Graph Covering for generating instruction specific
application instructions: an overview of some existing
methods

Carlo Galuzzi

Koen Bertels

Stamatis Vassiliadis

Computer Engineering, EEMCS
Delft University of Technology

{carlo, k.l.m.bertels, s.vassiliadis} @ewi.tudelft.nl

ABSTRACT

The execution time of an application can be consid-
erably reduced by implementing parts of the applica-
tion in hardware instead of software. Graph Theory
can be used for selecting which parts of the application
are suitable for an hardware implementation. To this
purpose, the application is represented as a directed
graph, called a subject graph, and the selection prob-
lem can then be described as the search and selection
of subgraphs having particular properties.

The subgraph identification problem requires the
evaluation of two separate issues: a coverage problem
of the subject graph and a selection problem of the
subgraphs. The complexity of the problems involved
has led researchers to provide both exact solutions
as well as heuristic solutions representing a trade-off
between the goodness of the solution provided and
the resources used to obtain it. Although a heuristic
solution is usually used to limit the search space, how
much is left uncovered is what influences the goodness
of the solution. This depends on the parameters that
are taken in consideration to evaluate the solution as
area, delay, etc.

In this paper we provide an overview of the main is-
sues related to the coverage of the search space point-
ing out the goodness of the solutions provided as well
as the main features of the method applied to obtain
it.

KEYWORDS

Covering problem, Subgraph identification, Graph
Theory.

I. INTRODUCTION

Our life is more and more surrounded by electronic
devices that everyday become smaller and increase
the number of tasks they can perform. Although in
the past years ASICs and GPPs were the main ways

adopted to implement the functionalities of these de-
vices, over the last years their use has seen a progres-
sive shift toward the use of reconfigurable architec-
tures ([27], [29], [20]) which are gaining ground day
by day and are progressively replacing them in many
cases. These architectures have the property to be re-
configurable totally or partially and this allows them
to be used not only for the original task but for new
tasks as well, avoiding the design-process of a com-
plete new device and reducing costs.

An example of reconfigurable architecture can be
realized combining a GPP with a reconfigurable part
as an FPGA ([1]). When a program is executed on
this architecture, a certain number of instructions are
hardwired whereas the rest of the operations are im-
plemented by software. The reconfigurable part can
then be used to hardwire some instructions of those
implemented by software. It doesn’t exist basic pro-
cedure to share out the instructions among hardware
and software; what exists it’s a huge number of differ-
ent types of approaches guided by different prospects
and constraints. Although the final goals are often dif-
ferent and constitute a huge variety, all the approaches
follow a common guideline. Goal of this paper is to
present this guideline showing how this selection can
be done and which are the metrics involved in this
choice.

The shift of one instruction from software to hard-
ware can reduce some metrics like the execution time,
and then a right balance between hardware and soft-
ware can improve and maximize performance. This
balance, often addressed as hardware/software parti-
tioning problem or hardware/software codesign prob-
lem ([6], [25]), it is an interesting problem whose so-
lution is frequently branched out into many different
fields ranging from graph theory to selection prob-
lems. The complexity of the problem, how we see N P
([28]), has an influence on the solution which most of



the time is strictly related to the formulation of the
problem in a particular way, with certain conditions,
and then not always suitable for a general method to
adopt to solve the problem.

Goal of this paper is to provide a general view of
the problem which doesn’t focus on too specific cases
or subproblems, includable among general cases, but
favors the view of the problem in its completeness.
Although the problem has been set out as unique it
can be divide in two subproblems: generation and se-
lection. In the following Section LI we present the first
part of the problem: how to identify instructions suit-
able for an hardware implementation whereas in Sec-
tion I1Ilwe analyze the problem of choice of an optimal
subset of instructions together with an overview of the
metrics used as parameters of choice. The paper con-
cludes with Section IV| with some considerations on
future directions.

II. FIRST STEP: GENERATION.

In the previous section we introduced the main idea:
given a program to implement on one architecture,
find inside the code sequences of operations for which
a shift from a software implementation to an hardware
one can improve performance. The process starts with
a high level code, like C, that specifies the application
and manually or automatically parts of the code are
selected to be tailored as new capabilities improving
performance. Although a manual creation of new in-
structions can be supported by the human ingenuity
creating high quality results, performance and time-
to-market requirements have led to the search of an
automatic design flow ([10], [5], [17]). The main steps,
which will be subjects of a subsequently analysis, are
the following:

» the choice of an helpful representation of the
problem:;

» the coverage of the design space;

» the generation of a set P of possible new
instructions;

» the selection of an optimal subset Pp,; C P.

It’s helpful to note that although bigger is P, harder
is the selection of Pp,; € P, a big size of P in terms
of possible new instructions can be useful when the
constraints are changed, shrunk or relaxed allowing
different choices of the subset Pp,; satisfying the new
constraints, then benefitting the reconfigurability of
the system. The first three steps are analyzed in this
section whereas the last one will be the subject of the
next section.

Cycelic
graphs

Acyclic
graphs

Connected
graphs

Disconnected
graphs

Fig. 1
Families of graphs and their intersection

A. The choice of a representation.

Although the problem is independent from its rep-
resentation, the choice of a representation rather than
an another can benefit and simplify the problem. A
helpful way can be a graph representation of the prob-
lem. The code of the application is analyzed and a di-
rected graph, usually called the subject graph, is built:
the nodes represent the operations and the edges rep-
resent data dependencies. The identification of a se-
quence of operations inside the code then translates
into the recognition of a subgraph inside the subject
graph.

The shape of the graph, in its own way, can be
seen as a watershed: the strategy of analysis is usu-
ally shape-dependent and then a method suitable for
a graph with peculiar properties could be not appro-
priate in presence of different ones. This assertion
find evidence for example in the huge number of ex-
isting methods for tree-shaped graphs not extendable
to more general graphs including, for example, cycles
and loops.

Once the program is represented with a graph, its
nodes have to be analyzed. The properties of the
graph have an important influence on the type of
study of the problem. These types can be subdivided
in four families: connected, disconnected, cyclic and
acyclic graphs. Clearly these families have intersec-
tions that are not empty (Fig. 1) and usually con-
nected and acyclic graphs represent the starting point.
The next step is then the gradual inclusion in the
study of disconnected graphs and of cycles and loops.
The study of the problem in presence of disconnected
graphs allows to exploit the parallelism provided con-



sidering each connected component at the same time
([5], [7]) but in many cases the authors have addressed
only the study of connected graphs ([4], [6], [11], [12],
[26]) reducing the study of a disconnected one to the
study of the single connected components.

Although the problem to manage a disconnected
graph, in a certain way, can be skipped with the
study of the single components, cyclic graphs repre-
sent a real obstruction. The management of cycles
and loops within a graph is an important and no easy
task addressed only by very few authors who has often
implemented the entire cycles or loops as custom in-
structions. The majority has focused only on Directed
Acyclic Graph also known as DAG ([21], [24], [15]). A
DAG representation of the problem allows to define
a topological order (or a reverse topological order) of
the nodes ([28]) whereas a different graph joins the
trouble to define a one-to-one order of the nodes to
the complexity of the problem.

It’s worthy of note to observe that a graph rep-
resentation helps not only because it’s an easy way
to visualize the problem but also because there exist
many results in graph theory which can find a useful
application to this problem.

B. The coverage of the design space.

Once the graph is sorted in a one-to-one way, the
analysis of the nodes has to start. During the analy-
sis we identify subgraphs which in the general case
are Multiple Input Multiple Output graphs (MIMOs)
([6], [5], [4]), family of graphs that clearly contains
the subfamily of Multiple Input Single Output graphs
(MISOs) ([3]). We identify these two types of graphs
for a specific reason: the sequence of instructions to
move from hardware to software can be seen as a mul-
tivalued function: given n > 1 inputs the function
produces m > 1 outputs:

(Outy, ..., Outy,) = f(In, ..., Iny,) (1)

which can be written in a short way as Qut = f(In)
that becomes Out = f(In) in the case of MISOs (m =
1). Up till now the methods favor MIMOs with a
limited number of inputs and outputs ([6], [4], [19],
[29], [12]) and MISOs ([3], [12] with limitations on the
number of inputs).

The subgraph search aims at the identification of
graphs with peculiar properties to satisfy; this can be
done in two ways: knowing in advance operations suit-
able for an hardware shift (because they fill properly

an available area, or minimize the delay, or are low
power consumption, etc.) or not and then the design
exploration has to identify these operations following
particular criteria. A set of program statements (or
nodes in the context of graphs) that is a candidate for
implementation as a custom instruction, i.e. the crite-
ria are satisfied, it is called template. In the first case
then we speak about template identification ([9], [19])
and in the second one about template generation ([3],
[27], [6]). An example of template can be for example
a sequence of operations as an addition followed by a
multiplication or something more complicated involv-
ing many different instructions.

The use or not of templates makes a big difference.
While in the first case the design exploration is re-
duced to a problem of graph isomorphism ([§], [16]),
the second one joins to that the problem to gener-
ate templates. The generation of templates, as the
problem of selection, is based on the use of a function
which in this context is called guide function whereas
for in the context of selection it is called cost function.
These two functions are strictly related and both are
used to help the search; this means that a solution of
the problem can benefit from a right division of the
constraints that the solution has to satisfy, between
the parameters taken into account by the two func-
tions. Example of parameters for the guide functions
can be the following:

o number of inputs/outputs;
o number of operations;
o properties of the graph.

The maximum number of inputs and outputs are
introduced to ensure the feasibility of the instruc-
tion/subgraph identified when there are physical limi-
tations on the number of inputs and/or outputs of the
new operations to generate; a limitation on the num-
ber of operations on the contrary can be related to
the available area for the new complex instructions.
About the properties of the graph, these can range
from the connectedness of the subgraph to the iden-
tification of more specific properties as the convexity
([5], [30]). We note that whereas the connectedness
is a property dividing the graphs in two disjoint sets:
connected or disconnected graphs, convexity is a prop-
erties inherent only to connected graphs. In few words
a graph is convex if there exists no path from a node of
the graph to an other node which involves a node not
belonging to the graph. This property ensures a feasi-
ble scheduling of the new instructions which respects
the dependencies and whereas a MIMO can satisfy or



not this property, this is certainly satisfied by a MISO.

During the template generation, the guide function
takes the parameters and the nodes of the graph as
input and generate as output a set of functions suit-
able for a further analysis mostly part of the selection
step which will yield an optimal subset in terms of
performance. In the case of a graph with topological
order of the nodes, their analysis can be done with a
depth-first search or a breadth-first search for example

([28]).

The coverage of the design space, i.e. the analysis
of the nodes to generate templates or to identify iso-
morphic templates within the graph, can be pursued
exactly or heuristically depending on the type of solu-
tion is searched. As for a set of n elements there exist
2" subsets ranging from the empty set () to the entire
set, for a graph with n nodes there exist 2" subgraphs.
The complexity of an exhaustive search of all nodes
becomes in this way exponential and an exponential
complexity of the problem turns into an exponential
time to solve it.

The exponential complexity of the problems has led
the authors to provide solutions which most of the
time represent tradeoff between the goodness of the
solution and the resources used to provide that. These
solutions can then be provided with a complete or par-
tial analysis of the design space. In the first case we
speak about exact solutions and in the second one
about heuristic solutions. While in the first case all
the design space is analyzed, a heuristic solution is
provided with a rule of thumb, simplification or edu-
cated guess that reduces or limits the search for solu-
tions. The main problem with heuristic is that they
don’t guarantee optimal, or even feasible, solutions
and are often used with no theoretical guarantee.

One way to solve exactly covering problem is by
using a branch-and-bound approach ([13]). This ap-
proach starts with a search space potentially expo-
nential in size, and reduce step by step the search
space. The essence of this approach is that in the to-
tal enumeration, at any node, if it’s possible to show
that the optimal solution cannot occur in any of its
descendants then there is no need to consider those
descendant nodes. Then the search can be pruned at
that node and more is pruned in the search space more
is the possibility to reduce the problem to a computa-
tionally manageable size. Other covering approaches
use dynamic programming which is a way of decom-
posing certain problems hard to solve into equivalent
formats that are more amenable to solution. Basi-

cally a dynamic programming approach solves a multi-
variable problem by solving a series of single variable
problems. A drawback of dynamic programming is
that it can only operate on tree-shaped subject graph
and patterns, excluding directed graph with cycles.
Thus the non-tree-shaped graph has to be decom-
posed into sets of disjoint trees. Another approach
[4], is based on dynamic programming, although with-
out the requirement that the subject graph and the
patterns are trees.

Once the exact or the heuristic analysis of the de-
sign space is finished, the result of this analysis is
represented by a set of subgraphs representing possi-
ble complex instructions to implement in hardware.
Belong to this set all the subgraphs satisfying the pa-
rameters of the guide function; these include also iso-
morphic graphs which has to be identified to reduce
the size of the set. The cutback of this set to a min-
imal set of elements is important to reduce the com-
plexity of the selection analysis as well: less elements
to process and then to be selected means less time
needed to find a solution. The isomorphism problem
which arises during the reduction of the set, is a well
known NN P-complete problem, then the size of the set
is an important parameter to take into account ([16]).
Once this set is reduced to a minimal set P the selec-
tion is ready to start.

III. STEP 2: SELECTION

Goal of this step is: given a minimal set P select a
subset Pop,; € P which maximizes performance. More
formally the problem can be set out as follow: given a
set A of n objects a1, ...,a, and m subsets Ay, ..., A,
of objects of A with a cost associated to each subset
A;, select a family of subsets A; with minimum cost,
in such a way that it is possible to cover the elements
ai,...,a,. Moreover the subsets A; selected has to
be pairwise disjoint, i.e. each element has to belong
to exactly one subset selected yielding in this way a
partition of the elements ay, ..., a, ([13], [14])

This selection is done with the aid of the cost func-
tion. There are many metrics that can be considered
by the cost function to select the elements of Poy; the
mains are the following [18]:

e execution time;

e cycle count;

o static code size;

o dynamic code size;

o compile time;

o hardware design and manufacturing cost;



o delay;
o area;
o power consumption;

The execution time and the cycle count are usually
considered alternatively: not in all cases is it possible
to obtain an accurate estimate of the system’s cycle
time and then the cycle count is taken in place of it.
The static code size is a parameter introduced when
the memory is limited for example by power or volume
constraints. Although this is not always a parameter
taken into account, a reduction in code size allows a
program to fit in a limited amount of memory. On
the other side dynamic code size is a parameter which
measures the number of instructions fetched during
the execution of the program and then if reduced can
improve the execution speed. The compile time is pro-
portional to the complexity of the instruction set: the
harder the compilation, the greater the compilation
time.

Together with these parameters, we can find the
hardware design and manufacturing cost: the gen-
eration of particular new instructions has to include
the non-recurring engineering costs as the one-time
charge for photomask development, test, prototype
tooling, associated engineering costs, etc. Lastly but
not less important we find area and power consump-
tion. These two metrics with difficulty limit the choice
of a single instruction and then they are used as global
parameters of choice: given a certain area and/or
power consumption limit, choose a subset of P which
fill properly this area and/or consume less that a cer-
tain amount of power. The generation of Fp,; can
take some or all these metrics into account although
more metrics, the harder is the process to provide a
solution in terms of complexity.

Besides this type of metrics, the selection can be
done following different policies: the element of Poy
can be selected attempting to minimize the number of
distinct templates that are used ([9]), or the number
of instances of each template, or the number of nodes
left uncovered in the graph, or in such a way that the
longest path through the graph should have minimal
delay, ete. ([23], [24]).

Finally the choice of the elements of Fp,: besides
the metrics previously introduced has to manage also
issues as template overlapping (e.g. {1,2,4} and
{1,3,5} overlap at node 2 and then only one of them
is enumerated) and node duplication, sometimes used
to avoid template overlapping. Although the enumer-
ation of overlapped templates can allows to produce

a better result, especially under tight area constraint,
this is not always considered ([6], [26]).

IV. CONCLUSIONS

The proposed paper has presented an overview of
graph covering for generating instruction specific ap-
plication instructions. This study inevitably has to
address fundamental issues such as the graph isomor-
phism problem or the subset selection. Our aim has
been to provide an overview of all relevant aspects
of the problem giving a general view of the problem
by aggregating the various approaches that only deal
with different parts of the problem.

Future research will take the MISO-based analysis
as a starting point to develop and propose powerful
instruction set generation algorithms.

REFERENCES

[1] FPGA - Introduction to FPGA processors. hitp://www-
li5.ti.uni-mannheim.de/fpga/?group /intro.

[2] GREW A Scalable Frequent Subgraph Discovery Algo-
rithm. M. kuramochi and g. karypis. Technical Report TR
04-024, Department of Computer Science and Engineering,
University of Minnesota, June 2004.

[3] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami. A DAG-
based design approach for reconfigurable VLIW processors.
In Proceedings of the Design, Automation and Test in Eu-
rope (DATE) Conference and Ezhibition, pages 778779,
Munich, Germany, 9-12 Mar. 1999.

[4] M. Arnold and H. Corporaal. Design domain specific
processors. In Proceedings of the 9th International Work-
shop on Hardware/Software CoDesign, pages 778-779,
Apr. 2001.

[5] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-
specific instruction-set extensions under microarchitectural
constraints. In Proceedings of the 40th Design Automa-
tion Conference, pages 256261, Anaheim, California, June
2003.

[6] M. Baleani, F. Gennari, Y. Jiang, Y. Pate, R. K. Brayton,
and A. Sangiovanni-Vincentelli. HW/SW partitioning and
code generation of embedded control application on a re-
configurable architecture platform. In Proceedings of the
10th International Workshop on Hardware/Software Code-
sign, pages 151-156, Estes Park, Colo., May 2002.

[7] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. In-
struction generation and regularity extraction for reconfig-
urable processors. In Proceedings of the 2002 International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 262 — 269, Grenoble, France,
2002.

[8] L. Chen. Graph isomorphism and identification matrices:
Parallel algorithms. In IEEE Transactions on Parallel and
Distributed Systems, volume 7, no. 3, pages 308-319, March
1996.

[9] H. Choi, J. S. Kim, C. W. Yoon, I. C. Park, S. H. Hwang,
and C. M. Kyung. Synthesis of application specific instruc-
tions for embedded DSP software. IEEE Transactions on
Computers, 48(6):603—-614, June 1999.



[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

[19]

[21]

[22]

[23]

[24]

[25]

N. Clark, W. Tang, and S. Mahlke. Automatically generat-
ing custom instruction set extension. In Workshop on Ap-
plication Specific Processors (WASP-1), Istanbul, Turkey,
19 Nov. 2002.

N. Clark, H. Zhong, and S. Mahlke. Processor accelera-
tion through automated instruction set customization. In
Proceedings of the 36th International Symposium on Mi-
croarchitecture, pages 129-140, 3-5 Dec. 2003.

J. Cong, Y. Fan, G. Han, and Z. Zhang. Application spe-
cific instruction generation for configurable processor ar-
chitectures. In Proceeding of the 2004 ACM/SIGDA 12th
International Symposium on Field Programmable Gate Ar-
rays, pages 183-189, Monterey, California, 2004.

0. Coudert and J. C. Madre. New ideas for solving covering
problems. In Proceedings of the 32nd ACM/IEEE Confer-
ence on Design Automation, pages 641-646, San Francisco,
California, June 1995.

Olivier Coudert. On solving covering problems. In Pro-
ceedings of the 33nd ACM/IEEE Conference on Design
Automation, pages 197-202, Las Vegas, Nevada, 3-7 June
1996.

M. Anton Ertl. Optimal code selection in DAGs. Proceed-
ings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 242-249, Jan-
uary 1999.

Scott Fortin. The graph isomorphism problem. Techni-
cal Report TR 96-20, Department of Computing Science,
University of Alberta, Canada, July 1996.

D. Goodwin and D. Petkov. Automatic generation of ap-
plication specific processors. In Proceedings of the 2003
International Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES’03), pages 137—
147, San Jose, California, 30 Oct. - 1 Nov. 2003.

B. K. Holmer. Automatic Design of Computer Instruction
Sets. PhD thesis, University of California, Berkeley, Cali-
fornia, 1993.

R. Kastner, A. Kaplan, S. Ogrenci Memik, and E. Bo-
zorgzadeh. Instruction generation for hybrid reconfigurable
system. ACM Transactions on Design Automation of Em-
bedded Systems (TODAES), 7(4):605-627, Oct. 2002.

B. Kastrup, A. Bink, and J. Hoogerbrugge. ConCISe:
A compile-driven CPLD-based instruction set accelera-
tor. In Proceedings of the 5th IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa Valley,
California, Apr. 1999.

Y. Kukimoto, R. K. Brayton, and P. Sawkar. Delay-
optimal technology mapping by dag covering. In Proceed-
ings of the 35th Annual Conference on Design Automation,
pages 348-351, San Francisco, California, 1998.

M. Kuramochi and G. Karypis. An efficient algorithm for
discovering frequent subgraphs. In IEEE Trasactions on
Knowledge and Data Engineering, volume 16, no. 9, pages
1038-1051, Sept. 2004.

S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruc-
tion selection using binate covering for code size optimiza-
tion. IEEE/ACM International Conference on Computer-
Aided Design, 1995. ICCAD-95. Digest of Technical Pa-
pers, pages 393-399, 5-9 Nov. 1995.

S. Liao, K. Keutzer, S. Tjiang, and S. Devadas. A new
viewpoint on code generation for directed acyclic graphs.
In ACM Transaction on Design Automation of Electronic
Systems, volume 3, no. 1, pages 51-75, Jan. 1998.

Giovanni De Micheli and Rajesh K. Gupta. Hard-

[30]

ware/Software co-design. Readings in hardware/software
co-design, pages 30—-44, 2001.

L. Pozzi, M. Vuleti¢, and P. Ienne. Automatic topology-
based identification of instruction-set extensions for em-
bedded processors. Technical Report CS 01/377, EPFL,
DI-LAP, Lausanne, Dec. 2001.

R. Razdan and M. D. Smith. A high-performance microar-
chitecture with hardware-programmable functional units.
In Proceedings of the 27th Annual International Sympo-
stum on Microarchitecture, pages 172—180, 1994.

Math World. http://mathworld.wolfram.com/.

Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHI-
MAERA: A high-performance architecture with a tightly-
coupled reconfigurable functional unit. In Proceedings of
the 27th Annual International Symposium on Computer
Architecture, pages 225—-235, Vancouver, June 2000.

P. Yu and T. Mitra. Scalable custom instructions identifica-
tion for instruction-set extensible processors. In Proceed-
ings of the 2004 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pages
69-78, 2004.



