolution and 

the associated audio processing requirements. 

Additionally to adequate processing performance, area 

and power consumption were the main design 

constraints. 

The remainder of this paper follows the separation 

of computer design into architecture, implementation, 

and realization, as introduced by Blaauw in [10]. 

Section 2 introduces the TM3270 architecture: the user 

view of the processor. This section includes some of 

the ISA enhancements. Sections 3 and 4 discuss 

implementation: the logical organization of the 

processor’s inner structure. These sections include a 

description of the processor pipeline and load/store unit 

organization. Section 5 discusses realization: the 

physical mapping of the implementation on a certain 

process technology. This section includes a description 

of the processor floorplan, and presents area and power 

numbers. Section 6 presents some performance 

statistics. Finally, Section 7 presents the conclusions.

2. Architecture 

The TM3270 is a VLIW-based media-processor, 

which is backward source code compatible with other 

processors in the TriMedia family [9]; i.e. C-code 

written for previous TriMedia processors can be re-

compiled to run on the TM3270. Re-compilation is 

required, since binary compatibility is not guaranteed 

between all members of the family. Typically, the 

TM3270 is used as an embedded processor in a 

System-on-a-Chip (SoC). Table 1 gives an overview of 

the main architectural features. 

2.1. Operation encoding 

A VLIW instruction may contain up to five 

operations, which are template-based encoded in a 

compressed format to limit code size. Every VLIW 

instruction starts with a 10-bit template field, which 

specifies the compression of the operations in the next

VLIW instruction. As a result, an instruction’s 

compression template is available one cycle before the 

instruction’s compressed encoding, which relaxes the 

timing requirements of the decoding process. Jump 

target VLIW instructions are not compressed and do 

not require an explicit template field in the preceding 

instruction. The 10-bit template field has five 2-bit 

compression sub-fields, which are related to the 

processor’s issue slots 1 through 5. An issue slot’s 2-

bit compression field specifies the size of the operation 

encoding. Figure 1 gives an example of a VLIW 

instruction containing three operations in slots 2, 3, and 

5. Issue slots 1 and 4 are not used, as specified by the 

“11” encoding of the related compression fields. Since 

issue slot 1 is not used, the first encoded operation is 

Table 1. TM3270 Architecture 

Architectural feature Quantity 

Architecture 5 issue slot VLIW 
guarded RISC-like operations 

Pipeline depth 7-12 stages 
Address width 32 bits 
Data width 32 bits 
Register-file Unified, 128 32-bit registers
Functional units 31 
IEEE-754 floating point yes 
SIMD capabilities 1 x 32-bit, 2 x 16-bit, 4 x 8-bit 
Instruction cache 64 Kbyte, 128-byte lines, 

8 way set-associative, 
LRU replacement policy 

Data cache 128 Kbyte, 128-byte lines 
4 way set-associative, 
LRU replacement policy, 
Allocate-on-write miss policy 

11 10 10 11 00

Template sub-field

00:    26 bits

01:    34 bits

10:    42 bits

11:    not used/encoded

previous VLIW  INSTRUCTION (5 operations)

VLIW  INSTRUCTION (3 operations)

slot 2

operation

slot 3

operation

slot 5

op.

15 bytes (10 + 42 + 42 + 26 bits  = 120 bits)

Issue slot

1:           NOP,

2:           IF r34 MUL r87 r54 -> r123,

3:           IF r45 QUADUMIN r3 r67 -> r23,

4:           NOP,

5:           LD32D (4) r22 -> r14;

10 bit template field

Figure 1.  VLIW instruction encoding. 
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for issue slot 2. A VLIW instruction without any 

operations is efficiently encoded in 2 bytes, with a 

“11:11:11:11:11” template field. A VLIW with all 

operations of the maximum size of 42 bits is encoded 

in 28 bytes, with a “10:10:10:10:10” template field and 

5 * 42 bits for the operation encoding. This 

compression scheme allows for an efficient encoding 

of code with a low amount of instruction level 

parallelism. 

2.2. ISA enhancements 

The TM3270 enhances the ISA of its predecessor, 

the TM3260, with roughly 40 new operations. The 

TM3260 finds commercial use in e.g. the PNX1500 IC 

[15]. In the following subsections we describe some of 

the new operations. 

2.2.1. Two-slot operations 

The concept of two-slot or super-operations was 

first introduced in [11], but only finds first application 

in the TM3270. Two-slot operations are executed by 

functional units that are situated in two neighboring 

issue slots. As a result, these operations have twice the 

register-file bandwidth, allowing for operations with up 

to four source operands, and up to two destination 

operands. We describe two of these operations: 

SUPER_DUALIMIX and SUPER_LD32R (Table 2). The 

SUPER_DUALIMIX operations perform a pairwise 2-

taps filter on 16-bit signed values. Each of the two 

filter results is clipped to the signed 32-bit range, and 

returned in a separate destination register. The 

SUPER_LD32R operation retrieves two consecutive 

32-bit values from memory. It has two source 

operands, which are encoded as part of the second 

operation in the operation pair, and two destination 

registers. The operation doubles the processor’s 

bandwidth to data memory. The restriction to two 

consecutive address locations limits the applicability of 

this operation, when compared to two separate 

unrestricted 32-bit load operations. However, the 

SUPER_LD32R is easily supported by our cache 

implementation (as described in Section 4), whereas 

the support for two separate 32-bit load operations is 

more expensive [18]. Similar to our SUPER_LD32R
operation, Texas Instruments’ VelociTI architecture 

Table 2. TM3270 two-slot operations, collapsed load operation and CABAC operations. 

Operation Description 
Issue slot(s) 

(latency) 

SUPER_DUALIMIX 
rsrc1 rsrc2 rsrc3 rscr4 -> rdest1 rdest2 

temp             = rsrc1[31:16]*rsrc2[31:16] + rsrc3[31:16]*rsrc4[31:16]; 
rdest1[31:0]  = min (max (-2^31, temp), 2^31-1);  
temp             = rsrc1[15:0]*rsrc2[15:0]   + rsrc3[15:0]*rsrc4[15:0];  
rdest2[31:0]  = min (max (-2^31, temp), 2^31-1); 

2 and 3 
(4)

SUPER_LD32R 
rsrc3 rsrc4 -> rdest1 rdest2; 

Semantics: Two-slot load operation; 
load two 32-bit words, big endian. 

rdest1[31:24] = Mem[rsrc3 + rsrc4]; 
rdest1[23:16] = Mem[rsrc3 + rsrc4 + 1]; 
rdest1[15:8]   = Mem[rsrc3 + rsrc4 + 2]; 
rdest1[7:0]     = Mem[rsrc3 + rsrc4 + 3]; 
rdest2[31:24] = Mem[rsrc3 + rsrc4 + 4]; 
rdest2[23:16] = Mem[rsrc3 + rsrc4 + 5]; 
rdest2[15:8]   = Mem[rsrc3 + rsrc4 + 6]; 
rdest2[7:0]     = Mem[rsrc3 + rsrc4 + 7]; 

4 and 5 
(4)

LD_FRAC8 
rsrc1 rsrc2 -> rdest1; 

Semantics: Collapsed load operation; 
load combined with two-taps filter 
function 

data0 = Mem[rsrc1];         data1 = Mem[rsrc1 + 1];  
data2 = Mem[rsrc1 + 2];   data3 = Mem[rsrc1 + 3]; 
data4 = Mem[rsrc1 + 4];    
rdest1[31:24]  = (data0*(16-rsrc2[3:0]) + data1*rsrc2[3:0] + 8) / 16; 
rdest1[23:16]  = (data1*(16-rsrc2[3:0]) + data2*rsrc2[3:0] + 8) / 16; 
rdest1[15:8]    = (data2*(16-rsrc2[3:0]) + data3*rsrc2[3:0] + 8) / 16; 
rdest1[7:0]      = (data3*(16-rsrc2[3:0]) + data4*rsrc2[3:0] + 8) / 16; 

5
(6)

SUPER_CABAC_STR 
rsrc1 rsrc2 rsrc4 -> rdest1 rdest2 

rsrc1:   DUAL16*  (value, range) 
rsrc2:   stream_bit_position 
rsrc4:   DUAL16  (state, mps) 
< Functionality as described in Figure 2 > 
rdest1: stream_bit_position 
rdest2: bit 

2 and 3 
(4)

SUPER_CABAC_CTX 
rsrc1 rsrc2 rsrc3 rscr4 -> rdest1 rdest2 

rsrc1:   DUAL16  (value, range) 
rsrc2:   stream_bit_position 
rsrc3:   stream_data 
rsrc4:   DUAL16  (state, mps) 
< Functionality as described in Figure 2 > 
rdest1: DUAL16  (value, range) 
rdest2: DUAL16  (state, mps) 

2 and 3 
(4)

*DUAL16 (a, b) = (a << 16) | (b & 0xffff) 
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supports the LDDW operation to double the load 

bandwidth. However, the two destination registers of 

the LDDW operation are restricted to a pair of 

successive registers in the register-file, which puts 

additional constraints on the register allocator in the 

compiler/scheduler. 

2.2.2. Collapsed load operations with interpolation 

A significant part of the computational complexity 

of a video encoder is found in the motion estimation 

kernel. The TM3270 ISA includes collapsed load 

operations that involve memory collapsing rather than 

the ALU collapsing presented in [21]. The new 

operations perform a memory load with interpolation 

on the retrieved data, which allows for efficient 

calculation of pixels at fractional horizontal image 

positions. As a result, the computational complexity of 

motion estimation is significantly reduced [12]. The 

collapsed load operations combine the functionality of 

an ordinary load operation with a linear interpolation 

function, as defined by a fractional position. Table 2 

gives the definition of the LD_FRAC8 operation. The 

operation retrieves five consecutive bytes from 

memory, performs a pair-wise interpolation based on a 

fractional position, and returns four interpolated byte 

values. A more traditional architecture would require at 

least two 32-bit loads to retrieve the five bytes from 

memory, and multiple arithmetic operations to perform 

the interpolation. Not only is the amount of required 

operations reduced, but also the register-file pressure is 

relaxed, which prevents spilling. 

2.2.3. CABAC operations 

A significant part of the computational complexity 

of the H.264/AVC video standard is found in the 

Context-Based Adaptive Binary Arithmetic Coding 

(CABAC) [18]. The intrinsic sequential behavior of the 

coding process prohibits an efficient implementation 

on a multi-issue SIMD processor. Performance 

evaluations of an optimized decoder indicate that a 

LpsRangeTable[64][4]    /* range table for least probable symbol (LPS) */  
MpsNextStateTable[64], LpsNextStateTable[64] /* MPS, LPS state transition tables */ 

biari_decode_symbol ( /* decodes a single binary value “bit” from the CABAC coded bitstream. */ 
inout value,       /* coding value, 10-bit value */ 
inout range,       /* coding range, 9-bit value */ 
inout state,       /* modeling context state, 6-bit */ 
inout mps,       /* modeling context MPS, 1-bit */ 
in      stream_data,      /* bitstream data */ 
inout stream_bit_position,      /* bit position in "stream_data" */ 
out    bit)                   /* decoded binary value */ 

{
   stream_data_aligned = stream_data << stream_bit_position; 
   range_lps           = LpsRangeTable[state][(range >> 6) & 3)]; 
   temp_range      = range - range_lps 

if (value < temp_range) {       /* MPS: most probable symbol */  
      value  = value; 
      range = temp_range; 
      bit      = mps; 
      mps   = mps; 
      state  = MpsNextStateTable[state]; 
   } else {       /* LPS: least probable symbol */ 
      value  = value - temp_range; 
      range = range_lps; 
      bit      = !mps; 
      mps   = mps ^ (state != 0); 
      state  = LpsNextStateTable[state]; 
   }   

while (range < 256) { /* renormalization, at most 8 bits can be consumed */ 
      value                          =   (value << 1) 
                                            | ((stream_data_aligned >> 31) & 1); 
      range                         <<= 1;       
      stream_data_aligned <<= 1; 
      stream_bit_position   += 1; 
   } 

}
Figure 2.  Context-based adaptive binary arithmetic coding (CABAC), “biari_decode_symbol” 

function. 
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significant part of the overall decoding time may be 

spent in the CABAC process. For I-fields, which 

require a relatively high amount of bits to encode a 

field, CABAC decoding may constitute up to 50% of 

the decoding time. To reduce these computational 

requirements, specific CABAC operations were 

introduced in the TM3270. 

Figure 2 gives the biari_decode_symbol function, 

taken from the H.264 reference code. This function 

decodes a single binary value bit from a CABAC 

coded bitstream. Ideally, we would like to implement 

the above functionality with a single new operation. 

However, the amount of input and output function 

arguments exceeds the capability of our two-slot 

operations. Closer investigation of the function shows 

that by grouping of semantically related arguments as 

16-bit sub-operands of a 32-bit operand, an 

implementation with two two-slot operations is 

possible. The value (10-bit value) and range (9-bit 

value) arguments are both related to a context, and are 

grouped in a two-way 16-bit representation. The state
(6-bit value) and mps (1-bit value) arguments define 

the state of a probability model for a context, and are 

grouped in a two-way 16-bit representation. The other 

arguments are represented by dedicated operation 

operands. We introduce two new operations: 

SUPER_CABAC_CTX and SUPER_CABAC_STR
(Table 2). The SUPER_CABAC_CTX operation 

calculates the new values of the context modeling: 

rdest1 contains (value, range) and rdest2 contains 

(state, mps). Note that for this calculation, all function 

input arguments are required: rsrc1 contains (value, 
range), rsrc2 contains stream_bit_position, rsrc3
contains stream_data and rsrc4 contains (state, mps).
The SUPER_CABAC_STR operation calculates the 

new values related to the bitstream processing: rdest1
contains stream_bit_position and rdest2 contains bit.
Note that for this calculation, only a subset of the 

function input arguments are required (stream_data is 

not required): rsrc1 contains (value, range), rsrc2
contains stream_bit_position, rsrc3 is not used and 

rsrc4 contains (state, mps).
We measured the performance of the complete 

CABAC decoding process (including decoder data 

structure maintenance and context computation) for a 

standard resolution 4.5 Mbits/sec bitstream with and 

without the use of the new CABAC operations. Table 3 

gives the results for the different field types: the use of 

the new CABAC operations results in a speed up in the 

range of [1.5, 1.7]. 

2.3. Prefetching 

Our prefetch approach is based on memory regions. 

It allows for a prefetching pattern that reflects the 

access pattern of a data structure mapped onto a certain 

address space. The TM3270 supports four separate 

memory regions. The identification of these memory 

regions and the required prefetch pattern is under 

software control, and defined by the following 

parameters (n = 0, 1, 2, 3): 
- PFn_START_ADDR 
- PFn_END_ADDR 
- PFn_STRIDE
The first two parameters, PFn_START_ADDR and 

PFn_END_ADDR, are used to identify a memory 

region. The third parameter, PFn_STRIDE, is used to 

specify the prefetch pattern for the associated region. 

When the processor hardware detects a load from an 

address A within a prefetch region x, a prefetch request 

for address A+PFx_STRIDE is sent to the prefetch unit, 

if the prefetch address is not yet present in the cache. 

MEMORY

im
a

g
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e

ig
h

t

PFx_START_ADDR

PFx_END_ADDR

ADDRESS A

ADDRESS

A+PFx_STRIDE

image width

processing order
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Figure 3.  Memory region based prefetching.

Table 3. Performance measurements of the CABAC decoding process for I, P, and B-fields of a 
4.5 Mbits/sec bitstream at standard resolution (60 720*240 NTSC fields/sec). 

Non-optimized 
Optimized 

(CABAC operations) Field-type Average 
bits/field 

VLIW instr. VLIW instr./bit VLIW instr. VLIW instr./bit 

Speedup 

I 215,408 4,535,945 21.1 2,686,787 12.5 1.7 
P 103,544 2,901,381 28.0 1,799,559 17.4 1.6 
B 153,035 1,439,821 33.8 951,545 22.3 1.5 
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Prefetched data is put directly into the data cache. The 

large data cache capacity of 128 Kbyte and its 4-way 

set-associativity make it unlikely that useful data is 

victimized. Furthermore, no dedicated prefetch storage 

structures, such as stream buffers or stream caches 

[19], are required. 

Traditional next-sequential cache line prefetching is 

realized by setting the prefetch pattern to the cache line 

size of 128 bytes. The effectiveness of the prefetch 

approach becomes apparent when we consider e.g. the 

block-based processing of an image (Figure 3). 

Assume an image of byte element in memory. The 

image is processed at 4x4 block-size granularity. 

Starting with the upper-left block, the blocks are 

processed in a left-to-right, and top-down order. The 

memory region (PFx_START_ADDR and 

PFx_END_ADDR) is set to include the image, and the 

associated prefetch pattern (PFx_STRIDE) is set to the 
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image width times the block height of 4. While 

processing a certain row of blocks, the lower row of 

blocks is prefetched into the data cache. If the time to 

process a row of blocks exceeds the time to prefetch 

the lower row of block, the processor will not incur any 

stall cycles due to data cache misses. 

3. TM3270 pipeline 

This section gives an overview of the TM3270 

pipeline (Figure 4). The pipeline has a depth of 7 

stages for single cycle latency operations. Stages I1
through I3 hold the sequential instruction cache design: 

the access of cache tags (stage I1) and cache instruction 

information (stage I3) proceed in sequence to limit 

power consumption. Every cycle, a 32-byte aligned 

chunk of instruction information can be retrieved from 

the instruction memory. These chunks are stored in a 

4-entry instruction buffer in stage P. The instruction 

buffer decouples the progress of the front-end of the 

pipeline (stages I1 through I3) from the back-end of the 

pipeline (stages D through W). In stage P a VLIW 

instruction is pre-decoded from the information in the 

instruction buffer. Stage D decodes the individual 

operations, and determines operations’ operands 

through register-file access and operand bypassing. To 

support the maximum issue rate of five operations per 

VLIW instruction, the register-file has five 1-bit guard 

read ports, and ten 32-bit source read ports. Stages X1
through X6 are the execute stages. The amount of 

execute stages is dependent on an operation’s latency. 

Single cycle operations have a single execute stage 

(X1); collapsed load operations with interpolation have 

six execute stages (X1 through X6). Two-slot 

functional units are depicted in two neighboring issue 

slots. Conditional and unconditional jump operations 

are executed in the X1 stage. Jump operations have five 

architectural delay slots, reflecting the pipeline 

distance from the first stage of instruction retrieval 

(stage I1) to the X1 stage. As a result, no stall cycles 

are observed during control flow changes, eliminating 

the need for branch prediction techniques. The 

scheduler tries to fill the 25 operations in the five jump 

delay instructions using aggressive predication, 

possibly based on program profile information. The 

load/store unit includes the data cache, and is located 

in issue slots 4 and 5. Section 4 discusses the load/store 

unit in greater detail. Separate cache line refill, copy 

back, and prefetch units connect this unit to the 

processor’s bus interface unit (BIU). The BIU is the 

interface to the rest of the SoC. It includes an 

asynchronous clock domain transfer, which allows for 

flexibility when deciding upon processor and SoC 

operating frequency. Stage W gathers the operation 

results from the functional units, and allows for up to 

five simultaneous 32-bit updates to the register-file. 

4. Load/store unit 

This section describes the organization of the 

TM3270 load/store unit. 

4.1. Cache parameters and policies 

The TM3270 has a 128 Kbyte data cache, which is 

organized as a 4-way set associative cache with 128 

byte cache lines. The cache supports penalty-free (no 

stall cycles) non-aligned accesses. The cache has a 

least-recently-used (LRU) replacement policy, a copy-

back write policy, and an allocate-on-write-miss 

policy. The allocate-on-write-miss policy reduces the 

write miss penalty (when compared to a fetch-on-

write-miss policy), and results in less bandwidth to off-

chip memory. A cache byte-validity structure is used to 

keep track of the validity of the individual bytes in a 

cache line. When an allocated cache line is victimized, 

only the validated bytes are copied back to the off-chip 

memory. The TM3270 and its SoC bus protocol 

support the transfer of cache lines with byte-validity 

indicators. 

4.2. Load and store operations 

Store operations can be issued in slots 4 or 5. Only a 

single load operation can be issued in slot 5. The two-

slot SUPER_LD32R operation increases load 

bandwidth. It is issued in slots 4 and 5 (but the cache 

access path is restricted to slot 5, as illustrated by 

Figure 5), and retrieves two consecutive 32-bit words 

from memory into two destination registers. The  

collapsed LD_FRAC8 operation is issued in slot 5. 

Figure 5 gives an overview of the data cache 

pipeline, partitioned into execute stages X1 through X6.

Normal load operations have a 4-cycle latency and 

produce a result in stage X4. Collapsed load operations 

with interpolation have a 6-cycle latency and produce a 

result in stage X6. Stage X1 calculates the effective 

address for both the first and last byte referenced by an 

operation (Figure 5: addr_lo and addr_hi). Both 

addresses are required for non-aligned accesses. Stage 

X2 performs access arbitration to the cache tag and 

data memory structures. Although the functionality 

provided by this stage is limited, the delay in this stage 

is significant. This is because a large amount of 

relatively wide address and data busses need to be 

multiplexed and routed to the different SRAMs. 

Furthermore, the large SRAM setup time extends their 

presence from stage X3 into stage X2. Stage X3

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



contains the cache tag and data memory structures 

(LRU and byte validity structures are not depicted). 

The data memory structures have a maximum clock-

frequency that is close to the processor clock-

frequency. The tag memory structures are somewhat 

faster, and allow for the inclusion of tag comparison 

logic in stage X3. Stage X4 contains the data cache way 

selection logic. Stages X5 and X6 contain the filter 

bank for collapsed load operations. On the right side of 

the pipeline we find the Cache Write Buffer (CWB), 

which is used to keep pending writes to the data cache. 

The cache memory structures use single ported 

SRAMs with bit write functionality, to allow for a 

selective update of memory bits as identified by a bit 

mask. The available SRAMs had a maximum data 

width restriction of 128 bits. 

In stage X2, store operations request access to the 

tag memory structure, but not to the data memory 

structure, since stores do not produce a register result. 

Load operations request access to both the tag and data 

memory structures. Since load operations are only 

supported in slot 5, the data memory structure access 

path is restricted to slot 5. To support two simultaneous 

stores, both slot 4 and 5 have a dedicated copy of the 

tag memory structure. Note that to support two 

simultaneous loads would require costly duplication of 

the data memory structure [20]. In stage X4, the control 

state machines act upon the retrieved cache control 

information, such as the cache hit signal. For loads, the 

validity of the requested bytes needs to be checked, 

somewhat complicating the generation of the hit signal 

(when compared to a cache without byte-validity).  In 

case of a load hit, way selection is performed on the 

retrieved cache data. In case of a load miss, a cache 

line is retrieved from off-chip memory by the refill 

unit. In case of a store hit, data is sent to the CWB. In 

case of a store miss, a cache line is allocated. Note that 

non-aligned accesses may result in two cache misses 
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when the data crosses a cache line boundary. For load 

operations, two cache lines are retrieved from memory, 

and for store operations, two cache lines are allocated. 

5. Realization 

The TM3270 is a fully synthesizable, static design. 

It uses off-the-shelf single ported SRAM memories. 

The first realization is in a low power 90 nm process 

technology. Under worst case operating conditions 

(125 C, worst-case voltage of 1.08 V, worst case 

process corner) the processor reaches a frequency of 

350 MHz. Figure 6 gives the processor floorplan, and 

its partitioning into the major design modules. The 

SRAM memories were hand-placed. The placement of 

the standard cell logic was tool-driven; i.e. no labor-

intensive hierarchical placement of the modules was 

required to come to a placed and routed design. The 

synthesizability and tool-driven place and route make it 

relatively easy to port the design to a different process 

technology. 

5.1. Area 

Table 4 gives an area breakdown of the major 

modules as found in the floorplan (Figure 6). The 

complete processor measures 8.08 mm
2
. This number 

includes the SRAMs for the implementation of the 64 

Kbyte instruction caches and 128 Kbyte data cache, 

which constitute roughly 50% of the overall area. The 

load/store unit is the largest module, when the data 

cache SRAMs are included. The data cache LRU is 

implemented in standard cell logic. The execute 

module has the largest standard logic area. The 128-

entry register-file is a relatively large module, due to 

the routing inefficiency of the 15 read and 5 write 

ports. To reduce area, a custom implementation of this 

module could be considered. However, such a custom 

implementation would increase the effort of porting the 

design to a different process technology. 

5.2. Power consumption 

One of the main TM3270 design constraints is 

power consumption. Low power consumption is 

important to allow for 1) application in battery-

operated devices, 2) a low-cost package, and 3) a fan-

less system solution. The initial realization uses a low 

power 90 nm process technology with a relatively high 

threshold voltage Vt. Although this limits the 

maximum operating frequency, it results in a low static 

power consumption since transistor leakage current is 

proportional to inverse exponential Vt. Dynamic power

consumption is defined by CV2f, C is the switched 

capacitance, V is the supply voltage, and f is the 

operating frequency. The capacitance C is determined 

by process technology and activity level. Activity is 

addressed during processor design. E.g. the sequential

instruction cache design for a 8-way set associative 

cache greatly reduces the power consumption over a 

more traditional parallel cache design. Furthermore, 

the processor design has been heavily clock-gated; 

roughly 70 different functional clock domains exist. 

For example, all stages of all functional units are 

separately gated: when they are not used, they are not 

clocked. Typical supply voltage V for our process 

technology is 1.2 V, but functional operation at 0.8 V 

is guaranteed at a lower frequency. This allows for 

dynamic voltage scaling based on computational 

requirements. Since the processor has a fully static 

design and asynchronous bus interfaces to the rest of 
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Figure 6.  TM3270 floorplan. 

Table 4. TM3270 area/power breakdown. 

Module Description Area 
MP3 decoder 

power
(mW/MHz at 1.2 V) 

IFU Instruction 
fetch unit. 

1.46 0.272 

Decode Decoding of 
operations. 

0.05 0.022 

Regfile Register-file. 0.97 0.170 

Execute All functional 
units. 

1.53 0.255 

LS Load/store unit. 3.60 0.266 

BIU Bus interface 
unit. 

0.24 0.002 

MMIO 
Memory 
mapped IO 
peripherals  

0.23 0.012 

Total  8.08 0.935 
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the SoC, the operating frequency can be changed on 

the fly, independent of the rest of the SoC. 

We used Synopsys’ Power Compiler to measure 

gate level power consumption, including the power 

grid. Power consumption is derived for a MP3 decoder 

(384 Kbits stereo decoding at 44.1 KHz). Table 4 gives 

a power breakdown at an operating voltage of 1.2 V. 

The contribution of static power consumption is 

negligible. Reducing the voltage from 1.2 V to 0.8 V 

reduces the power consumption to 0.935 * (0.8
2

/ 1.2
2
)

= 0.415 mW/MHz, as a result of the quadratic 

dependency on voltage. MP3 decoding is performed in 

approximately 8 MHz with a OPI around 4.5 and a CPI 

close to 1.0, thanks to the large caches and the high 

efficiency of data cache prefetching. As a result, MP3 

decoding requires 8 MHz * 0.415 mW/MHz = 3.32 

mW at 0.8 V. Measurements on other applications 

have shown that power consumption is more 

dependent on effective operations per VLIW 

instructions (OPI), and cycle per VLIW instruction 

(CPI), than on the specific application. Applications 

with similar OPI and CPI have a similar mW/MHz 

rating. As the amount of stall cycles increases (larger 

CPI), the mW/MHz number decreases as the processor 

performs clock gating when it stalls. Applications with 

a larger CPI use relatively more power in the bus 

interface unit (BIU). 

6. Performance 

For the evaluation of new processor designs, we use 

a suite of about 50 applications and kernels from the 

media-processing domain. We made a selection of the 

applications, focusing on video processing (Table 5), 

and compare TM3270 performance to that of it 

predecessor: the TM3260. The applications were 

optimized for the TM3260, and re-compiled for the 

TM3270 without modifications. The performance 

results do not include improvements that could be 

achieved by applying TM3270 specific features (non-

aligned memory access, advanced data prefetching, 

new operations, etc.). As such, the results are a lower 

bound for achievable performance improvement.  

Table 6 lists the main characteristics of the TM3260 

and TM3270 that cause difference in performance. The 

most notable are the operating frequencies and data 

cache capacity. To evaluate the impact of these 

characteristics, we measured four processor 

configurations. Configuration A represents the 

TM3260. Configuration D represents the TM3270. 

Configuration B represents the TM3270, with TM3260 

cache sizes and a TM3260 frequency of 240 MHz. 

Configuration C represents the TM3270, with TM3260 

cache sizes and a frequency of 350 MHz. Note that to 

achieve the higher operating frequency of the TM3270 

(350 vs. 240 MHz), the amount of jump delay slots and 

the load latency is increased. As a result, the TM3270 

has a deeper pipeline than the TM3260, which has a 

negative impact on the CPI. However, this is more than 

compensated by the TM3270 improved data cache 

design and its higher operating frequency, as is 

illustrated by the performance numbers (Figure 7). The 

measurements were performed with a 32-bit off-chip 

DDR SDRAM memory operating at 200 MHz. 

Typically, the TM3260 (configuration A) has the 

lowest performance. However, for the MPEG2 

application, configuration A outperforms 

configurations B and C. This is explained as follows. 

MPEG2 decoding is heavily dependent on the ability 

of the data cache to capture the working set. Although 

all configurations A, B and C have the same data cache 

capacity, the line size is different. The TM3270 

doubles the line size to 128 bytes (this decision was 

Table 6. TM3260 and TM3270 characteristics. 

Feature TM3260 TM3270 

Operating frequency* 240 MHz 350 MHz 
Instruction cache 64 Kbyte, 64-byte lines 

Parallel cache design 
3 jump delay slots 

64 Kbyte, 128-byte lines 
Sequential cache design 
5 jump delay slots 

Data Cache 16 Kbyte, 64-byte lines 
8 way set-associative 
Fetch-on-write-miss 
3-cycle load latency 
2 loads / VLIW instr. 

128 Kbyte, 128-byte lines 
4 way set-associative 
Allocate-on-write-miss 
4-cycle load latency 
1 load / VLIW instr. 

*under similar operating conditions: same process technology, 125 C, worst-case voltage 1.08 V, worst-case process corner.

Table 5. Performance evaluation 
kernels/applications. 

Kernel/ 
application Description 

memset Sets a 64 Kbyte region to a pre-defined 
value. 

memcpy Copies a 64 Kbyte region. 
filter 
rgb2yuv 
rgb2cmyk 
rgb2yiq 

Four kernels taken from the EEMBC 
consumer suite. 

mpeg2_a 
mpeg2_b 

mpeg2_c 

MPEG2 decoder application, run on 
different streams. “mpeg2_a” is 
characterized by a highly disruptive motion 
vector field. 

filmdet Film detection algorithm, as used in TV 
sets. 

majority_sel De-interlacer algorithm, as used in TV sets. 
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based on a 128 Kbyte data cache), resulting in more 

capacity misses for MPEG2 decoding, increasing the 

amount of stall cycles. Furthermore, the ability to 

perform two loads / VLIW instruction and the 3-cycle 

load latency, give the TM3260 an advantage over the 

TM3270. As illustrated by configuration D, the larger 

TM3270 data cache capacity more than makes up for 

this TM3260 advantage. 

The memcpy kernel shows the largest performance 

gain going from configuration A to B. The main reason 

is the TM3270’s write miss policy. The kernel is 

memory bound for both configurations. Since the 

TM3270 generates less memory traffic, its 

performance is significantly higher (fetch-on-write-

miss policy).  

On average, the TM3270 gives a performance gain 

of 2.29 over the TM3260. This number is achieved 

through re-compilation of applications optimized for 

the TM3260. Not all applications benefit to the same 

extent from a larger data cache. Whereas the MPEG2 

application shows a large performance gain, the 

EEMBC kernels and TV algorithms show a modest 

performance gain. These applications benefit most 

from a higher operating frequency. 

TM3270 specific optimizations allow for larger 

performance gains. In [12] an optimized and non-

optimized implementation of a motion estimation 

kernel on the TM3270 was evaluated. An additional 

performance gain of more than a factor two can be 

achieved, when taking advantage of non-aligned 

memory access, advanced data prefetching techniques, 

and new operations. In [13] a MPEG2 encoder 

application was evaluated. New operations improve the 

performance of a MPEG2 8x8 texture pipeline by 50%. 

In [14] a state-of-the-art temporal upconversion 

algorithm was evaluated. New operations improve 

performance by 40%, data prefetching improves 

performance by more than 20%. 

7. Conclusions 

We have presented an overview of the architecture, 

implementation, and first realization of the TM3270 

media-processor. It is applied as an embedded 

processor in SoCs targeting the video and audio 

processing domains in the cost-driven connected and 

portable consumer markets. It provides a 

programmable platform on which a variety of video 

and audio processing applications are implemented. 

With the introduction of new operations to the 

TriMedia ISA, and an increase in operating frequency 

when compared to its predecessor, it is able to either 

encode or decode H.264 video material at standard 

definition resolution. Especially the CABAC specific 

operations and collapsed load operations with 

interpolation contribute heavily to this ability. To our 

knowledge, the TM3270 is the first processor that 

supports two-slot operations. These operations open up 

the possibility to directly support functions that have 

up to four inputs and produce up to two outputs. 

Furthermore, they allow for the combining of multiple 

two input operations, possibly reducing overall 

function latency and register pressure. 

We discussed an overview of the organization of the 

processor pipeline and load/store unit. The discussion 

illustrates the trade-offs made between architecture and 
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Figure 7.  Relative performance numbers. 
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implementation of processor design, e.g. efficiency of 

implementation of a feature such as two stores per 

VLIW instruction results in a semi dual ported cache 

design. The processor achieves an average 2.29 

performance gain over its predecessor, the TM3260, 

through re-compilation only. Further TM3270 specific 

optimizations allow for an additional performance gain 

of more than a factor two for certain applications.   
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