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Abstract 

 
This paper describes the (micro-) architecture of the 

TM3270 data cache. We present the cache parameters, 
such as cache size, associativity, line size and cache 
policies. We describe the data cache pipeline 
partitioning and the cache memory structure 
organization. We introduce “ collapsed”  and “ two-
slot”  load operations. Furthermore, we introduce a 
combined software/hardware based technique for 
prefetching of data into the cache. We use an MPEG2 
encoder application for a quantative evaluation of 
architectural aspects such as data prefetching and 
show that MPEG2 encoding at 352*288 resolution 
(CIF) at 25 frames per second can be performed in 
33.3 MHz. 
 

1. Introduction 
 

The TM3270 media-processor has been designed 
having in mind potentially diametrically opposite 
constraints, such as programmability, adequate 
performance, and embedded processor requirements 
for the cost driven consumer market: small size and low 
power. The processor provides the performance for 
multi-standard video and audio (en/de)-coding 
(MPEG2, MPEG4, DivX, H.264/AVC [1]) at standard 
resolution. Codecs rely on standardization to ensure 
inter-operability, and therefore, the definition of these 
codecs will generally not change over time. However, 
algorithmic innovations in the area of e.g. motion 
estimation may be applied to allow for a more efficient 
video encoder implementation. Programmability 
provides flexibility, which can be exploited in different 
ways. It enables algorithmic changes after design, 
multiple algorithms can be mapped to the same 
architecture, faster time-to-market, etc.. Designing 
processors for the cost-driven consumer market poses 
the constraint of getting sufficient performance out of a 

minimal silicon area possibly with low power 
consumption. As all processor resources, the data cache 
is subject to this constraint. Typically, media-
processors have an abundance of computational 
resources; in today’s processing technologies adders 
and multipliers are cheap. We found, however, that 
media-processor performance is heavily dependent on 
data cache performance. The important question is no 
longer "how many operations can be performed per 
processor cycle", but is "how do we deliver data to the 
operators in a timely fashion". In other words, like 
general-purpose processors, media-processors suffer 
from the memory wall problem [2]. 

In this paper we discuss (micro-) architecture 
aspects of the TM3270 data cache. We use an MPEG2 
encoder for a quantative evaluation of some of these 
aspects. Earlier evaluations, using somewhat simpler 
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Figure 1. TM3270 media-processor. 



applications, can be found in [3, 4]. A more elaborate 
study into the use of new multimedia operations to 
optimize MPEG2 encoder performance can be found in 
[5]. The remainder of this paper is organized as 
follows. In Section 2, we give an overview of the 
TM3270 media-processor architecture. In Section 3, 
we describe the data cache (micro-) architecture. In 
Section 4, we describe our performance evaluation 
environment, and the results of performance 
measurements. Finally, in Section 5, we present our 
conclusions. 
 

2. TM3270 media-processor overview 
 

The TM3270 media-processor (Figure 1) is 
backward source code compatible with the TriMedia 
architecture. An overview of the TriMedia architecture 
can be found in [6, 7]. The processor is used as an 
embedded processor in a System-on-a-Chip (SoC). The 
processor is implemented as a fully synthesizable 
design using a standard-cell logic library and single-
ported SRAMs, allowing for fast process technology 
mapping. The processor achieves a frequency of 450 
MHz in a 90 nm process technology optimized for low 
power consumption, and measures 8.1 mm2. The 
TM3270 has a 32-bit VLIW architecture. A VLIW 
instruction may contain up to five operations. Each of 
these operations may be guarded; i.e. their execution 
can be made conditional on the value of a guard 
register. SIMD arithmetic and shuffle operations allow 
for efficient manipulation and re-organization of 8-, 
and 16-bit data types. Floating-point operations comply 
with the IEEE-754 standard. Operations are grouped 
into functional units, and most functional units have 

multiple instantiations. Most functional units are fully 
pipelined, allowing for back-to-back issue of 
operations. The simple arithmetic functional unit has 
five instantiations, so up to five simple arithmetic 
operations, e.g. additions, can be issued every cycle. 
The TM3270 supports two-slot operations, which are 
executed by functional units that are located in two 
neighboring issue slots. These functional units provide 
twice the register-file bandwidth, when compared to 
ordinary functional units. As a result, two-slot 
operations may have up to four 32-bit sources, and may 
produce up to two 32-bit destinations. 
 

3. Data cache (micro-) architecture 
 

This section describes some (micro-) architecture 
aspects of the TM3270 data cache. The TM3270 has a 
128 Kbyte data cache, which is organized as a 4-way 
set associative cache with 128 byte cache lines. The 
cache has a least-recently-used (LRU) replacement 
policy, a copy-back write policy, and an allocate-on-
write-miss policy. The allocate-on-write-miss policy 
reduces the write miss penalty, and results in less 
bandwidth to off-chip memory. A cache byte-validity 
structure is used to keep track of the validity of the 
individual bytes in the cache. When an allocated cache 
line is victimized, only the validated bytes are copied 
back to the off-chip memory. The TM3270 and the 
SoC memory bus system (on-chip infrastructure and 
external SDRAM interface) support the transfer of 
cache lines with byte-validity indicators. 

 
3.1. Load and store operations 
 

Table 1. Some of the TM3270 ISA’s load and store operations (big endian description). 

Operation Description 
Issue 
slot(s) Latency 

ST32D (displacement) 
        src1 src2; 
 
Semantics: Store 32-bit word. 

Mem[src2 + displacement]        = src1[31:24]; 
Mem[src2 + displacement + 1]  = src1[23:16]; 
Mem[src2 + displacement + 2]  = src1[15:8]; 
Mem[src2 + displacement + 3]  = src1[7:0]; 

4 or 5 not 
applicable 

LD32R 
        src1 src2 -> dest1; 
 
Semantics: Load 32-bit word. 

dest1[31:24] = Mem[src1 + src2]; 
dest1[23:16] = Mem[src1 + src2 + 1]; 
dest1[15:8]   = Mem[src1 + src2 + 2]; 
dest1[7:0]     = Mem[src1 + src2 + 3]; 

4 4 

TWOSLOT_LD32R 
       src3 src4 -> dest1 dest2; 
 
 
 
 
Semantics: Two-slot load operation; 
load two 32-bit words. 

dest1[31:24] = Mem[src3 + src4]; 
dest1[23:16] = Mem[src3 + src4 + 1]; 
dest1[15:8]   = Mem[src3 + src4 + 2]; 
dest1[7:0]     = Mem[src3 + src4 + 3]; 
dest2[31:24] = Mem[src3 + src4 + 4]; 
dest2[23:16] = Mem[src3 + src4 + 5]; 
dest2[15:8]   = Mem[src3 + src4 + 6]; 
dest2[7:0]     = Mem[src3 + src4 + 7]; 

4 and 5 4 

LD_PACKFRAC8 
       src1 src2 -> dest1; 
 
 
Semantics: Collapsed load operation; 
load combined with two-taps filter 
function. 

data0 = Mem[src1];         data1 = Mem[src1 + 1];   data2 = Mem[src1 + 2]; 
data3 = Mem[src1 + 3];   data4 = Mem[src1 + 4];   data5 = Mem[src1 + 5]; 
data6 = Mem[src1 + 6];   data7 = Mem[src1 + 7]; 
dest1[31:24]  = (data0*(16-src2[3:0]) + data1*src2[3:0] + 8) / 16; 
dest1[23:16]  = (data2*(16-src2[3:0]) + data3*src2[3:0] + 8) / 16; 
dest1[15:8]    = (data4*(16-src2[3:0]) + data5*src2[3:0] + 8) / 16; 
dest1[7:0]      = (data6*(16-src2[3:0]) + data7*src2[3:0] + 8) / 16; 

5 6 

 



Table 1 defines some of the TM3270 load and store 
operations. The cache supports penalty-free (no stall 
cycles) non-aligned accesses. A store can be issued in 
both slot 4 or 5. A load can only be issued in slot 5. 
The two-slot TWOSLOT_LD32R load operation 
increases load bandwidth. It is issued in slots 4 and 5 
(but the cache access path is restricted to slot 5), and 
retrieves two sequential 32-bit words from memory 
into two destination registers. The collapsed 
LD_PACKFRAC8 load operation is issued in slot 5. It 
is a new operation that involves memory collapsing 
rather than the ALU collapsing presented in [8]. This 
operation retrieves 8 bytes from consecutive memory 
addresses, and performs a filter function. It can be used 
to calculate image pixels at horizontal fractional 
positions. It finds use in e.g. the motion estimation 
kernel, which constitutes a significant computational 
part of video encoder applications [3, 5]. 

Figure 2 gives an overview of the data cache 
pipeline, partitioned into stages A through F. Normal 
load operations have a 4-cycle latency and produce a 
result in stage D. Collapsed load operations have a 6-
cycle latency and produce a result in stage F. Stage A 
calculates the effective address for both the first and 
last byte referenced by an operation (Figure 2: addr_lo 
and addr_hi). Stage B performs access arbitration to 
the cache tag and data memory structures. Although the 
functionality provided by this stage is limited, the delay 
in this stage is significant. This is because a large 
amount of relatively wide address and data busses need 
to be multiplexed and routed to the different SRAMs. 
Furthermore, the large SRAM setup time extends their 
presence from stage C into stage B. Stage C contains 
the cache tag and data memory structures (LRU and 
byte validity structures are not depicted). The data 
memory structures have a maximum clock-frequency 
that is close to the processor clock-frequency. The tag 
memory structures are somewhat faster, and allow for 
the inclusion of tag comparison logic in stage C. Stage 
D contains the data cache way selection logic, and 
includes two operation control state machines for issue 
slots 4 and 5. Stages E and F contain the filter bank for 
collapsed load operations. On the right side of the 
pipeline we find the cache write buffer (CWB), which 
is used to keep pending stores to the data cache. 

The cache memory structures use single ported 
SRAMs with bit write functionality, to allow for a 
selective update of memory bits as identified by a bit 
mask. The available SRAMs have a maximum data 
width restriction of 128 bits. 

In stage B, store operations request access to the tag 
memory structure, but not to the data memory structure, 
since stores do not produce a register operand result. 

Load operations request access to both the tag and data 
memory structures. Since load operations are only 
supported in slot 5, the data memory structure access 
path is restricted to slot 5. To support two simultaneous 
stores, both slot 4 and 5 have a dedicated copy of the 
tag memory structure. Note that to support two 
simultaneous loads (without stall cycles), duplication of 
the memory structure would be required [9]. In stage 
D, the control state machines act upon the retrieved 
cache control information, such as the cache hit signal. 
For loads, the validity of the requested bytes needs to 
be checked, somewhat complicating the generation of 
the hit signal (when compared to a cache without byte-
validity). In case of a load hit, way selection is 
performed on the retrieved cache data. In case of a load 
miss, a cache line is retrieved from off-chip memory by 
the refill unit. In case of a store hit, data is sent to the 
CWB. In case of a store miss, a cache line is allocated. 
 
3.2. SRAM organization 
 

Given the architectural cache parameters (128 
Kbyte, 4-way set associativity, and 128 byte line size), 
there are multiple possibilities of organizing the cache. 
Figure 3 shows the organization of tag information, 
cache line byte elements, and byte validity bits.  

Issue slots 4 and 5 have a dedicated tag memory 
structure, consisting of two exact copies of the cache 
tags. The SRAMs are indexed with the set address, and 
each entry contains the tag information of the four ways 
within the selected set. The tag information consists of 
a cache line valid bit, the cache line tag, and a cache 
line prefetch bit. 

The data memory structure is partitioned into four 
separate SRAMs of 128 bits wide. The SRAMs are 
indexed with bits 14 downto 4 of a 32-bit address A, 
and each entry contains cache line data of the four 
ways. The SRAM partitioning is based on bits 3 and 2 
of the address; all byte elements that share address bits 
3 and 2 reside in the same SRAM. As a result, the 128 
bytes of a cache line are located in 8 entries of each 
SRAM, and cache line bytes are SRAM interleaved at a 
granularity of 4 byte elements. 

The byte-validity memory structure has a similar 
organization as the data memory structure. It is 
partitioned into four separate SRAMs of 64 bits wide. 
The 128 byte-validity bits of a cache line are located in 
2 entries of each SRAM. Note that a cache line byte 
and its corresponding valid bit are located in 
corresponding SRAM memories, since both structures 
are partitioned based on bits 3 and 2 of the address. As 
a result, the access arbitration for the two structures can 
be shared. 



We illustrate the SRAM organization by means of 
an example. Consider a non-aligned 32-bit load 
operation from address A=0x000000ff. The set address 
is 0x1 for addr_lo, and 0x2 for addr_hi. The set 
addresses are used to index the tag SRAMs. A tag 
memory structure has two exact copies of the cache 
tags to cope with references that cross a cache line 
boundary. The tag is 0 for both addr_lo and addr_hi. 
Address bits A[3:2] determine which of the data and 
validity SRAMs need to be accessed. Data SRAM “11”  
is indexed with 0x00f, and data SRAM “00”  is indexed 
with 0x010. Validity SRAM “11”  is indexed with 
0x003, and validity SRAM “00”  is indexed with 0x004. 

Note that the data SRAM organization provides the 
simultaneous (single cycle) access of up to 16 
sequential bytes of a cache line. This allows for an 8-
cycle cache line update by refill and prefetch units, and 

for an 8-cycle cache line extraction by the copy back 
unit. By limiting the amount of cycles these units need 
for cache line access, the interference with load and 
store operations is reduced, preventing data cache stall 
cycles. The byte validity organization provides the 
simultaneous access of up to 64 byte valid bits of a 
cache line (half of the total cache line byte validity 
bits), allowing for a 2-cycle cache line allocation. 

Our data memory structure is partitioned into four 
separate SRAMs. Increasing the amount of SRAMs can 
increase the bandwidth to this structure, which would 
allow for more efficient cache line update and 
extraction. However, layout and routing is complicated 
as the amount of SRAMs increases. Furthermore, 
doubling the amount of SRAMs (each with half the 
capacity) more than doubles the silicon area, due to the 
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Figure 2.  TM3270 data cache pipeline. 



overhead in terms of address decoders and sense 
amplifiers in SRAM design. 
 
3.3. Memory access arbitration 
 

Figure 2 shows that separate memory arbiters 
control the access to cache tag and data memory 
structures. Furthermore, each of the four SRAMs in the 
data memory structure has its dedicated arbiter. This 
allows for low granularity access, resulting in high 
cache efficiency. For example, a 32-bit store in slot 4, a 
32-bit load from address 0x0000009c in slot 5, and two 
32-bit CWB updates to addresses 0x00000004 and 
0x00000008, can all be granted access to the cache in a 
single cycle. 

Besides the low granularity access control, cache 
efficiency is affected by the arbiter priority setting. We 
distinguish five separate entities that may request cache 
access: the issued operations, the CWB, the refill unit, 
the copy back unit and the prefetch unit. All may 
request access to the memory structures at the same 
point in time, and only one can be granted access (apart 
from simultaneous operation and CWB access to 
mutually exclusive data SRAMs). 

We decided upon the following priority setting for 
the data memory structure arbitration in normal 
operation mode (listed in decreasing priority): 

• Copy back unit 
• Refill unit 
• Issued operations 
• CWB 
• Prefetch unit 

The rationale is as follows. A copy back operation 
has the highest priority, because a victimized cache line 
frees up a cache line location for a cache line that 
missed in the cache. A refill operation has the second 
highest priority. This operation includes both the 
allocation and retrieving of a cache line. Both will stall 
the processor till completion. Next in line are the 
issued operations. They get the highest priority as long 
as no copy back or refill operation is required. Since 
stores are kept pending in the CWB, their priority is 
lower than that of the issued operations. Lowest 
priority is given to the prefetch unit. Prefetches retrieve 
cache lines based on anticipated future use, and are 
typically not stalling the processor. When the issued 
operations are granted access to the data memory 
structure, the low granularity access control grants the 
CWB access to those SRAMs that are not required by 
the issued operations. 

The priority setting may be changed in the following 
exceptional situations: 

• The CWB is full, and required by a store. 
• A load has an address conflict with a 

pending store. 
• The prefetch unit raises its priority. 

The first and second situations cause the CWB to 
have the highest priority. When the first situation 
occurs, a CWB entry needs to be freed up for a new 
store operation, so at least one of the pending store data 
elements needs to be put in the data memory structure. 
Likewise, the second situation can only be resolved by 
putting the data of the conflicting pending store in the 
data memory structure (data forwarding from the CWB 
is not supported). The details of the third situation and 
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Figure 3.  Data cache SRAM organization. 



the effect on the priority setting are described in the 
next section. 

 
3.4. Prefetching 
 

Our prefetch approach is based on memory regions, 
and allows for a prefetching pattern that reflects the 
access pattern of a data structure mapped onto a certain 
address space (Figure 4). The TM3270 supports four 
separate memory regions. The identification of these 
memory regions and the required prefetch pattern is 
under software control, and defined by the following 
parameters (n = 0, 1, 2, 3): 

• PFn_START_ADDR 
• PFn_END_ADDR 
• PFn_STRIDE 

The first two parameters, PFn_START_ADDR and 
PFn_END_ADDR, are used to identify a memory 
region. The third parameter, PFn_STRIDE, is used to 
specify the prefetch pattern for the associated region. 
When the processor hardware detects a load from an 
address A within a prefetch region x, a prefetch request 
for address A+PFx_STRIDE is sent to the prefetch 
unit, if the prefetch address is not yet present in the 
cache. Note that by setting the prefetch pattern to the 
cache line size of 128 bytes, traditional next-sequential 
cache line prefetching is implemented. Prefetched data 
is put into the cache. The large data cache capacity of 

128 Kbyte and the 4 way set associativity make it 
unlikely that useful data is victimized. Furthermore, no 
dedicated prefetch storage structures, such as stream 
buffers or stream caches, are required [10, 11]. 

The prefetch unit has a buffer for up to six 
outstanding prefetch requests. When the prefetch 
request buffer is almost continuously at the maximum 
of its capacity, the effectiveness of prefetching may 
decrease. Therefore, whenever a prefetch request turns 
into a demand miss, or when the requests buffer 
exceeds a high water mark (more than four entries 
occupied) the arbitration priority of the prefetch unit is 
raised, resulting in a prefetch operation mode for the 
data memory structure: 

• Copy back unit 
• Refill unit 
• Prefetch unit 
• Issued operations 
• CWB 

The relative priority of issued operations and the 
prefetch unit has changed, and prefetching is 
accelerated. 

In our 5-issue slot processor, it is not uncommon for 
almost every VLIW instruction to contain a load 
operation. Every load operation that accesses a prefetch 
memory region may potentially trigger a prefetch 
request. As a result, for every load from address A, a 
prefetch address A+PFx_STRIDE may have to be 
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Figure 4. Region based prefetching. Left: an architectural perspective, right: a design perspective. 



calculated, and the presence of this prefetch address in 
the cache needs to be checked. A traditional approach 
would require a dedicated tag SRAM to provide the 
required bandwidth to check the presence of prefetch 
addresses in the cache. We decided upon a different 
approach that does not require a dedicated tag SRAM, 
and is therefore cheaper to implement. Whenever a 
cache line is created in the data cache, either by a refill 
or prefetch request, a cache line prefetch bit is set to 
‘1’ . This introduces an overhead of a single bit to every 
cache line (Figure 3). A prefetch will only be 
considered for those load operations that access a 
prefetch region and have their prefetch bit equal to ‘1’  
(for the load address A). Furthermore, a prefetch 
request will only be sent to the prefetch unit, when its 
prefetch request buffer is not full; i.e. its six entries are 
not all occupied. Only when these conditions are met, 
will the prefetch bit of the cache line be set to ‘0’ . Our 
approach has the following advantage. Every cache line 
will give rise to at most one prefetch request, which 
prevents the possibility of multiple duplicate prefetch 
requests for the same cache line. Furthermore, the 
amount of checks for the presence of prefetch 
addresses in the cache is reduced. As a result, the 
existing tag SRAMs can be used to check the presence 
of prefetch addresses in the cache, without any 
significant performance penalty.  

Since prefetches are only requested when the 
prefetch request buffer is not full, prefetch requests will 
not get lost. When they do not make it into the prefetch 
unit, the prefetch bit will remain ‘1’ , and a future load 
to the same cache line will initiate the same prefetch 
request if the buffer has freed up one of its entries. This 
try-and-retry mechanism is especially useful for 
memory access patterns that initiate a burst of prefetch 
requests in a relatively short period of time that would 
overflow the prefetch request buffer. 

 

4. Performance evaluation 
 

An MPEG2 encoder is used to evaluate data cache 
performance. We started with a plain-vanilla C-
implementation, and invested 6 man weeks to optimize 
the implementation for the TM3270. We have not 
undertaken any optimizations that would compromise 
standard compliancy. Most of the optimizations involve 
the selection of custom operations to reduce 
computational complexity. We encoded the “Foreman”  
sequence at a 352*288 resolution (CIF) and a 4:2:0 
format at 25 frames per second. The target bitrate was 
set at 500,000 bits per second. The bitrate is controlled 
through the macroblock quantization factor. An 
MPEG2 “group of pictures”  (GOP) includes 12 frames, 

and the frame types in display order are given by the 
pattern: I-B-B-P-B-B-P-B-B-P-B-B. The motion 
estimation for P-frames evaluates 17 motion vector 
candidates. For B-frames, motion estimation is 
performed with two reference images. To balance the 
computational complexity of B-frames with that of P-
frames, B-frames evaluate 10 motion vector candidates 
per reference frame. 

For performance evaluation, a cycle-accurate C-
model was automatically generated from the 
processor’s Verilog HDL description. The 450 MHz 
processor (Figure 1) is attached through its bus 
interface unit to a 200 MHz 32-bit DDR SDRAM off-
chip memory. We measured the impact of prefetching 
and the support of two stores per VLIW instruction on 
processor performance. Table 2 gives the measurement 
results for I-, P-, and B-frames. The average column is 
calculated based on the frame type frequencies as 
defined by the GOP pattern. The support of two, rather 
than one, store operations per VLIW instruction 
improves performance by 1.43% (based on the average 
cycle counts for scenarios A and B). The additional 
area for duplicating the tag memory structures is 0.142 
mm2 and additional power consumption is negligible. 
With support for two store operations and prefetching 
turned on, the average frame cycle budget of 1,333,330 
cycles translates into a 33.3 MHz load for encoding a 
CIF sequence at 25 frames per second. At a processor 
frequency of 450 MHz, this leaves plenty of available 
processor cycles for other functionality. 

The performance impact of prefetching is dependent 
on off-chip memory latency (Figure 5). Off-chip 
memory latency was artificially increased, by adding 
delay cycles to the memory path between the 
processor’s bus interface unit and the off-chip memory 
controller. Note that the additional delay cycles are in 
the off-chip memory clock domain (200 MHz). As the 

Table 2. 
VLIW and cycle counts for I-, P-, and B-frames, 

0 additional memory delay cycles. 

 I-frame P-frame B-frame Average 

Scenario A: 1 store per VLIW instruction, prefetching on 
VLIW instr. 1203043 1277629 1092035 1147684 
Stall cycles 102488 187011 224582 205015 

Cycles 1305531 1464640 1316617 1352699 
Scenario B: 2 stores per VLIW instruction, prefetching on 

VLIW instr. 1187447 1255290 1065326 1122994 
Stall cycles 91528 198640 229574 210336 

Cycles 1278975 1453930 1294900 1333330 
Scenario C: 2 stores per VLIW instruction, prefetching off 

VLIW instr. 1187437 1255280 1065315 1122983 
Stall cycles 130120 219185 260061 239014 

Cycles 1317557 1474465 1325376 1361997 

 



latency increases the absolute performance difference 
between scenarios B and C grows, which illustrates the 
ability of prefetching to hide memory latency. For 100 
additional delay cycles, prefetching improves 
performance by 20%. The steepness of the performance 
curves reflects the dependency on memory latency. 
 

5. Conclusions 
 

We have presented the (micro-) architecture of the 
TM3270 data cache. The discussion of the memory 
structures and pipeline shows that apparent “design 
details”  such as SRAM organization and cache 
arbitration impact cache architecture and performance. 
E.g. SRAM organization influences the ability to 
simultaneously support a high cache associativity (4-
way), fast cache line update (8 cycles for a 128-byte 
line), and penalty-free non-aligned access. 
Furthermore, counter-intuitive architectural aspects 
(from a performance perspective), such as the support 
for two stores, but only a single load per VLIW 
instruction, are explained by a design aspect such as 
cost. 

The support of two store operations and data 
prefetching was evaluated using an MPEG2 encoder 
application. The support of two, rather than one, store 
operations improves performance by 1.43%. For 100 
additional delay cycles, prefetching improves 
performance by 20%. Furthermore, the benefit of 
prefetching for increased off-chip memory latency was 
evaluated.  
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Figure 5.  Off-chip memory latency. Delay cycles are in the 200 MHz off-chip memory clock domain. 


