Centralized Matchmaking - An Empirical Study

K. Sigdel S.Li

B. Pourebrahimi

K. Bertels S. Vassiliadis

Computer Engineering Laboratory, ITS, TU Delft, The Netherlands
{kamana, psamuri, behnaz, koen, stamatis} @ce.et.tudelft.nl

Abstract—Advances in networking technology and com-
putational infrastructure make it possible to construct large-
scale high performance distributed computing environment
that provides dependable, consistent and pervasive access
to high end computational and heterogeneous resources de-
spite geographical distribution of both resources and users.
An important research problem for such computing infras-
tructure is how to assign computation and communication
resources to tasks and to schedule the order of their ex-
ecution in order to maximize some performance criterion.
The overall aim of the resource management is to efficiently
schedule applications that need to utilize the available re-
sources in such environments. It has been shown that re-
source heterogeneity impacts the resource allocation in quite
significant way in terms of performance, reliability, robust-
ness, scalability and fault tolerance. It has been realized
that, in order to support resource allocation in widely dis-
tributed heterogeneous environment, it is useful to develop
some brokering approaches based on intelligent agent tech-
nique for service discovery, performance management and
data selection. One such approach for resource allocation
involves matchmaking which is the process of finding an ap-
propriate producer for a consumer. Consumer here means
any processing node wanting some resources (CPU process-
ing, memory) to solve its job and producer here is an en-
tity who can provide these resources. Using a centralized
matchmaking mechanism, there is a central matchmaker re-
ceiving both resource offers from producer and resource re-
quest from consumer and match them based on certain cri-
terion. In this paper we will evaluate centralized matchmak-
ing mechanism and identify the conditions under which it
can perform efficiently. For this, we define different match-
making functions for central matchmaker and evaluate its
performance based on different evaluation criterions such
as matchmaking efficiency, throughput, matching time, task
execution and resource utilization.

I. INTRODUCTION AND RELATED RESEARCH

The overall aim of the resource management is to effi-
ciently schedule applications that need to utilize the avail-
able resources in distributed environments. The problem
in such system is how resource allocation should be done
in the case where some resources are lying idle and could
be linked with other overloaded nodes in the network.
The study of multi-agent systems (MAS) focuses on sys-
tems in which many intelligent agents interact with each
other[13]. The agents are considered to be autonomous en-
tities, such as software programs or robots. A Multi-Agent

System (MAS) is a system composed of a population of
autonomous agents, which cooperate with each other to
reach common objectives in order to solve common prob-
lem [7][4] The agents can share a common goal or they
can pursue their ow interests. The basic idea in multi-
agent system approach is to have a collection of agents
that have to solve a small sub problems. Agents may be
affected by other agents in pursuing their goals and ex-
ecuting their tasks. Interaction can take place indirectly
through a shared language. Whenever an agent needs ad-
ditional resources to perform its assigned task, the agent
need to located the available resources in make use of it.

Multi-agent systems have received significant attention
for its potential contribution towards many diverse do-
mains such as information retrieval and performance man-
agement as a system of autonomous agents which co-
operate with each other in order to solve common problem
[11]. Recently agents are being used in developing dis-
tributed systems for planning, scheduling and allocating
jobs. Multi agent system are considered as an interesting
paradigm for managing and using such grid system. Dis-
tributed computing focuses of large-scale resource sharing
and high performance computing[3]. To obtain this goal,
the interconnection between widely distributed heteroge-
neous resources has become a necessity for distributed
computing. As a result, managing the access to comput-
ing and heterogeneous data resources in distributed com-
puting has become a complex and time consuming task. It
has been shown that resource heterogeneity impacts the
resource allocation in quite significant way in terms of
performance, reliability, robustness, scalability and fault
tolerance. To support this it is useful to develop broker-
ing approaches based on intelligent agent techniques for
service discovery, performance management and data se-
lection. Intelligent agents provide an important means to
achieve these objectives to share and disseminate data and
software more effectively. For this it is necessary to use
distributed agents. Using robust entities, the system can
be made to tolerate failure and recover from them. Man-
agement includes various aspects, such as complexity, re-
source management, fault tolerance and performance anal-
ysis, for manageability it is necessary to use intelligent
entities. In this way, agents can be used to solve the re-
source allocation challenges in large distributed systems.

438

On the other hand, multi-agent system can find distributed
environment useful testbeds to deploy its agents on a large
scale. To support distributed computing, agents can offer
different roles, be organized into regional or national dy-
namic “groups”, and be able to migrate between groups
to support load balancing. Therefore agents play an im-
portant role in distributed computing, and distributed com-
puting can offer useful testbeds for investigating agent ser-
vices.

There are various approaches for allocating resources in
heterogeneous and distributed networks such as match-
making and brokering, market based approach and peer-
to-peer resource allocation. In brokering approach, servers
and customers advertise their presence to a common ad-
vertising service or brokers by describing their character-
istics in advertisements. A broker discovers compatible
providers and customers with a generic matching opera-
tion and notifies the matched agents, which then employ a
protocol to connect to each other and enable exchange of
service. In this kind of resource allocation approach, there
are three different kinds of agent categories involved: ser-
vice providers, service requester and middle agents. Match
making is the process of finding an appropriate provider
for the requester through a middle agent. Each entity (pro-
ducer or consumer) send their attributes and requirements
in special format to the matchmaker [6][11]. Consumer
here means any processing node wanting some resources
(CPU processing, memory) to solve its job and producer
here is an entity who can provide these resources. The
matchmaker matches these resource requests from con-
sumer to the appropriate service provided by the producer.
Market based approach is based on real world markets
where there exist various economic models for setting the
price of services based on supply-and-demand and their
value to users. These real world economy models such as
commodity market model, market bidding, auction model,
bargaining model etc can also be applied to allocate re-
sources and tasks in distributed computing[2]. Microeco-
nomic mechanism can also be considered as resource allo-
cation mechanisms in distributed systems because the eco-
nomic activities of human beings can be viewed as a form
of large-scale resource allocation without centralized con-
trol[5]. In contrast to the client/server architecture, there
is no single central system (server) in a P2P network that
provides all data and services to the consumers(clients).
Information is directly exchanged between providers and
consumers. Most of these systems align their peers in a
overlay network to existing network interfaces. P2P net-
work is a distributed network composed of a large number
of distributed, heterogeneous, autonomous and high dy-
namic peers in which participants share a part of their own

resources such as processing power, storage capacity, soft-
ware and files content.

Using a centralized matchmaking mechanism, there is a
central matchmaker receiving both resource offers from
producer and resource request from consumer and match
them based on certain criteria [1][8]. In P2P system, com-
puting nodes distribute resources via direct exchange be-
tween computers without having centralized control or
hierarchical organization [10][9]. Learnt from past re-
searches, it has been shown that, the completely cen-
tralized or completely localized matchmaking mechanism
each have their efficiencies and deficiencies. Centralized
matchmaking simplifies the management but has low scal-
ability because of bottleneck associated with the central
matchmaker when population grows. Localized match-
making has low throughput as agents only interact within a
local neighborhood to find their proper matches. So, there
is a need for an adaptive system which can automatically
adapt between centralized and localized approaches of
matchmaking. In our paper[12], we described the frame-
work for such an adaptive system that can adapt between
centralized and peer-to-peer matchmaking mechanism. As
a part of our research, in this paper we will investigate the
issues involved in centralized matchmaking and present an
empirical study. We evaluate the performance of central-
ized matchmaking algorithm and identify the conditions
under which it can perform efficiently. Its efficiency given
varying conditions e.g resource intensive or task intensive
environment is also studied in the paper.

In the remainder of this paper, in section II, we discuss
the experimental model, matchmaking functions and eval-
uation criterion. Section III presents the experimentation
carried out for different matchmaking algorithms and com-
pare them based on different evaluation criterion. Finally,
section IV of the paper presents the analysis and conclu-
sion of the experiments and also presents future research
directions.

II. THE EXPERIMENTAL MODEL

The goal of this experiment is to evaluate the performance
of different matchmaking functions in centralized match-
making mechanism. In this experiment we assume the
number of tasks and resources are more or less equal in the
network. For the experiment purpose, we setup grid like
environment in local LAN that comprises both windows
and Linux machines. The system was implemented on
Java platform with TCP/IP as a standard suite of communi-
cation protocol. The implementation model was based on
standard client-server architecture. Matchmaker was im-
plemented as a dedicated multi-client server that commu-
nicates with all the clients (producers or consumers) in the

439

network using Java socket and Java thread. In this experi-
ment, we assume tasks are atomic by nature and can not be
divided. Tasks and resources are generated randomly fol-
lowing Gaussian distribution. Also, we assume that each
node in the network is directly and with the same average
latency connected to the matchmaker.
In our environment, we have N agents: A = {al, a2 ... an
}. Some of these agents, called consumers have tasks to
perform Ta = {tl, t2 ... tn } for which they are looking
for additional resources and others, called producers, have
resources to sell, Ra={rl, 12, ..., rn}. In this case, we con-
sider tasks and resources as function of four different types
of resources: CPU, RAM, Bandwidth and Disk. Con-
sumers can make a request for a bundle of resources. In
our simulation, tasks and resources are generated consid-
ering the assigned hardware configuration. If all the node
resources are not used, the node offer them through the
matchmaker and becomes producer, otherwise if it needs
more resources than it has, it becomes consumer. These re-
source constraints make matchmaking little bit more com-
plicated.
The basic matchmaking goes as follows:

I+ Cerumem,BW,Disk)TE(cPUMem,BW,Disk) —
[0, 1]with :

f(C(C'PU,Mem,BVV,Disk)a P(C’PU,Mem,BW,Disk)) =

L if f(Cicpu,mem,Bw,Disk)> P(CPUMem,BW,Disk))
1samatchingpair
0 otherwise
And, match between C(C’PU,Mem,BW,DiSk)i
and P(c py,Mem,BW,Disk)i 15 possible if and only if

C(cPUMem,BW,Disk) = P(CPUMem,BW,Disk)

In this case, for a consumer to find a match there are two
criteria:

o Producer should have enough amount of all resources
i.e. CPU, memory, bandwidth and disk storage. Failure to
provide any of these resources in sufficient amount results
un-match condition.

« Producer should be able to provide resources in specified
amount of time that is specified by TTL(time to live) for
each task. TTL of resource specifies resources are avail-
able only during that period of time and TTL of task de-
termines consumer needs resources within that time. So,
matching can only occur if a producer has enough re-
sources within specified TTL of consumer.

A. Matchmaking Functions:

In order to investigate the performance of centralized
matchmaking, we define various matchmaking algorithms
to find matches between producer and consumer.There are

three matching functions that vary in complexity and in-
formation used for matching. Evidently, one can define
any number of matching functions taking for instance the
quality of service into account or any other relevant factor.
The choices of these functions are justified in the sense that
they vary in complexity. The chosen functions are defined
as:

A.1 First Match:

In this matchmaking function, for each consumer request,
the matchmaker matches the consumer to the first producer
that has enough resources to execute the consumer’s re-
quest

A.2 Min Difference:

In min difference, the consumer is matched with that pro-
ducer that has enough resources but also that yields the
lowest difference between the requested task and available
resources. This approach attempts to minimize the unused
resources as it considers the minimum difference between
them.

A.3 Min Distance:

Min distance tries to minimize the distance between pro-
ducers and consumers in order to reduce the communica-
tion cost between task and resources. The consumer is
matched not only when enough resources are available but
also tries to minimize the distance between the two-paired
nodes. This is to minimize as much as possible the dis-
tance that has to be traveled between the two-paired nodes.
As each node has an (x, y) co -ordinate, we compute the
Euclidean distance between two nodes.

A.4 Matchmaking Function Illustration:

To illustrate the matchmaking approach, consider the fol-
lowing example given in table I, for first match and min
difference function. Each of the four producers in the
given population is given resources as function of four
kinds of CPU, memory, bandwidth and hard-disk space
and same is done for consumers.

When adopting the simplest matching function i.e. first
match, consumer C'; will be matched with Py, C3 with Cj,
Cy with P4 but Cy will not be matched with P but it can be
matched with P, or P53 or Py. When adopting min differ-
ence, C3 will be matched with Py; Cy with P3, Cq with P;
and C; will be matched with P;. When adopting the min
distance the euclidian distance between each pair (Py, C),
(P1, C9) ... (Pyg, Cy) is calculated and C; is matched to cor-
responding P; where the distance between (P;, C;) is min-
imal. To calculate the distance between two nodes, their IP
addresses are considered as measuring factor. We assume

nodes that belong to same network or near networks dif-
fers little in their IP address for example 192.35.67.22 is
near to 192.35.67.30 than 194.35.67.22.

B. Evaluation Criteria:

To evaluate the centralized matchmaking mechanism, in
terms of different matchmaking algorithms, various eval-
uation criteria such as maximum number of matches, task
usage efficiency, resource usage efficiency and matching
time are considered. For each of the matching functions
following statistics are computed.

o Resource usage Efficiency : Resource usage efficiency
can be defined as the percentage of available resources that
are used by the allocated tasks. It can be calculated as the
ratio of matches occurred to the total number of producers
in the system.

« Task Execution Efficiency : Task execution efficiency
is the percentage of tasks that could be allocated to avail-
able resources. It can be calculated as the ratio of matches
occurred to the total number of consumer in the system.

o Matching Time: Matchmaking time is the time for a
consumer to find a appropriate producer. The relative
matching time is the time when matchmaker receives the
requests submission till it finds appropriate match.

III. EXPERIMENTATION:

In this section of the paper, we discuss about the experi-
mentation carried out for evaluating central matchmaking.
At first, we perform each experiment: first match and min
difference and min distance and then compare these func-
tions based on the evaluation criteria defined above. The
following part of the paper elaborate this experimentation
in details.

At first, we evaluate the first match function in terms of
matched number, matching time, task and resource uti-
lization for different network conditions. We summarize
the experimental data in table II. As it can be seen from
table II, matching number is proportional with the num-
ber of agents - where there are less number of agents
match found it also less. However, after certain popula-
tion size, experiment couldn’t be performed due to lim-
itation in network bandwidth and limitation in hardware
configuration for simulation. As far as resource and task
execution are concerned, they are tightly related and any
influence on task usage is immediately reflected to re-
source usage. The resource utilization and task execu-
tion are also affected by the timing constraints as pro-
ducers/consumers start dying if they don’t find matches
and matchmaking constraints matchmaking can occur only

(C(cpu,Mem,BW,Disk) = P(cPUMem,BW,Disk))-

We also evaluate the min difference function in terms of
matched number, matching time, task and resource utiliza-
tion for different network conditions. This approach of
matchmaking attempts to minimize the unused resources
as it considers the minimum difference between them. We
summarize the experimental data in table III. The first
thing to notice about this matching function is the match-
making constraints that it poses. As it can be seen from fig
2 the consumer matching time for min difference is larger
than in first match. Also, for this function, for number of
matches, task and resource usage, the similar observation
can be made as in case of first match .

The last matching function that was used is the minimal
distance between two agents. The minimal distance com-
putes the euclidian distance between each consumer and a
given set of producers which is more expensive in terms of
computing cycles than min difference and first match. This
function has also been evaluated based on the same crite-
ria of matched number, matching time and task/resource
usage. The experimental data are summarized in table the
table IV. For resource utilization and task execution, the
similar observation can be made as in cases of first match
and min difference. Similar phenomenon also applies for
matched number and matching time as well.

A. Comparing three different Matchmaking Functions:

In this part of the paper, we compare three different types
of matchmaking function based on the same evaluation cri-
teria: number of matches, matching time, task execution
and resource utilization.

A.1 Number of Matches

The graph 1 shows the number of matches for three dif-
ferent matchmaking functions. The number of matches
occur in case of first match doesn’t significantly differ
than other two match functions. However, this should
hold theoretically, because of the structure of first match
function. First match is simple and has less constraints
while it finds matches. Min difference and min dis-
tance are little more complex. In min difference we
consider the efficient resource utilization and min we
also consider the minimal distance between the match-
ing pair. The reason for this fluctuation in the graph
1 is the direct consequences of matchmaking constraints
(Ctcpu,Mem,BW,Disk) = P(cPUMem,BW,Disk)) imposed
by task and resources in our matchmaking and TTL limi-
tation imposed by each producer and consumer.

A.2 Matching Time

As it can be seen from graph 2, the consumer matching
time for first match is relatively low as compare to others

441

Producers P1 P2 P3 P4
Pcpu,mem,Bw,Disk) | 200,40,400,50 | 10,40,40,50 | 200,40,400,50 | 400,40,400,50
Consumers Cl C2 C3 C4
C(C PUMem,BW,Disk) | 100,20,400,30 | 200,40,400,50 10,40,0,50 200,40,400,50

TABLE I
MATCHMAKING ILLUSTRATION

First Match: (Producer ~ Consumer)

Number Time Usage
Pop.size | Con | Pro | Match | Pro | Con | Task | Res | Match
50 19 31 19 184 16 | 100% | 61% | 100%

50-1050 239 | 256 231 5354 | 1.83 | 9% | 85% | 98%
1050-2050 | 697 | 803 600 11462 | 0.03 | 85% | 73% | 86%
2050-3050 | 1132 | 1368 616 12895 | 036 | 55% | 45% | 54%
3050-4050 | 1589 | 1911 844 9705 | 1.13 | 53% | 44% | 53%
4050-5050 | 2002 | 2498 | 1240 | 12930 | 0.03 | 62% | 50% | 62%
5050-6050 | 2521 | 2979 | 2140 | 12510 | 0.21 | 88% | 73% | 85%
6050-7050 | 3176 | 3325 | 1359 | 12939 | 0.03 | 42% | 41% | 43%
7050-8050 | 3587 | 3913 | 2967 6910 | 1037 | 83% | 75% | 83%
8050-9050 | 3933 | 4567 | 1982 7240 | 366 | 50% | 43% | 50%
9050-6050 | 4526 | 4974 | 3163 7062 68 % | 64% | 70%

TABLE I1
MATCHING TIME, RESOURCE/TASK USAGE FOR TASK INTENSIVE NETWORK (Producer ~ Consumer)

MinDif ference : (producer ~ consumer)
Number Time Usage
Pop.size | Con | Pro | Match | Con | Pro | Task | Res | Match
50-1050 233 | 267 233 4041 | 174 | 98% | 87% | 100%
1050-2050 | 699 | 802 408 5310 | 0.69 | 60% | 52% | 87%
2050-3050 | 1154 | 1346 541 6273 | 072 | 47% | 41% | 88%
3050-4050 | 1641 | 1860 | 789 5570 | 0.97 | 48% | 42% | 88%
4050-5050 | 2083 | 2417 | 1051 | 5019 | 154 | 51% | 44% | 86%
5050-6050 | 2504 | 2996 | 1389 | 6518 | 5.69 | 56% | 47% | 86%
6050-7050 | 2970 | 3530 | 1550 | 5035 | 34.5 | 53% | 44% | 83%
7050-8050 | 3483 | 4018 | 1856 | 4713 | 126 | 54% | 46% | 85%
8050-9050 | 4017 | 4484 | 1942 | 6576 | 1.11 | 49% | 43% | 85%
9050-6050 | 4250 | 5250 | 2369 | 2975 | 2761 | 56% | 45% | 80%

TABLE III
MIN DIFFERENCE: MATCHING TIME, TASK/RESOURCE USAGE IN BALANCED NETWORK

442

MinDistance : (producer = consumer)
Number Time Usage

Pop.size | Con | Pro | Match | Con | Pro | Task | Res | Match

50-1050 | 259 | 291 235 2692 | 19 | 94% | 83% | 91%
1050-2050 | 700 | 850 428 | 5394 | 1 63% | 51% | 61%
2050-3050 | 1168 | 1382 | 611 4324 | 1 53% | 44% | 52%
3050-4050 | 1648 | 1902 88 5717 | 10 | 54% | 48% 5%
4050-5050 | 2082 | 2468 | 1119 | 4165 | 73 | 54% | 46% | 54%
5050-6050 | 2552 | 2998 | 1195 | 5388 | 3 47% | 40% | 47%
6050-7050 | 3046 | 3504 | 1439 | 5407 | 2 48% | 41% | 47%
7050-8050 | 3451 | 4099 | 1820 | 3739 | 38 | 54% | 45% | 54%
8050-9050 | 4114 | 4436 | 1987 | 5707 | 1 49% | 45% | 48%
9050-6050 | 4485 | 4916 | 2085 | 4604 | 36 | 47% | 42% | 46%

TABLE IV

MIN DISTANCE: MATCHING TIME, TASK/RESOURCE USAGE IN BALANCED NETWORK

— FirstMatch
—— Min Dift
Min d&

G000

Humber of katch
&
2
E]

[
=
=
=

W

8a50

Yl
Mﬂw\gmﬂj’;ﬁw'\\ﬁ I j_\\/\j

population 1480

2850 4450 5850 7450

Fig. 1. Matched Number: First Match, Min Difference and Min
Distance

two i.e. min difference and min distance. This is direct
consequence of the structure of Min distance function. In
the first match, matchmaker finds the first producer that
can satisfy the resource requirement of consumer, while
min difference tries to optimize the resource usage and min
distance tries to reduce the communication overhead. So
these algorithms take more time to find match than first
match.

However, it can be seen from figure 3, the producer
matching time in this case is quite unstable and fluctu-
ate very much with population. This is the consequences
of functional constraints that is imposed on the match-
making functions i.e. matchmaking can only occur if
(Ccru,Mem,Bw,Disk) = P(cPUMem,BW,Disk)) and TTL
limitation.

—Firsthatch
——Min Diffzrence
Min Distanoz

=

Consumer Matching Time

~ W

a4a0 5550 430

Fig. 2. Consumer Matching Time: First Match, Min Difference
and Min Distance

——First Match
——Mhfin Difference
hin Distance

9000

Ime

5000

Producer hatching T

0}

Agents

1830 a0 5550 G450

Fig. 3. Producer Matching Time: First Match, Min Difference
and Min Distance

—FirstMateh
R —Min Dt
: Min D &

100% -

S0%

B0%

Task Wilizaion

40%

20%

Fig. 4. Task Utilization: First Match, Min Difference and Min
Distance

e
a0% \fﬁl Min Dis
80% U_f
0% 1
E B0% J | a |
T f
¢ \h\ /} J\
§ 40% W, l{ ,/\

0%

20%

10%

Agents 1450

2330 4430 3950 7450 #3950

Fig. 5. Resource Usage: First Match, Min Difference and Min
Distance

A.3 Task and Resource Utilization

Also, there is not much difference in resource utilization
and task utilization efficiency in terms of first match as
compare to min difference and min distance. Theoreti-
cally, resource utilization in min difference should be effi-
cient compare to other two algorithms in terms of resource
and task usage but since there are other constrains like TTL
constraints and matchmaking constraints it is hard to claim
anything obvious like that. The figures 4 and 5 compare
the task execution and resource utilization for 3 different
algorithms.

IV. CONCLUSION AND FUTURE WORK:

In this paper, we studied the performance of centralized
matchmaking mechanism in a single cluster of system
using three matchmaking functions. Centralized match-
making assumes a central matchmaker receiving both re-
source offers from producer and resource requests from

consumer and matches them based on certain criteria. We
simulated the centralized matchmaking experimentation
for three different kinds of matchmaking algorithms: first
match, min difference and min distance.

In a realistic setting, the matchmaking would occur in
a asynchronous way where different offers and bids are
treated as they are submitted. These offers and bids have a
limited lifetime. In those cases where there are resources
and timing constraints, simple matchmaking schemes like
“first match’ perform more efficiently than other match-
making functions as it can find the matches very quickly.
With the increase in population size, the matching time
also increases but the population size didn’t significantly
influence the matchmaking functions in a negative way.
Future research will address how a more flexible and
adaptable resource allocation can be implemented.

REFERENCES

[1] K. Bertels, N. Panchanathan, S. Vassiliadis, and B Pour Ebrahimi.
Centralized matchmaking for minimal agents. In Proceedings of
the Conference on Parallel and Distributed Computer Systems,
page 9, November 2004.

[2] R. Buyya, D. Abramson, and J. Giddy. Economy driven resource
management architecture for computational power grids, 2000.

[3] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. Nudd.
Arms: an agent-based resource management system for grid com-
puting. Scientific Programming (Special Issue on Grid Comput-
ing), 10(2):135-48, 2002.

[4] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the
Internet. In Proc IJCAI’97, pages 578-583, 1997.

[5] Y. Yemini D.F. Ferguson, J. Sairamesh and C. Nikolaou. Eco-
nomic models for allocating resources in computer systems. In
Scott H. Clearwater, editor, Market-Based Control, pages 156—
183. World Scientific Publishing Co. Pte. Ltd., 1996.

[6] Shen W.and Li Y.and Ghenniwa H. and Wang C. Adaptive ne-
gotiation for agent-based grid computing. In Proceedings of AA-
MAS2002 Workshop on Agentcities: Challenges in Open Agent
Environments, pages 32-36, Bologna, Italy, July 2002.

[7] Vasant Honavar. Tutorial on intelligent agents and multiagents
systems.

[8] Somesh Jha, Prasad Chalasani, Onn Shehory, and Katia P. Sycara.
A formal treatment of distributed matchmaking. In Agents, pages
457-458, 1998.

[9] K. Kant, R. Iyer, and V.Tewari. On the potential of peer-to-peer
computing:classification and evaluation. In Proceedings. of CC-
Grid, Berlin, Germany, 2002.

[10] E. Ogston and S. Vassiliadis. A peer-to-peer agent auction. In
Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems Part I, pages 151-159,
July 2002.

[11] Xiaotong Shen and Jianming Ye. Adaptive model selection.
Journal of the American Statistical Association, 97(457):210-7?,
2002.

[12] K Sigdel, K. Bertels, B Pourebrahimi, S. Vassiliadis, and L.S
Shuai. A framework for adaptive matchmaking in distributed
computing. In proceeding of GRID Workshop Cracow-04, Jan-
uary 2005.

[13] Katia Sycara. Multi agent system. Al Magazine 19(2), 1998.

