
The TM3270 Media-Processor Data Cache

Jan-Willem van de Waerdt*+, Stamatis Vassiliadis+, Jean-Paul van Itegem*
and Hans van Antwerpen*

*Philips Semiconductors

San Jose, CA, USA

+Delft University of Technology Delft,
The Netherlands

Stamatis@dutepp0.et.tudelft.nl

Abstract

This paper describes the (micro-) architecture of the

TM3270 data cache. We present the cache parameters,
such as cache size, associativity, line size and cache
policies. We describe the data cache pipeline
partitioning and the cache memory structure
organization. We introduce “ collapsed” and “ two-
slot” load operations. Furthermore, we introduce a
combined software/hardware based technique for
prefetching of data into the cache. We use an MPEG2
encoder application for a quantative evaluation of
architectural aspects such as data prefetching and
show that MPEG2 encoding at 352*288 resolution
(CIF) at 25 frames per second can be performed in
33.3 MHz.

1. Introduction

The TM3270 media-processor has been designed
having in mind potentially diametrically opposite
constraints, such as programmability, adequate
performance, and embedded processor requirements
for the cost driven consumer market: small size and low
power. The processor provides the performance for
multi-standard video and audio (en/de)-coding
(MPEG2, MPEG4, DivX, H.264/AVC [1]) at standard
resolution. Codecs rely on standardization to ensure
inter-operability, and therefore, the definition of these
codecs will generally not change over time. However,
algorithmic innovations in the area of e.g. motion
estimation may be applied to allow for a more efficient
video encoder implementation. Programmability
provides flexibility, which can be exploited in different
ways. It enables algorithmic changes after design,
multiple algorithms can be mapped to the same
architecture, faster time-to-market, etc.. Designing
processors for the cost-driven consumer market poses
the constraint of getting sufficient performance out of a

minimal silicon area possibly with low power
consumption. As all processor resources, the data cache
is subject to this constraint. Typically, media-
processors have an abundance of computational
resources; in today’s processing technologies adders
and multipliers are cheap. We found, however, that
media-processor performance is heavily dependent on
data cache performance. The important question is no
longer "how many operations can be performed per
processor cycle", but is "how do we deliver data to the
operators in a timely fashion". In other words, like
general-purpose processors, media-processors suffer
from the memory wall problem [2].

In this paper we discuss (micro-) architecture
aspects of the TM3270 data cache. We use an MPEG2
encoder for a quantative evaluation of some of these
aspects. Earlier evaluations, using somewhat simpler

TM3270 MEDIA-PROCESSOR

INSTRUCTION CACHE
(64 KBYTE, 8-WAY SET ASSOCIATIVE)

VLIW INSTRUCTION
DECODER

REGISTER-FILE
(128 32-BIT REGISTERS,

5 1-BIT READ PORTS,
10 32-BIT READ PORTS,
5 32-BIT WRITE PORTS)

B
U

S
 I

N
T

E
R

F
A

C
E

 U
N

IT

DATA
CACHE

OPERAND BYPASS NETWORK

FUNCTIONAL UNIT
TWO-SLOT

FUNCTIONAL UNIT
1 1-BIT GUARD

2 32-BIT SOURCES
1 32-BIT DESTINATION

SLOT1 SLOT5SLOT4SLOT3SLOT2

S
o

C
 B

U
S

 P
R

O
T

O
C

O
L

Figure 1. TM3270 media-processor.

applications, can be found in [3, 4]. A more elaborate
study into the use of new multimedia operations to
optimize MPEG2 encoder performance can be found in
[5]. The remainder of this paper is organized as
follows. In Section 2, we give an overview of the
TM3270 media-processor architecture. In Section 3,
we describe the data cache (micro-) architecture. In
Section 4, we describe our performance evaluation
environment, and the results of performance
measurements. Finally, in Section 5, we present our
conclusions.

2. TM3270 media-processor overview

The TM3270 media-processor (Figure 1) is
backward source code compatible with the TriMedia
architecture. An overview of the TriMedia architecture
can be found in [6, 7]. The processor is used as an
embedded processor in a System-on-a-Chip (SoC). The
processor is implemented as a fully synthesizable
design using a standard-cell logic library and single-
ported SRAMs, allowing for fast process technology
mapping. The processor achieves a frequency of 450
MHz in a 90 nm process technology optimized for low
power consumption, and measures 8.1 mm2. The
TM3270 has a 32-bit VLIW architecture. A VLIW
instruction may contain up to five operations. Each of
these operations may be guarded; i.e. their execution
can be made conditional on the value of a guard
register. SIMD arithmetic and shuffle operations allow
for efficient manipulation and re-organization of 8-,
and 16-bit data types. Floating-point operations comply
with the IEEE-754 standard. Operations are grouped
into functional units, and most functional units have

multiple instantiations. Most functional units are fully
pipelined, allowing for back-to-back issue of
operations. The simple arithmetic functional unit has
five instantiations, so up to five simple arithmetic
operations, e.g. additions, can be issued every cycle.
The TM3270 supports two-slot operations, which are
executed by functional units that are located in two
neighboring issue slots. These functional units provide
twice the register-file bandwidth, when compared to
ordinary functional units. As a result, two-slot
operations may have up to four 32-bit sources, and may
produce up to two 32-bit destinations.

3. Data cache (micro-) architecture

This section describes some (micro-) architecture
aspects of the TM3270 data cache. The TM3270 has a
128 Kbyte data cache, which is organized as a 4-way
set associative cache with 128 byte cache lines. The
cache has a least-recently-used (LRU) replacement
policy, a copy-back write policy, and an allocate-on-
write-miss policy. The allocate-on-write-miss policy
reduces the write miss penalty, and results in less
bandwidth to off-chip memory. A cache byte-validity
structure is used to keep track of the validity of the
individual bytes in the cache. When an allocated cache
line is victimized, only the validated bytes are copied
back to the off-chip memory. The TM3270 and the
SoC memory bus system (on-chip infrastructure and
external SDRAM interface) support the transfer of
cache lines with byte-validity indicators.

3.1. Load and store operations

Table 1. Some of the TM3270 ISA’s load and store operations (big endian description).

Operation Description
Issue
slot(s) Latency

ST32D (displacement)
 src1 src2;

Semantics: Store 32-bit word.

Mem[src2 + displacement] = src1[31:24];
Mem[src2 + displacement + 1] = src1[23:16];
Mem[src2 + displacement + 2] = src1[15:8];
Mem[src2 + displacement + 3] = src1[7:0];

4 or 5 not
applicable

LD32R
 src1 src2 -> dest1;

Semantics: Load 32-bit word.

dest1[31:24] = Mem[src1 + src2];
dest1[23:16] = Mem[src1 + src2 + 1];
dest1[15:8] = Mem[src1 + src2 + 2];
dest1[7:0] = Mem[src1 + src2 + 3];

4 4

TWOSLOT_LD32R
 src3 src4 -> dest1 dest2;

Semantics: Two-slot load operation;
load two 32-bit words.

dest1[31:24] = Mem[src3 + src4];
dest1[23:16] = Mem[src3 + src4 + 1];
dest1[15:8] = Mem[src3 + src4 + 2];
dest1[7:0] = Mem[src3 + src4 + 3];
dest2[31:24] = Mem[src3 + src4 + 4];
dest2[23:16] = Mem[src3 + src4 + 5];
dest2[15:8] = Mem[src3 + src4 + 6];
dest2[7:0] = Mem[src3 + src4 + 7];

4 and 5 4

LD_PACKFRAC8
 src1 src2 -> dest1;

Semantics: Collapsed load operation;
load combined with two-taps filter
function.

data0 = Mem[src1]; data1 = Mem[src1 + 1]; data2 = Mem[src1 + 2];
data3 = Mem[src1 + 3]; data4 = Mem[src1 + 4]; data5 = Mem[src1 + 5];
data6 = Mem[src1 + 6]; data7 = Mem[src1 + 7];
dest1[31:24] = (data0*(16-src2[3:0]) + data1*src2[3:0] + 8) / 16;
dest1[23:16] = (data2*(16-src2[3:0]) + data3*src2[3:0] + 8) / 16;
dest1[15:8] = (data4*(16-src2[3:0]) + data5*src2[3:0] + 8) / 16;
dest1[7:0] = (data6*(16-src2[3:0]) + data7*src2[3:0] + 8) / 16;

5 6

Table 1 defines some of the TM3270 load and store
operations. The cache supports penalty-free (no stall
cycles) non-aligned accesses. A store can be issued in
both slot 4 or 5. A load can only be issued in slot 5.
The two-slot TWOSLOT_LD32R load operation
increases load bandwidth. It is issued in slots 4 and 5
(but the cache access path is restricted to slot 5), and
retrieves two sequential 32-bit words from memory
into two destination registers. The collapsed
LD_PACKFRAC8 load operation is issued in slot 5. It
is a new operation that involves memory collapsing
rather than the ALU collapsing presented in [8]. This
operation retrieves 8 bytes from consecutive memory
addresses, and performs a filter function. It can be used
to calculate image pixels at horizontal fractional
positions. It finds use in e.g. the motion estimation
kernel, which constitutes a significant computational
part of video encoder applications [3, 5].

Figure 2 gives an overview of the data cache
pipeline, partitioned into stages A through F. Normal
load operations have a 4-cycle latency and produce a
result in stage D. Collapsed load operations have a 6-
cycle latency and produce a result in stage F. Stage A
calculates the effective address for both the first and
last byte referenced by an operation (Figure 2: addr_lo
and addr_hi). Stage B performs access arbitration to
the cache tag and data memory structures. Although the
functionality provided by this stage is limited, the delay
in this stage is significant. This is because a large
amount of relatively wide address and data busses need
to be multiplexed and routed to the different SRAMs.
Furthermore, the large SRAM setup time extends their
presence from stage C into stage B. Stage C contains
the cache tag and data memory structures (LRU and
byte validity structures are not depicted). The data
memory structures have a maximum clock-frequency
that is close to the processor clock-frequency. The tag
memory structures are somewhat faster, and allow for
the inclusion of tag comparison logic in stage C. Stage
D contains the data cache way selection logic, and
includes two operation control state machines for issue
slots 4 and 5. Stages E and F contain the filter bank for
collapsed load operations. On the right side of the
pipeline we find the cache write buffer (CWB), which
is used to keep pending stores to the data cache.

The cache memory structures use single ported
SRAMs with bit write functionality, to allow for a
selective update of memory bits as identified by a bit
mask. The available SRAMs have a maximum data
width restriction of 128 bits.

In stage B, store operations request access to the tag
memory structure, but not to the data memory structure,
since stores do not produce a register operand result.

Load operations request access to both the tag and data
memory structures. Since load operations are only
supported in slot 5, the data memory structure access
path is restricted to slot 5. To support two simultaneous
stores, both slot 4 and 5 have a dedicated copy of the
tag memory structure. Note that to support two
simultaneous loads (without stall cycles), duplication of
the memory structure would be required [9]. In stage
D, the control state machines act upon the retrieved
cache control information, such as the cache hit signal.
For loads, the validity of the requested bytes needs to
be checked, somewhat complicating the generation of
the hit signal (when compared to a cache without byte-
validity). In case of a load hit, way selection is
performed on the retrieved cache data. In case of a load
miss, a cache line is retrieved from off-chip memory by
the refill unit. In case of a store hit, data is sent to the
CWB. In case of a store miss, a cache line is allocated.

3.2. SRAM organization

Given the architectural cache parameters (128
Kbyte, 4-way set associativity, and 128 byte line size),
there are multiple possibilities of organizing the cache.
Figure 3 shows the organization of tag information,
cache line byte elements, and byte validity bits.

Issue slots 4 and 5 have a dedicated tag memory
structure, consisting of two exact copies of the cache
tags. The SRAMs are indexed with the set address, and
each entry contains the tag information of the four ways
within the selected set. The tag information consists of
a cache line valid bit, the cache line tag, and a cache
line prefetch bit.

The data memory structure is partitioned into four
separate SRAMs of 128 bits wide. The SRAMs are
indexed with bits 14 downto 4 of a 32-bit address A,
and each entry contains cache line data of the four
ways. The SRAM partitioning is based on bits 3 and 2
of the address; all byte elements that share address bits
3 and 2 reside in the same SRAM. As a result, the 128
bytes of a cache line are located in 8 entries of each
SRAM, and cache line bytes are SRAM interleaved at a
granularity of 4 byte elements.

The byte-validity memory structure has a similar
organization as the data memory structure. It is
partitioned into four separate SRAMs of 64 bits wide.
The 128 byte-validity bits of a cache line are located in
2 entries of each SRAM. Note that a cache line byte
and its corresponding valid bit are located in
corresponding SRAM memories, since both structures
are partitioned based on bits 3 and 2 of the address. As
a result, the access arbitration for the two structures can
be shared.

We illustrate the SRAM organization by means of
an example. Consider a non-aligned 32-bit load
operation from address A=0x000000ff. The set address
is 0x1 for addr_lo, and 0x2 for addr_hi. The set
addresses are used to index the tag SRAMs. A tag
memory structure has two exact copies of the cache
tags to cope with references that cross a cache line
boundary. The tag is 0 for both addr_lo and addr_hi.
Address bits A[3:2] determine which of the data and
validity SRAMs need to be accessed. Data SRAM “11”
is indexed with 0x00f, and data SRAM “00” is indexed
with 0x010. Validity SRAM “11” is indexed with
0x003, and validity SRAM “00” is indexed with 0x004.

Note that the data SRAM organization provides the
simultaneous (single cycle) access of up to 16
sequential bytes of a cache line. This allows for an 8-
cycle cache line update by refill and prefetch units, and

for an 8-cycle cache line extraction by the copy back
unit. By limiting the amount of cycles these units need
for cache line access, the interference with load and
store operations is reduced, preventing data cache stall
cycles. The byte validity organization provides the
simultaneous access of up to 64 byte valid bits of a
cache line (half of the total cache line byte validity
bits), allowing for a 2-cycle cache line allocation.

Our data memory structure is partitioned into four
separate SRAMs. Increasing the amount of SRAMs can
increase the bandwidth to this structure, which would
allow for more efficient cache line update and
extraction. However, layout and routing is complicated
as the amount of SRAMs increases. Furthermore,
doubling the amount of SRAMs (each with half the
capacity) more than doubles the silicon area, due to the

FILTER BANK

SLOT5
TAGS

TAG
SRAM

TAG
SRAM

SLOT4
TAGS

TAG
SRAM

TAG
SRAM

CACHE
DATA

DATA
SRAM

DATA
SRAM

DATA
SRAM

DATA
SRAM

SLOT4
OPERATION CONTROL

STATE MACHINE

SLOT5
OPERATION CONTROL

STATE MACHINE

slot4: dest (latency: 4)

128 128128128

slot5: dest (latency: 6)

slot5: src2[3:0]

slot5: src2slot5: src1slot4: src1 slot4: src2

refill unit

pre-fetch unit

copy back unit

slot5: dest (latency: 4)

addr_lo, addr_hi addr_lo, addr_hi

TAG
COMPARISON (2x)

TAG
COMPARISON (2x)

CACHE WAY SELECTION &
LOAD ALIGNER &
SIGN EXTENSION

ADDRESS
CALCULATION

ADDRESS
CALCULATION

SLOT4 TAG
ACCESS ARBITER

SLOT5 TAG
ACCESS ARBITER

PIPELINE
STAGE

slot4
store
data

CACHE
WRITE

BUFFER

6
PENDING
WRITES

slot5
store
data

ACCESS
ARBITER

ACCESS
ARBITER

ACCESS
ARBITER

ACCESS
ARBITER

A

B

C

D

F

E

Figure 2. TM3270 data cache pipeline.

overhead in terms of address decoders and sense
amplifiers in SRAM design.

3.3. Memory access arbitration

Figure 2 shows that separate memory arbiters
control the access to cache tag and data memory
structures. Furthermore, each of the four SRAMs in the
data memory structure has its dedicated arbiter. This
allows for low granularity access, resulting in high
cache efficiency. For example, a 32-bit store in slot 4, a
32-bit load from address 0x0000009c in slot 5, and two
32-bit CWB updates to addresses 0x00000004 and
0x00000008, can all be granted access to the cache in a
single cycle.

Besides the low granularity access control, cache
efficiency is affected by the arbiter priority setting. We
distinguish five separate entities that may request cache
access: the issued operations, the CWB, the refill unit,
the copy back unit and the prefetch unit. All may
request access to the memory structures at the same
point in time, and only one can be granted access (apart
from simultaneous operation and CWB access to
mutually exclusive data SRAMs).

We decided upon the following priority setting for
the data memory structure arbitration in normal
operation mode (listed in decreasing priority):

• Copy back unit
• Refill unit
• Issued operations
• CWB
• Prefetch unit

The rationale is as follows. A copy back operation
has the highest priority, because a victimized cache line
frees up a cache line location for a cache line that
missed in the cache. A refill operation has the second
highest priority. This operation includes both the
allocation and retrieving of a cache line. Both will stall
the processor till completion. Next in line are the
issued operations. They get the highest priority as long
as no copy back or refill operation is required. Since
stores are kept pending in the CWB, their priority is
lower than that of the issued operations. Lowest
priority is given to the prefetch unit. Prefetches retrieve
cache lines based on anticipated future use, and are
typically not stalling the processor. When the issued
operations are granted access to the data memory
structure, the low granularity access control grants the
CWB access to those SRAMs that are not required by
the issued operations.

The priority setting may be changed in the following
exceptional situations:

• The CWB is full, and required by a store.
• A load has an address conflict with a

pending store.
• The prefetch unit raises its priority.

The first and second situations cause the CWB to
have the highest priority. When the first situation
occurs, a CWB entry needs to be freed up for a new
store operation, so at least one of the pending store data
elements needs to be put in the data memory structure.
Likewise, the second situation can only be resolved by
putting the data of the conflicting pending store in the
data memory structure (data forwarding from the CWB
is not supported). The details of the third situation and

A[3:2] == 11

WAY

0
31 20

2^8-1

A[14:7]

TAG SRAM ORGANIZATION
(4 copies)

WAY

0
31 20

2^11-1

A[14:4]

DATA SRAM ORGANIZATION

A[3:2] == 00

0x00 0x01 0x02 0x03

0x10

......

0x11 0x130x12

... ...

0x70 0x730x720x71

A[3:2] == 01

A[3:2] == 1032-BIT ADDRESS A:
A[31:15]: TAG
A[14:7]: SET ADDRESS
A[6:0]: BYTE ADDRESS

A[3:2] == 11

WAY

0
31 20

2^9-1

A[14:6]

BYTE VALID SRAM ORGANIZATION

A[3:2] == 00

validity of bytes 0x00..0x03, 0x10..0x13, 0x20..0x23, 0x30..0x33

A[3:2] == 01

A[3:2] == 10

validity of bytes 0x40..0x43, 0x50..0x53, 0x60..0x63, 0x70..0x73
valid tagpre-fetch

17 bits1 bit1 bit

32 bits

16 bits

8 2

Figure 3. Data cache SRAM organization.

the effect on the priority setting are described in the
next section.

3.4. Prefetching

Our prefetch approach is based on memory regions,
and allows for a prefetching pattern that reflects the
access pattern of a data structure mapped onto a certain
address space (Figure 4). The TM3270 supports four
separate memory regions. The identification of these
memory regions and the required prefetch pattern is
under software control, and defined by the following
parameters (n = 0, 1, 2, 3):

• PFn_START_ADDR
• PFn_END_ADDR
• PFn_STRIDE

The first two parameters, PFn_START_ADDR and
PFn_END_ADDR, are used to identify a memory
region. The third parameter, PFn_STRIDE, is used to
specify the prefetch pattern for the associated region.
When the processor hardware detects a load from an
address A within a prefetch region x, a prefetch request
for address A+PFx_STRIDE is sent to the prefetch
unit, if the prefetch address is not yet present in the
cache. Note that by setting the prefetch pattern to the
cache line size of 128 bytes, traditional next-sequential
cache line prefetching is implemented. Prefetched data
is put into the cache. The large data cache capacity of

128 Kbyte and the 4 way set associativity make it
unlikely that useful data is victimized. Furthermore, no
dedicated prefetch storage structures, such as stream
buffers or stream caches, are required [10, 11].

The prefetch unit has a buffer for up to six
outstanding prefetch requests. When the prefetch
request buffer is almost continuously at the maximum
of its capacity, the effectiveness of prefetching may
decrease. Therefore, whenever a prefetch request turns
into a demand miss, or when the requests buffer
exceeds a high water mark (more than four entries
occupied) the arbitration priority of the prefetch unit is
raised, resulting in a prefetch operation mode for the
data memory structure:

• Copy back unit
• Refill unit
• Prefetch unit
• Issued operations
• CWB

The relative priority of issued operations and the
prefetch unit has changed, and prefetching is
accelerated.

In our 5-issue slot processor, it is not uncommon for
almost every VLIW instruction to contain a load
operation. Every load operation that accesses a prefetch
memory region may potentially trigger a prefetch
request. As a result, for every load from address A, a
prefetch address A+PFx_STRIDE may have to be

PREFETCH
UNIT

CACHE

OPERATION CONTROL
STATE MACHINE

image height

ACCESS
ARBITER

PIPELINE
STAGE

B

C

D

CALCULATE
A+PFx_STRIDE

CLEAR
PF. BIT

6
PREFETCH
REQUESTS

PREFETCH
REGION DETECTION

FOR ADDRESS A

PFn_START_ADDR
PFn_END_ADDR

(n = 0, 1, 2, 3)

MEMORY

PREFETCH REGION X:
 PFx_START_ADDR
 PFx_END_ADDR
 PFx_STRIDE

image width

IMAGE

ADDRESS A

ADDRESS A+PFx_STRIDE

PFx_START_ADDR

PFx_END_ADDR

p
re

fe
tc

h
ed

 d
at

a
p

re
fe

tc
h

 r
eq

u
es

t

PF. REGION HIT?
PF. REGION x

LOAD OPERATION
& (PF. BIT == 1)

& (PF. FULL == 0)
& (PF. REGION HIT == 1)

A
+P

F
x_

S
T

R
ID

E

yes

PF. BIT PF. FULL

ADDRESS A

high
water mark

Figure 4. Region based prefetching. Left: an architectural perspective, right: a design perspective.

calculated, and the presence of this prefetch address in
the cache needs to be checked. A traditional approach
would require a dedicated tag SRAM to provide the
required bandwidth to check the presence of prefetch
addresses in the cache. We decided upon a different
approach that does not require a dedicated tag SRAM,
and is therefore cheaper to implement. Whenever a
cache line is created in the data cache, either by a refill
or prefetch request, a cache line prefetch bit is set to
‘1’ . This introduces an overhead of a single bit to every
cache line (Figure 3). A prefetch will only be
considered for those load operations that access a
prefetch region and have their prefetch bit equal to ‘1’
(for the load address A). Furthermore, a prefetch
request will only be sent to the prefetch unit, when its
prefetch request buffer is not full; i.e. its six entries are
not all occupied. Only when these conditions are met,
will the prefetch bit of the cache line be set to ‘0’ . Our
approach has the following advantage. Every cache line
will give rise to at most one prefetch request, which
prevents the possibility of multiple duplicate prefetch
requests for the same cache line. Furthermore, the
amount of checks for the presence of prefetch
addresses in the cache is reduced. As a result, the
existing tag SRAMs can be used to check the presence
of prefetch addresses in the cache, without any
significant performance penalty.

Since prefetches are only requested when the
prefetch request buffer is not full, prefetch requests will
not get lost. When they do not make it into the prefetch
unit, the prefetch bit will remain ‘1’ , and a future load
to the same cache line will initiate the same prefetch
request if the buffer has freed up one of its entries. This
try-and-retry mechanism is especially useful for
memory access patterns that initiate a burst of prefetch
requests in a relatively short period of time that would
overflow the prefetch request buffer.

4. Performance evaluation

An MPEG2 encoder is used to evaluate data cache
performance. We started with a plain-vanilla C-
implementation, and invested 6 man weeks to optimize
the implementation for the TM3270. We have not
undertaken any optimizations that would compromise
standard compliancy. Most of the optimizations involve
the selection of custom operations to reduce
computational complexity. We encoded the “Foreman”
sequence at a 352*288 resolution (CIF) and a 4:2:0
format at 25 frames per second. The target bitrate was
set at 500,000 bits per second. The bitrate is controlled
through the macroblock quantization factor. An
MPEG2 “group of pictures” (GOP) includes 12 frames,

and the frame types in display order are given by the
pattern: I-B-B-P-B-B-P-B-B-P-B-B. The motion
estimation for P-frames evaluates 17 motion vector
candidates. For B-frames, motion estimation is
performed with two reference images. To balance the
computational complexity of B-frames with that of P-
frames, B-frames evaluate 10 motion vector candidates
per reference frame.

For performance evaluation, a cycle-accurate C-
model was automatically generated from the
processor’s Verilog HDL description. The 450 MHz
processor (Figure 1) is attached through its bus
interface unit to a 200 MHz 32-bit DDR SDRAM off-
chip memory. We measured the impact of prefetching
and the support of two stores per VLIW instruction on
processor performance. Table 2 gives the measurement
results for I-, P-, and B-frames. The average column is
calculated based on the frame type frequencies as
defined by the GOP pattern. The support of two, rather
than one, store operations per VLIW instruction
improves performance by 1.43% (based on the average
cycle counts for scenarios A and B). The additional
area for duplicating the tag memory structures is 0.142
mm2 and additional power consumption is negligible.
With support for two store operations and prefetching
turned on, the average frame cycle budget of 1,333,330
cycles translates into a 33.3 MHz load for encoding a
CIF sequence at 25 frames per second. At a processor
frequency of 450 MHz, this leaves plenty of available
processor cycles for other functionality.

The performance impact of prefetching is dependent
on off-chip memory latency (Figure 5). Off-chip
memory latency was artificially increased, by adding
delay cycles to the memory path between the
processor’s bus interface unit and the off-chip memory
controller. Note that the additional delay cycles are in
the off-chip memory clock domain (200 MHz). As the

Table 2.
VLIW and cycle counts for I-, P-, and B-frames,

0 additional memory delay cycles.

 I-frame P-frame B-frame Average

Scenario A: 1 store per VLIW instruction, prefetching on
VLIW instr. 1203043 1277629 1092035 1147684
Stall cycles 102488 187011 224582 205015

Cycles 1305531 1464640 1316617 1352699
Scenario B: 2 stores per VLIW instruction, prefetching on

VLIW instr. 1187447 1255290 1065326 1122994
Stall cycles 91528 198640 229574 210336

Cycles 1278975 1453930 1294900 1333330
Scenario C: 2 stores per VLIW instruction, prefetching off

VLIW instr. 1187437 1255280 1065315 1122983
Stall cycles 130120 219185 260061 239014

Cycles 1317557 1474465 1325376 1361997

latency increases the absolute performance difference
between scenarios B and C grows, which illustrates the
ability of prefetching to hide memory latency. For 100
additional delay cycles, prefetching improves
performance by 20%. The steepness of the performance
curves reflects the dependency on memory latency.

5. Conclusions

We have presented the (micro-) architecture of the
TM3270 data cache. The discussion of the memory
structures and pipeline shows that apparent “design
details” such as SRAM organization and cache
arbitration impact cache architecture and performance.
E.g. SRAM organization influences the ability to
simultaneously support a high cache associativity (4-
way), fast cache line update (8 cycles for a 128-byte
line), and penalty-free non-aligned access.
Furthermore, counter-intuitive architectural aspects
(from a performance perspective), such as the support
for two stores, but only a single load per VLIW
instruction, are explained by a design aspect such as
cost.

The support of two store operations and data
prefetching was evaluated using an MPEG2 encoder
application. The support of two, rather than one, store
operations improves performance by 1.43%. For 100
additional delay cycles, prefetching improves
performance by 20%. Furthermore, the benefit of
prefetching for increased off-chip memory latency was
evaluated.

6. References

[1] I.E.G. Richardson, “H.264 and MPEG-4 video
compression, video coding for next-generation multimedia” ,
Wiley, 2003.
[2] W. Wulf, and S. McKee, “Hitting the memory wall:
implications of the obvious” , ACM SIGARCH Computer
Architecture News, vol. 23, issue 1, pp. 20-24, 1995.
[3] J.W. van de Waerdt, J.P. van Itegem, G. Slavenburg, and
S. Vassiliadis, “Motion estimation performance of the
TM3270”, ACM Symp. on Applied Computing, pp. 850-856,
March 2005.
[4] J.W. van de Waerdt, S. Vassiliadis, and E.W. Bellers,
“Temporal video up-conversion on a next-generation media-
processor” , Proc. of the 7th Int. Conf. on Signal and Image
Processing, August 2005.
[5] J.W. van de Waerdt, and S. Vassiliadis, “ Instruction set
architecture enhancements for video processing” , Proc. of the
16th Int. Conf. on Application-specific Systems, Architectures
and Processors, July 2005.
[6] S. Rathnam, and G. Slavenburg, “An architectural
overview of the programmable multimedia processor, tm-1” ,
Proc. of the COMPCON ’96, pp. 319-326, February 1996.
[7] T. Halfhill, “Philips powers up for video” ,
Microprocessor Report, http://www.mpronline.com/,
November 2003.
[8] S. Vassiliadis, J. Phillips, and B. Blaner, “ Interlock
collapsing ALU’s” , IEEE Trans. on Computers, vol. 42,
issue 7, pp. 825-839, July 1993.
[9] J.A. Rivers, G.S. Tyson, E.S. Davidson, and T.M. Austin,
“On high-bandwidth data cache design for multi-issue
processors” , Proc. of the 30th Int. Symp. on
Microarchitecture, pp. 46-56, December 1997.
[10] N. Jouppi, “ Improving direct-mapped cache
performance by the addition of a small fully-associative
cache and prefetch buffers” , Proc. of the 17th Int. Symp. on
Computer Architecture, pp. 364-373, May 1990.
[11] R.J. Eickemeyer, and S. Vassiliadis, “A load instruction
unit for pipelined processors” , IBM Journal of Research and
Development, vol. 37, no. 4, pp. 547-563, July 1993.

1,
44

0,
39

1

1,
48

0,
19

1

1,
51

9,
34

9

1,
55

8,
51

6

1,
59

8,
83

5

1,
63

9,
28

0

1,
68

0,
09

1

1,
36

1,
99

7

1,
41

1,
34

8

1,
48

0,
52

1

1,
55

7,
04

0

1,
63

3,
98

4

1,
71

1,
27

4

1,
78

8,
61

2

1,
86

5,
90

3

1,
94

3,
42

4

2,
02

0,
65

8

1,
40

3,
10

9

1,
37

1,
53

1

1,
34

6,
32

0

1,
33

3,
33

0

2,
09

8,
29

7

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

0 10 20 30 40 50 60 70 80 90 10
0

Additional memory delay cycles

C
yc

le
s

(V
L

IW
 in

st
r

+
 s

ta
ll

 c
yc

le
s)

Scenario B:
prefetching on

Scenario C:
prefetching off

Figure 5. Off-chip memory latency. Delay cycles are in the 200 MHz off-chip memory clock domain.

