
FPGA-area Allocation for Partial Run-Time
Reconfiguration

Elena Moscu Panainte, Koen Bertels, and Stamatis Vassiliadis
Computer Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4, 2600 GA Delft, The Netherlands
Phone: +31 15 2786249 Fax: +31 15 2784898

E-mail: {elena|koen|stamatis}@ce.et.tudelft.nl

Abstract— Although the new generations of FPGAs pro-
vide support for partial and dynamic configuration, the huge
reconfiguration latency is still a major shortcoming of the
current FCCMs . Software and hardware techniques (com-
piler optimizations, configuration prefetching) have been
used in order to reduce the impact of the configuration over-
head on the overall performance. Nevertheless, these tech-
niques may not produce significant performance improve-
ments when the hardware implementations of the operations
executed on the FPGA are not properly placed on the tar-
get FPGA. For example, when three configurations should
be placed on the target FPGA but only two of them can fit
in the available FPGA area, then the placement of the third
tasks will overlap at least with one other configuration. In
such cases, a strategy is required to determine the optimal
tasks placement on the target FPGA.

In this paper, we propose two FPGA-area allocation al-
gorithms for the tasks executed on the reconfigurable hard-
ware. The goal is to minimize the FPGA-area which is re-
configured at runtime, taking into account the application
runtime features. More specifically, we use the reconfigura-
tion frequency for the target application to guide the alloca-
tion algorithms. Two scenarios are discussed: the first one
corresponds to the case when all hardware operations must
be placed/executed on the target FPGA while in the second
scenario, a hardware operation can be switched to its pure
software execution on the core processor in order to reduce
the pressure/competition for the FPGA area. The FPGA-
area allocation problem is formulated as a 0-1 integer lin-
ear programming (LP) problem and efficient LP solvers are
used for finding the optimal solutions.

I. INTRODUCTION

Although the new generations of FPGAs provide sup-
port for partial and dynamic configuration, the huge re-
configuration latency is still a major shortcoming of the
current FCCMs (see [1], [2]). Software and hardware tech-
niques (compiler optimizations, configuration prefetching)
have been used in order to reduce the impact of the con-
figuration overhead on the overall performance. Neverthe-

less, these techniques may not produce significant perfor-
mance improvements when the hardware implementations
of the operations executed on the FPGA are not properly
placed on the target FPGA. For example, when three con-
figurations should be placed on the target FPGA but only
two of them can fit in the available FPGA area, then the
placement of the third tasks will overlap at least with one
other configuration. In such cases, a strategy is required to
determine the optimal tasks placement on the target FPGA.

In this paper, we propose two FPGA-area allocation al-
gorithms for the tasks executed on the reconfigurable hard-
ware. The goal is to minimize the FPGA-area which is
reconfigured at runtime and improve the overall perfor-
mance, taking into account the application runtime fea-
tures. More specifically, we use the reconfiguration fre-
quency for the target application to guide the allocation
algorithms. Two scenarios are discussed: the first one cor-
responds to the case when all hardware operations must
be placed/executed on the target FPGA while in the sec-
ond scenario, a hardware operation can be switched to its
pure software execution on the core processor in order to
reduce the pressure/competition for the FPGA area. The
FPGA-area allocation problem is formulated as a 0-1 in-
teger linear programming (LP) problem and efficient LP
solvers are used for finding the optimal solutions.

The paper is organized in five sections. The background
and related work is presented in the following section.
Next, we discuss some motivational examples and define
the FPGA-area allocation problem addressed in this paper.
The proposed allocation algorithms are detailed in section
IV. Finally, we present conclusions and future work.

II. BACKGROUND AND RELATED WORK

In this paper, we assume the Molen programming
paradigm [3] for FCCMs (Field-programmable Custom
Computing Machines) with a core processor (GPP) and re-
configurable hardware (usually implemented as an FPGA).

415

The reconfigurable hardware is controlled by two instruc-
tions: i) SET for the FPGA configuration for a reconfig-
urable operation (Rop) and ii) EXECUTE for the Rop ex-
ecution on the FPGA. The Molen compiler [4] generates
code for reconfigurable computing platforms following the
Molen programming paradigm. An important compiler
optimization (see [2]) included in the Molen compiler is to
reduce the redundant SET instructions taking into account
the predefined FPGA-area conflicts between the consid-
ered Rops. In consequence, the compiler optimization will
benefit from an efficient FPGA-area allocation that mini-
mizes the FPGA-area overlaps for a target application.

Previous approaches for FPGA-area allocation are
mainly focused on cases where the whole application is
decomposed in tasks which are all executed on the FPGA.
In [5], an optimal module placement based on packing
classes is proposed. A backtracking solution with bound-
ing heuristics is presented in [6]. The proposed solutions
require detailed information (such as data flow graphs, de-
pendency graphs of tasks) about the application’s features
and regular application behavior. Another approach (see
[7] [8] [9]) is the task allocation in an operating system
for reconfigurable computing. In such cases, information
about specific application behavior cannot be used in or-
der to guide this allocation, thus optimization opportuni-
ties can be lost. Other related work [10] addresses com-
piler optimization for reducing the number of redundant
FPGA configurations based on a predefined FPGA-area al-
location. In the current paper, we propose two FPGA-area
allocation algorithms that reduce furthermore the number
of FPGA configurations by minimizing the total reconfig-
ured area for a given trace of execution.

III. PROBLEM OVERVIEW AND DEFINITION

Motivational Example: In order to clearly define the
FPGA-area allocation problem, we use a motivational ex-
ample (Figure 1(a)) which sketches an FPGA device and
the area requirements for three operations implemented on
the FPGA. In this paper, we assume FPGAs with column-
based reconfiguration (the reconfiguration may only be
performed for a full column of CLBs of the chip) such
as the well-known Xilinx Virtex devices. For one appli-
cation that uses the three hardware operations, a simple
FPGA area allocation (presented in 1(b)) places all opera-
tions starting with the first column. Due to the FPGA area
overlaps, such allocation requires the FPGA reconfigura-
tion before each execution of the considered operations.
As shown in [2] and [10], FPGA reconfiguration is slow
and thus, repetitive FPGA reconfigurations can produce a
significant performance decrease. In consequence, a better
FPGA-area allocation is required in order to reduce the re-

�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������

31 2 431 2

A=4

ROP2

A=4

ROP2

85 6 7431 2

ROP3

A=8

ROP3

A=8A=4

ROP2ROP1

A=3

10 11 128 95 6 7431 2

ROP2 ROP3
ROP1

b)

A=3

10 11 128 95 6 7431 2

ROP3

A=8

Fix Reloaded

A=4

ROP2ROP1

Trace: Rop1 Rop2 Rop1 Rop3 Rop1
Rop2 Rop1
Initial (Trace):

#SET Rop2 = 2
#SET Rop3 = 1

Final:

#SET Rop2 = 2 (RW)
#SET Rop3 = 1 (RW)

#SET Rop1 = 0 (FIX)#SET Rop1 = 4

10 11 128 95 6 7431 2

FPGA

A= 12

a)

c)

Fig. 1. Example: a) Total FPGA-area and required area for
three hardware operations; b) a simple FPGA-area allocation c)
optimal allocation based on the execution trace

configuration overhead. An allocation strategy is possible
only when the placement of the hardware operations is not
predefined.

Two important observations can be made regarding the
example from Figure 1. The first observation is that
the three considered operations cannot fit together on the
FPGA as the sum of the area of their hardware implemen-
tations exceeds the total available FPGA-area. The second
observation concerns the simple allocation strategy, where
there is unused FPGA-area while parts of the FPGA have
to be reconfigured before each execution. For the consid-
ered example, even when the Rop2 and Rop3 do not have
overlapping FPGA-area, the placement of Rop1 will intro-
duce FPGA-area overlaps with one of the two operations.

In order to determine an efficient FPGA-area allocation,
we propose an approach that divides the hardware oper-
ations in two categories: FIX and RW. An operation is
called FIX if it has no overlapping area with any other
hardware operations in the considered application. Such
a FIX operation requires only one initial FPGA configura-
tion (which can be preloaded and can be neglected). An
operation is called RW (reconfigurable) if its area overlaps
with other operations and it has to be configured before
each execution.

Loosely stated, the main idea of our approach is to min-
imize the reconfigured FPGA-area based on the reconfigu-

416

ration frequency of each operation. Using profiling infor-
mation, we determine the execution order for the hardware
operations (called trace) and compute the reconfiguration
frequency in the trace. The goal is to allocate the larger
and frequently reconfigured operations as FIX operations.
The example shown in Figure 1(c) presents the optimal
FPGA-area allocation for a given execution trace. We can
observe the elimination of hardware configurations for the
operations allocated as FIX operations (Rop1 in this exam-
ple). The selection of the FIX operations is based on 0-1
linear programming and is explained in Section IV. The
used terminology and a formal description of the alloca-
tion problem is presented in the rest of this section.

Problem statement: We represent a set of n re-
configurable hardware operations (Rops) as ROP =
{Rop1,Rop2, ..., Ropi, ...,Ropn}, where each operation
Ropi occupies for its hardware implementation an FPGA-
area Ai. The total available area of the target FPGA device
is S. Although in this paper we address the case when the
reconfiguration is column-based (the area is expressed as
the number of columns), the extension to the 2D or 3D
cases is straightforward. An execution trace is a sequence
of Rops that are executed for a set of representative in-
put data for the target application and it is represented as
T : Ropi,Rop j, ...,Ropk, A trace is normalized if it does
not contain two identical consecutive Rops. This normal-
ization represents the fact that consecutive hardware re-
configurations for the same Rop are redundant and can be
eliminated by compiler optimization (see [2]) or hardware
prefetching. For each Ropi ∈ ROP and a normalized trace
T, the reconfiguration frequency n(T)i represents the num-
ber of occurrences of Ropi in the trace T.

As previously explained, the idea of our approach is to
divide the ROP set in two subsets FIX and RW, where
ROP = FIX

S

RW and FIX
T

RW = /0. The Rops in the
FIX set will have a dedicated area allocated on the FPGA
that is not used by other Rops (they do not have area over-
laps with other Rops). The advantage is that the FIX Rops
will not require an FPGA reconfiguration before their ex-
ecutions. The total area occupied by the FIX Rops is

∑
Rop j∈FIX

A j. The Rops in RW set are the operations that

have area overlaps. The reconfiguration overhead is pro-
portional with the FPGA-area which is reconfigured at run-
time. The aim is to minimize the total reconfigured area
(the sum of the area of the Rops from RW multiplied by
their reconfiguration frequency) which corresponds to the
minimization of the reconfiguration overhead and implic-
itly, to the improvement of the overall performance gain.
A formal description of this problem is as follows:

Problem Given a set ROP = {Rop1, ...,Ropi, ...,Ropn},

a total available FPGA-area S, a normalized execution
trace T, each Ropi having an FPGA-area Ai and the re-
configuration frequency n(T)i, find RW ⊆ ROP that min-

imizes the reconfigured area ∑
Ropi∈RW

n(T)i ∗Ai, under the

following constraint:

• ∀Ropk ∈RW , Ak + ∑
Rop j∈FIX

A j ≤ S, where FIX = ROP−

RW .
The constraint represents the requirement that any RW

Rop must have enough available area to coexists on the
FPGA at the execution time with all FIX Rops. Implicitly,
as the FPGA-area is a positive number, the constrain ex-
presses also the requirement that all FIX Rops should fit
together on the target FPGA. Once the RW set has been
determined for the above mentioned problem, an effective
FPGA-area allocation is straightforward. Assuming that
Ai represents the number of required columns, an FPGA-
area allocation associates with each Rops, the number of
the first column where Ai is placed. In the first step, the
FIX Rops are consecutively allocated on the FPGA. In the
second step, the RW Rops are all allocated at the end of
the FPGA-area allocated for the FIX Rops.

IV. FPGA-AREA ALLOCATION ALGORITHMS

For the problem defined in the previous section, we pro-
pose its formulation as an integer linear pseudo-Boolean
(0-1) programming problem and consequently, the solu-
tions can be determined using efficient solvers (see [11]).
More specifically, we propose two scenarios. The first case
(associated with the FIX/RW Algorithm) corresponds to
the above mentioned problem, where the Rops are placed
in the FIX or in the RW (Reloaded) part on the FPGA. In
the second case (corresponding to the FIX/RW/SW Algo-
rithm), we assume than an Rop can have three options for
execution: on the FIX or RW part or additionally, it can
be switched to its software execution (on GPP). The last
options can be preferred for those Rops where the huge
reconfigurations latency consumes the gain produced by
the fast execution on the FPGA. In the rest of this section,
we introduce in detail the two FPGA-area allocation algo-
rithms.

A. FIX/RW FPGA-area Allocation Algorithm

As previously presented, we translate the FPGA-area al-
location problem in a 0-1 linear programming problem to
produce an optimal solution using efficient solvers.

0-1 Selection In the considered case, any Rop can be
executed on the FIX or RW part of the FPGA. In conse-
quence, we associate with any Ropi a variable xi such that

417

xi =

{

0 if Ropi ∈ FIX
1 if Ropi ∈ RW

. Finding the optimal par-

tition of ROP in FIX and RW is reduced to finding the
optimal 0-1 values for all xi.

Objective function In the problem definition in Sec-
tion III, the minimization of the reconfigured area

∑
Ropi∈RW

n(T)i ∗Ai can be expressed as the following objec-

tive function ∑
Ropi∈ROP

n(T)i ∗Ai ∗ xi. If Ropi is a FIX Rop,

then xi = 0 and it does not increase the reconfigured area as
it does not need any configuration. In consequence, only
the contribution of the RW Rops is included in the mini-
mization objective function.

The system of linear pseudo-Boolean inequalities of the
linear programming problem formulation corresponds to
the constrains included the initial problem. The constraint
that ∀Ropk ∈ RW , Ak + ∑

Rop j∈FIX
A j ≤ S can be expressed

as follows:


































































A1 ∗ x1 + ∑
Rop j∈ROP

A j ∗ x̄ j ≤ S

A2 ∗ x2 + ∑
Rop j∈ROP

A j ∗ x̄ j ≤ S

...

Ai ∗ xi + ∑
Rop j∈ROP

A j ∗ x̄ j ≤ S

...

An ∗ xn + ∑
Rop j∈ROP

A j ∗ x̄ j ≤ S

This system of inequalities should be interpreted as fol-
lows: (1) The term ∑

Rop j∈ROP
A j ∗ x̄ j represents the perma-

nently configured FPGA-area occupied by FIX Rops:

∑
Rop j∈ROP

A j ∗ x̄ j = ∑
Rop j∈FIX

A j ∗ x̄ j + ∑
Rop j∈RW

A j ∗ x̄ j

Rop j ∈ RW =⇒ x j = 1 =⇒ x̄ j = 0







=⇒

∑
Rop j∈ROP

A j ∗ x̄ j = ∑
Rop j∈FIX

A j ∗ x̄ j.

(2)The second observation regards the first term in the
inequalities, namely Ai ∗ xi. For the cases when Ropi ∈
FIX =⇒ xi = 0, the term Ai ∗ xi can be eliminated. The
ith inequality is transformed in ∑

Rop j∈ROP
A j ∗ x̄ j ≤ S which

represents the constraint that the total area allocated for
FIX Rops should be smaller or equal than the total avail-
able FPGA-area S. Similarly, for the cases when Ropi ∈
RW =⇒ xi = 1, the inequality is transformed in Ai ∗ xi +

∑
Rop j∈ROP

A j ∗ x̄ j ≤ S which represents the constraint that an

RW Rop has to fit on the FPGA together with all FIX Rops.
In our model implementation, each ith inequality should

min: +2*39*x1 + 3*13*x2 + 3*16*x3;

C1: + 13*x̄2 + 16*x̄3 ≤ 58 - 39
C2: + 39*x̄x1 + 16*x̄x3 ≤ 58 - 13
C3: + 39*x̄x1 + 13*x̄x2 ≤ 58 - 16

Fig. 2. The linear problem description for the MPEG2 encoder
and FIX/RW Algorithm

not contain both xi and x̄i; thus it can be reduced as follows:

Ai ∗ xi +
n

∑
j=1

A j ∗ x̄ j ≤ S ⇐⇒ Ai ∗ xi + Ai ∗ x̄i +
i−1

∑
j=1

A j ∗ x̄ j +

n

∑
j=i+1

A j ∗ x̄ j ≤ S ⇐⇒

Ai ∗ (xi + x̄i)+
i−1

∑
j=1

A j ∗ x̄ j +
n

∑
j=i+1

A j ∗ x̄ j ≤ S ⇐⇒
i−1

∑
j=1

A j ∗ x̄ j +

n

∑
j=i+1

A j ∗ x̄ j ≤ S−Ai

Example An example is presented in Figure 2, for three
Rops with A1 = 39,A2 = 13,A3 = 16,n(T)1 = 2,n(T)2 =
3,n(T)3 = 3 and S = 58. The solution to this problem
is {x1 = 0,x2 = 1;x3 = 1}, which corresponds to FIX =
{Rop1} and RW = {Rop2, Rop3}.

B. FIX/RW/SW FPGA-area Allocation Algorithm

The FIX/RW algorithm previously presented has two
important limitations: i) it cannot find a viable FPGA allo-
cation if there is an Ropi with Ai > S because the constraint
set is unsatisfiable; and ii) although the FPGA execution is
(usually) faster than the software execution for any Rop,
the reconfiguration overhead can significantly increase the
overall execution time. In order to eliminate these rigid
limitations, we propose the FIX/RW/SW algorithm where
the Rops can additionally be switched to software execu-
tion. The FPGA-area allocation problem can again be for-
mulated as 0-1 LP problem including the following com-
ponents.

0-1 Selection In this case, a Rop has three options
for execution: on the FIX or RW part on the FPGA
or additionally in software (SW). The allocation prob-
lem involves the division of ROP in three subsets FIX,
RW and SW, such that ROP = FIX

S

RW
S

SW and
FIX

T

RW = /0, FIX
T

SW = /0, RW
T

SW = /0. These op-
tions can be expressed using three boolean variables for
each Ropi, namely x f ixi,xrwi and xswi, where x f ixi =
{

1 if Ropi ∈ FIX
0 if Ropi 6∈ FIX

and similar for xrwi and xswi.

Moreover, a Rop must be included in only one subset; this
constraint can be expressed as x f ixi + xrwi + xswi = 1.
Finding the optimal partition of ROP in FIX, RW and
SW is reduced to finding the optimal 0-1 values for all
x f ixi,xrwi and xswi.

418

min: +cost f ix1 ∗ x f ix1 +cost f ix2 ∗ x f ix2 +cost f ix3 ∗ x f ix3 +
+cost rw1 ∗ xrw1 +cost rw2 ∗ xrw2 +cost rw3 ∗ xrw3+
+cost sw1 ∗ xsw1 +cost sw2 ∗ xsw2 +cost sw3 ∗ xsw3+

C1: x f ix1 +xrw1 +xsw1 = 1
C2: x f ix2 +xrw2 +xsw2 = 1
C3: x f ix3 +xrw3 +xsw3 = 1
C4: 39 xrw1 +39 x f ix1 +13 x f ix2 +16 x f ix3 ≤ 58
C5: 13 xrw2 +39 x f ix1 +13 x f ix2 +16 x f ix3 ≤ 58
C4: 16 xrw3 +39 x f ix1 +13 x f ix2 +16 x f ix3 ≤ 58

Fig. 3. The linear problem description for the MPEG2 encoder and FIX/RW/SW Algorithm

Objective function In the problem definition of the pre-
vious FIX/RW Algorithm, the goal of the objective func-
tion is the minimization of the total reconfigured area. This
function cannot be used in the current scenario as all Rops
can be switched to their software execution; thus in the
FIX/RW/SW algorithm, the goal is the performance gain.
The new objective function is the minimization of the ex-
ecution time for the considered Rops and is expressed

as
n

∑
i=1

cost f ixi ∗ x f ixi +
n

∑
i=1

cost rwi ∗ xrwi +
n

∑
i=1

cost swi ∗

xswi, where cost f ixi/cost rwi/cost swi represent the to-
tal execution time for Ropi in FIX/RW/SW respectively
and their values can be determined using profiling infor-
mation and estimations.

Linear Pseudo-Boolean Inequalities The system of
linear pseudo-Boolean inequalities of the linear program-
ming problem formulation is similar to the previous
FIX/RW system:







































































A1 ∗ xrw1 +
n

∑
j=1

A j ∗ x f ix j ≤ S

A2 ∗ xrw2 +
n

∑
j=1

A j ∗ x f ix j ≤ S

...

Ai ∗ xrwi +
n

∑
j=1

A j ∗ x f ix j ≤ S

...

An ∗ xrwn +
n

∑
j=1

A j ∗ x f ix j ≤ S

The main idea is the same as in the previous algorithm:
each RW Rop must have allocated enough FPGA-area to
fit with all FIX Rops on the FPGA.

As a final observation for both algorithms, we notice
that the generated FPGA-area allocations will preserve the
application semantics even if the input execution trace T
is not a representative trace. In such cases, some perfor-
mance gain may be lost, but the application has the correct
behavior.

Example One linear model for the three Rops presented
previously presented and FIX/RW/SW Algorithm is pre-

sented in Figure 3. For the estimated costs, the solution
to this linear problem is {x f ix1 = 1,x f ix2 = 1,xsw3 = 1},
while the other boolean variables are zero.

V. CONCLUSIONS

In this paper, we have presented two FPGA-area allo-
cation algorithms for minimizing the huge reconfigura-
tion overhead of the current FPGAs.Two scenarios have
been proposed: the traditional placement problem when
all Rops are executed on the FPGA and additionally, the
case when any Rop can be switched to its software execu-
tion. The algorithms incorporate 0-1 LP solvers and use
the reconfiguration frequency for finding the optimal Rops
allocation.

In our future work, we will extend the allocation algo-
rithms to take into account not only the reconfiguration
frequency, but also the reconfiguration order of the con-
sidered Rops in a representative execution trace; we notice
that this new problem is not a linear programming prob-
lem. We also intend to exploit the parallelism for Rops
execution on the FPGA and between the FPGA and the
core processor.

REFERENCES

[1] Moscu Panainte, E., Bertels, K., Vassiliadis, S.: Dynamic hard-
ware reconfigurations: Performance impact on mpeg2. In: Pro-
ceedings of SAMOS. Volume 3133., Samos, Greece, Springer-
Verlag Lecture Notes in Computer Science (LNCS) (2004) 284–
292

[2] Panainte, E.M., Bertels, K., Vassiliadis, S.: Instruction scheduling
for dynamic hardware configurations. In: Proceedings of Design,
Automation and Test in Europe (DATE 05), Munich, Germany
(2005) 100–105

[3] Vassiliadis, S., Wong, S., Gaydadjiev, G.N., Bertels, K., Kuz-
manov, G., Moscu Panainte, E.: The Molen Polymorphic Pro-
cessor. IEEE Transactions on Computers 53(11) (2004) 1363–
1375

[4] Moscu Panainte, E., Bertels, K., Vassiliadis, S.: The PowerPC
backend molen compiler. In: FPL. Volume 3203., Antwerp,
Belgium, Springer-Verlag Lecture Notes in Computer Science
(LNCS) (2004) 434–443

[5] Fekete, S., Khler, E., Teich, J.: Optimal fpga module placement

419

with temporal precedence constraints. In: Proceedings of Design,
Automation and Test in Europe (DATE 01). (2001) 658–665

[6] Maestre, R., Kurdahi, F.J., Bagherzadeh, N., Singh, H., Hermida,
R., Fernndez:, M.: Kernel scheduling in reconfigurable comput-
ing. In: Proceedings of Design, Automation and Test in Europe
(DATE ’99). (1999) 90–96

[7] George, M.A., Pink, M., Kearney, D., Wigley, G.: Efficient al-
location of fpga area to multiple users in an operating system
for reconfigurable computing. In: Proceedings of Engineering of
Reconfigurable Systems and Algorithms (ERSA02). (2002) 238–
242

[8] Walder, H., Platzner, M.: Online scheduling for block-partitioned
reconfigurable devices. In: In Proceedings of the Design, Au-
tomation and Test in Europe Conference and Exhibition, Munich,
Germany (2003) 290–295

[9] Dales, M.: Managing a reconfigurable processor in a general pur-
pose workstation environment. In: In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, Mu-
nich, Germany (2003) 10980–10985

[10] Moscu Panainte, E., Bertels, K., Vassiliadis, S.: Interprocedural
compiler optimization for dynamic hardware reconfigurations. In:
Proceedings of SAMOS, Samos, Greece, Springer-Verlag Lecture
Notes in Computer Science (LNCS) (2005)

[11] Barth, P.: A Davis-Putnam based enumeration algorithm for lin-
ear pseudo-Boolean optimization. Research Report MPI-I-95-2-
003, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123
Saarbrücken, Germany (1995)

420

