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Abstract
This paper investigates the implementation of Periodic
Symmetric Functions (PSF) in single electron tunneling
technology. First, a building block is proposed that
performs a multiple input PSF. The block we propose
can be used for the computation of any function that
is or can be expressed as a PSF, thus it can be utilized
for the implementation of a large number of arithmetic
operations, e.g., parity, addition, multi-operand addi-
tion, as they belong to the class of generalized PSFs.
Subsequently, a PSF based addition scheme is proposed
and it is demonstrated how this adder can be used in
a Single Electron Encoded Logic (SEEL) environment.
Finally, a 3-bit instance of the addition scheme is
presented and verified by means of simulation.
Keywords: single electron tunneling, periodic symme-
tric function.

1. INTRODUCTION

It is generally expected that current semiconductor
technologies, i.e., CMOS, cannot be pushed beyond a
certain limit because of problems arising in the area
of power consumption and scalability. A promising
alternative is Single Electron Tunneling (SET) technol-
ogy [1], which has the potential of performing compu-
tation with lower power consumption than CMOS and
it is scalable to the nanometer region and beyond [2].

Several proposals have been made to implement
computational operations using SET technology and
these implementations are mainly categorized in two
types (see for example [1], [3]). The first type of imple-
mentation represents logic values by voltage (see [3] for
an overview) while the second type of implementation
represents bits by single electrons. Single Electron
Encoded Logic (SEEL) [4] is an examples of the latter.

Thus far most implementations focussed on design-
ing logic gates to perform operations in the digital
domain. SET technology however, possesses properties,
e.g. Coulomb oscillations, that open new avenues for
the implementation of logic and arithmetic functions.
In this line of reasoning we assume in this paper a basic
SET structure, the electron trap, that exhibits a periodic
behavior and use it as a basis for the implementation
of Periodic Symmetric Functions (PSFs). As a large
number of arithmetic operations, including addition and
parity check, can be expressed as PSFs, such a building
block can be used to compute a variety of mathematical
operations.

The remainder of this paper is organized as follows.
Section 2 briefly describes the SET phenomenon and

provides some background on symmetric functions. In
Section 3 a building block is proposed that performs a
multiple input generalized periodic symmetric function.
Using this building block in Section 4 a PSF addition
scheme is proposed and it is described how this scheme
can be adjusted to operate in a SEEL environment.
In Section 5 the design and simulation of a 3-bit
PSF adder is presented. In Section 6 some practical
considerations are discussed and Section 7 concludes
the paper.

2. BACKGROUND AND PRELIMINARIES

SET circuits are based on tunnel junctions which
consist of an ultra-thin insulating layer in a conduct-
ing material. In classical physics no charge transport
is possible through an insulator. However, when the
insulating layer is thin enough the transport or tunnel-
ing of charge can happen in a discrete and accurate
manner, i.e., one electron at a time, if it reduces the
amount of energy in the system. Tunneling through a
junction becomes possible when the junction’s current
voltageVj exceeds the junction’s critical voltageVc =

qe

2(Ce+Cj)
[5], where qe = 1.602 · 10−19C, Cj is the

capacitance of the tunnel junction, andCe is the capac-
itive value of the remainder of the circuit as seen from
the junction. In other words, tunneling can occur if and
only if |Vj | ≥ Vc, in which case the junction is called
unstable. Electron tunneling is stochastic in nature and
as such the delay cannot be analyzed in the traditional
sense. Instead, for each transported electron one can
describe the switching delay astd = −ln(Perror)qeRt

|Vj |−Vc
,

where Rt is the junction’s resistance andPerror is
the chance that the desired charge transport has not
occurred aftertd seconds. In this paper we assumes
Rt = 105Ω andPerror = 10−8.

Note that the implementations discussed in here are
technology independent. SET tunnel junctions can for
example be implemented by classical semiconductor
lithography and by carbon nanotubes [6]. Therefore,
circuit area is evaluated in terms the total number of
circuit elements (capacitors and junctions).

A Boolean function ofn variablesFs, is symmetric
if and only if for any permutationσ of < 1, 2, ..., n >,
Fs(x1, x2, ..., xn) = Fs(xσ(1), xσ(2), ..., xσ(n)). In
other words, a Boolean symmetric function en-
tirely depends on the sum of its input values



Fs(x1, x2, ..., xn) = Fs(
∑n

i=1 xi). A generalized sym-
metric functionFg(X) is a function that depends on the
weighted sum of its inputsX = (

∑n
i=1 xiwi), where

wi is the weight of inputxi.
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Fig. 1. Periodic Symmetric Function.

A periodic symmetric function is a symmetric func-
tion for which there exists a periodT such that
Fs(X) = Fs(X + T ). A PSF is completely defined by
the constantsa, b and T , wherea is the first positive
transition andb is the first negative transition (see
Figure 1).
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Fig. 2. SET electron trap.

A well know SET structure is the electron trap
depicted in Figure 2 which has a periodic transfer
function. The SET electron trap functions as follows. If
the input voltage rises, the output voltage follows due to
capacitance division. At some point, though, the voltage
across the tunnel junction exceeds the critical voltage
and an electron tunnels to the output node. The output
voltage therefore drops. As the input voltage continues
to rise, the output voltage rises again until it reaches
the critical voltage.

The relation between the input voltageVin and the
output voltageVout of the electron trap can be derived
as

Vin =
CΣo

Ci
Vout +

qo

Ci
, (1)

whereCΣo is the sum of all capacitances connected to
nodeo andqo is the net charge in nodeo. The critical
voltage of the tunnel junction is expressed asVc =

qe

2CΣo
. We know from the description of the electron

trap, that the output voltage reaches its maximum when
this voltage reaches the critical voltage of the tunnel
junction. Thus, by substituting the expression of the
critical voltage into Equation (1), the input voltage for
which the output voltage reaches its maximum can be

expressed as:

Vi,peak =
qe

2Ci
+

kqe

Ci
for k = 0, 1, 2, ... (2)

This equation suggests that the period of the electron
trap transfer function is dependent only on the magni-
tude of capacitanceCi, while the capacitance of the
tunnel junction has no influence.

3. MULTIPLE INPUT PSF BUILDING
BLOCK

The SET electron trap can be used as a basis for
a building block that performs a PSF, though two
extensions are needed. First, the number of inputs of
the electron trap needs to be increased. Second, the
triangular transfer function of the electron trap needs
to be converted to a rectangular one.
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Fig. 3. Multiple input SET electron trap.

Figure 3 presents a modified electron trap, which
allows for multiple inputs to drive it in the same
time. The capacitanceCeq represents the equivalent
capacitance of the circuit connected to the output (Vp)
of the electron trap. Every inputVi,x contributes to the
output voltage according to the following expression

Vp,x =
Ci,x

CΣp
Vi,x, (3)

where CΣp =
∑n

x=1 Ci,x + Cj + Ceq is the total
capacitance connected to nodep. The total output
voltage is the sum of the contributions of all inputs
Vp =

∑n
x=0 Vp,x.

From Equation (3) it can be observed that every input
Vi,x is contributing to the voltage on nodep according
to the size of capacitorCi,x. Thus by choosing different
values forCi,x, inputs can be given different weights.
Let Vi,high be the input voltage representing logic ’1’
and letwx be the weight of inputx, the corresponding
capacitance of inputx can be evaluated as:

Ci,x =
qe

2wxVi,high
. (4)

To obtain a rectangular shape transfer function we
connect to the output of the electron trap a static
inverting buffer [4], which then acts as a literal gate.
The resulting topology, called the multiple inputPSF
block is depicted in Figure 4.

The reader should notice that in the multiple input
PSF block, one of the inputs of the electron trap is
connected to the supply voltage through the capacitor
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Fig. 4. The multiple inputPSF implementation.

Cb. This input causes a bias on nodep of the elec-
tron trap, which is added for the following reason.
Assuming an electron trap with only one input and
no bias, the transfer function would be as depicted in
Figure 5(a). From the transfer function it is seen that
the first negative transition is located at exactly an input
voltage corresponding to one unit. If, due to various
effects (cross-talking, impurities, parameter deviation,
etc.) the input voltage is a little less than the voltage
corresponding to one unit, the output of thePSF block
would be logic ’1’ instead of the expected logic ’0’.
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Fig. 5. PSF block transfer function.

The addition of the bias, with a magnitude of half a
unit, causes all transitions to move to the left by a half
unit (see Figure 5(b)). Consequently, the first negative
transition has moved from an input of one unit to a
half unit and in this way the structure is less sensitive
to parameter variation, etc. Note that the input, though
analog, is discrete in nature and only takes values of
whole units. Therefore, adding a bias of a half unit
results in maximal robustness of the implementation.

4. PSF ADDITION SCHEME

Binary addition can be seen as a periodic symmetric
function, more precisely every output bit of the addition
can be described as a generalized periodic symmetric
function of the inputs. When adding two binary num-
bersA = {an−1, ..., a1, a0} andB = {bn−1, ..., b1, b0}
the result is a sumS = {sn, ..., s1, s0}. Each sum bit
si can be calculated with a periodic symmetric function
Fs as:

si = Fs(
i∑

k=0

2i(ai + bi)) (5)

where the period ofFs is T = 2i+1. Thus a PSF
addition scheme can be build by utilizing a multiple
input PSF block for each and every output bit and
connecting to it all the necessary inputs using the
proper weights. For example, the multiple inputPSF
block producing output bits0 has a periodT = 2,
is connected to inputsa0 and b0, which both have a
weight of 1. Using Equation (4) the corresponding input
capacitances of the multiple inputPSF block can be
calculated asCi,a0 = Ci,b0 = 5aF .

The PSF addition scheme, consisting of several par-
allel multiple inputPSF blocks functions correct when
using ideal input voltage sources. However, when using
the PSF addition scheme in a Single Electron Encoded
Logic (SEEL) environment the input is not ideal. The
output signal of a SEEL gate is generated by a static
inverting buffer, which is depicted in Figure 6. The
value logic ’1’ is represented as a net charge of one
electron on nodeo, which results in an output voltage
Vo of approximate16mV , assumingCl = 10aF . When
connecting a gate to the output of the buffer, it is
assumed that its input capacitanceCi is much smaller
than the load capacitor of the buffer, that isCi ¿ Cl.
If that is not the case, the output voltage of the buffer
would decrease and it might even cause the buffer to
malfunction. This situation occurs when connecting a
buffer to one input of the PSF addition scheme, or even
to a singlePSF block.
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Fig. 6. Static inverting buffer.

The solution to this problem is an integral design
of both the output buffers of the SEEL gates and the
first stage of thePSF block, the electron trap. For
this purpose a mathematical model of the connection
between a buffer and an electron trap was derived. The
model proved to be non-linear and can only be solved
using numerical methods. For a complete description
of the model, the reader is referred to [7]. Calculations
proved that it is not possible for a buffer to drive
multiple electron traps in the same time and have
all the latter function correct. Therefore buffers have
to be added in front of each input of everyPSF
block. Moreover, to eliminate feedforward from the
gates driving the inputs of the adder a buffer is also



placed on every input of the PSF adder.

5. EXAMPLE

To demonstrate our proposal a buffered 3-bit PSF
adder was designed and simulated. The parameter val-
ues of the buffers were taken from [8]:C1 = C4 =
0.1aF , C2 = C3 = 0.5aF , Cb1 = Cb2 = 4.25aF ,
Cg1 = Cg2 = 0.5aF . For the buffers at the inputs
of the adder the standard load capacitance was chosen
Cl = 9aF . To denote the input capacitor of the
PSF block generating outputy, connected to input
x, the notationCix,y is used. The load capacitor of
the buffer driving that input is denoted asClx,y. The
values of these capacitances were calculated by a Mat-
lab program using the mathematical model mentioned
before, resulting inCia0,s0 = 4.96aF , Cla0,s0 = 4aF ,
Cia0,s1 = 2.54aF , Cla0,s1 = 6.5aF , etc. [7]

The simulation results of the buffered 3-bit PSF
adder are presented in Figure 7 and indicate that the
buffered PSF adder functions correctly. The total area
required is 286 circuit elements and the delay is16.8ns.
In general, the required area for ann-bit buffered PSF
adder is10n2 + 61n + 13 circuit elements, thus the
area is in the order ofO(n2). However, for smalln
(n < 6) the area cost can be considered as being linear
to the number of inputs. The delay is determined by
the slowestPSF block, which is the one producing the
most significant bit. The delay of the least significant
PSF block is approximate2ns but it doubles for every
next PSF block, and therefore the overall delay is in
the order ofO(n2).
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Fig. 7. Simulation results for the 3-bit PSF adder.

6. PRACTICAL CONSIDERATIONS

In theory any arithmetic operation that can be ex-
pressed as a periodic symmetric function, could be
build using multiple input PSF building block. How-
ever, practical considerations limit the number of inputs
for the such schemes.

The first problem that arises when designing PSF
based circuits with large operands, is the required

accuracy. APSF block with a large weight has a large
number of unit steps in a period of its transfer function
and thus a small step size. Small unit steps results in
small margins for the threshold of the output buffer of
thePSF block and therefore a high accuracy is needed.
Thus the required accuracy is depending on the number
of output bits.

The second problem is the delay of the PSF adder,
which is quadratic to the number of output bits. For
addition this means that the delay is also quadratic to
the number of inputs, since the latter is linear to the
number of output bits. But for multi operand addition
the relation between the number of inputs and outputs is
less than linear, resulting in a delay less than quadratic.
For parity check the delay is even independent on the
number of inputs (O(1)).

To build an adder with large numbers of inputs, based
on the PSF addition scheme, a hierarchical approach
can be used. In this way the input operands are parti-
tioned in k

2 -bit blocks, wherek is the maximum number
of inputs a PSF adder can accommodate. For each block
one PSF adder can be used and these PSF adders can
be cascaded in a ripple-carry scheme or used in more
efficient structures, e.g., carry look-ahead, carry-skip,
etc.

7. CONCLUSION

This paper investigated the implementation of Pe-
riodic Symmetric Functions (PSF) in single electron
tunneling technology. First, a building block was pro-
posed that performs a multiple input PSF. Second, a
PSF based addition scheme was proposed and it was
shown how this adder can be used in a Single Electron
Encoded Logic (SEEL) environment. Finally, a 3-bit
instance of the addition scheme was presented and
verified by means of simulation.
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