
1

TTL inter-task communication implementation on a
shared-memory multiprocessor platform

Bei Li+, Pieter van der Wolf∗ and Koen Bertels+

Philips Research Eindhoven∗, Computer Engineering Lab. TU Delft+, The Netherlands
E-mail: {b.li-et|k.l.m.bertels}@ewi.tudelft.nl

Abstract—TTL is an abstract task-level interface which
is used both for developing parallel application models and
as a platform interface for implementing streaming applica-
tions on multi-processor architectures. Inter-task communi-
cation (ITC) is defined by TTL. The CAKE platform that we
target, consists of homogeneous communicating tiles. Each
tile consists of a shared memory with a heterogeneous mix
of MIPS and TriMedia processors, DSPs and hardware ac-
celerators. Due to task synchronization and data transfer
in shared memory, architectural issues related with cache
coherence and memory data copying are investigated. Opti-
mizations such as padding-array insertion, prefetching and
postflushing techniques are suggested. Alternative impleme-
nations with semaphore and index/pointer as synchroniza-
tion construct are explained. Prototype design and cycle
true simulations with the Producer-Consumer model and
the JPEG decoder application demonstrate that: compared
to some old initial implementation, we can achieve almost
80% improvement on Cycles Per Token transfer (CPT), and
reduce the total cycles of running the JPEG decoder appli-
cation by 23%.

Keywords—inter-task communication; synchronization;
shared-memory multiprocessor; semaphore; cache coher-
ence

I. INTRODUCTION

High Volume Electronics (HVE) consumer systems such
as digital TVs and DVD recorders, process medias heav-
ily. These media-processing applications are realized by
hardware or software modules of the system. Layered soft-
ware architecture [1] design is necessary for such system.
They are classified into five groups: application, middle-
ware, streaming, drivers and basic OS services. We focus on
the streaming layer that directly provides streaming process-
ing capabilities of the platform to middleware components.
Streaming components can work together in a streaming
application that can be modeled with a task graph (Kahn
Process Network [2]). Streaming services of task commu-
nication, multi-tasking and connection management have to
be offered to the streaming components. Task Transaction
Level (TTL) interface was proposed [3] as an abstract in-
terface providing streaming services. Correspondingly, it is
standardized in three areas: streaming communication [4],
multi-tasking and configuration and dynamic reconfigura-
tion. TTL is not only an API to develop straming applica-
tion models, but also a platform interface implementing the

Producer Consumertask port port

empty token full token
private variable

with value

taskchannel

Fig. 1. Logical model of TTL inter-task communication

applications as communicating hardware/software tasks on
a platform infrastructure. The implementation of TTL is
platform specific. And in this paper, we focus on the imple-
mentation of inter-task communication (ITC) among soft-
ware tasks only.

The definition of the TTL ITC can be logically modeled
as shown in Fig. 1. Tasks, which execute concurrently, com-
municate with eath other through channels. Producer is the
task that writes to the channel, while consumer task reads
from the channel. Tasks connect to the channel through
ports. A token is a variable holding a value that is com-
municated between tasks. A token is full or empty depend-
ing on if it holds value or not. We refer full and empty to-
kens as data and room. The private variable is a container
for a value accessible by one task only. A communication
operation basically includes task synchronization and data
transfer. Tasks firstly synchronize to each other on the avail-
able room/data before transferring data values. Basic syn-
chronization primitives are listed in Table I. Furthermore,
synchronization constructs representing available room and
data are necessary.

TABLE I
BASIC SYNCHRONIZATION PRIMITIVES FOR TTL

Task Primitive Primitive role
Producer acquire room acquire empty token

release data release full token
Consumer acquire data acquire full token

release room release empty token

Our target platform, the CAKE (Computer Architecture
for a Killer Experience) architecture, implements homo-
geneous multiprocessing with inter-connected tiles of het-
erogeneous computational units [5]. In this paper, we fo-
cus on the tile architecture which is of symmetric shared-

2

memory multi-processor architecture as illustrated in Fig. 2.
It consists of general purpose CPUs (currently MIPS or
TriMedia), coprocessors, a router, input/output processors,
shared-memory banks and I/O device (e.g. proxy). Cache
coherence protocol is write-invalidate snooping protocol [6].
Each CPU has it local cache which is regarded as L1 cache
on chip. Shared-memory points to the L2 cache on chip.
Running on each tile, Tile Run-Time environment (TRT)
implements and provides the following services we need:
threads and thread scheduling, semaphores for synchroniza-
tion, mutexes and condition variables.

CPU...CPU
+

cache
+

cache
+

cache
+

cache
proxy

snooping interconnection network

serial
I/O

...

router

.....

Links to
neighbouring

tiles

memory
bank

memory
bank

memory
bank

memory
bank

Copr Copr
Input Output

Fig. 2. CAKE tile architecture

Since communication is one of the major workloads of
streaming applications and the cost of communication ser-
vices is greatly determined by the implementation of the
API, the aim of this paper is to seek efficient implementa-
tion of TTL inter-task communication on CAKE tile archi-
tecture in order to improve the performance of the stream-
ing applications. We define the efficiency as execution cy-
cles of the streaming application. For the communication
operation, task synchronization and data transfer should be
considered. Through our research, we found that synchro-
nization effitiency decides the communication performance
significantly in most cases. In this paper, we focus on the
implementation solutions for task synchronization consider-
ing the platform obstacles. And we also look at alternative
synchronization constructs. Prototyped TTL run-time envi-
ronment (TTL RTE) is built based on TRT with application
of these solutions. And tests prove the improvement in the
application performance through our suggested methods.

In the following sections, the implementation options and
optimizations are first explained in Section II. Section III in-
troduces the benchmarks and simulation environment. Fig-
ures of performance measurements are provided and dis-
cussed in Section IV. Finally, in Section V, conclusions are
drawn.

II. IMPLEMENTATION DETAILS

A. Platform view

Tasks and channels are the principle elements of the ITC.
Our implementation of the ITC is based on shared-memory
due to the CAKE tile architecture.
• Task: To be more specific, as TRT supports threads

and dynamic thread scheduler, tasks are implemented as
threads running on processors. TRT looks for tasks to run
on available processors concurrently. If there is only one
processor configured on the platform, multiple tasks are
scheduled on this processor but only one task runs at a time.
Processors are sharable for all the tasks.
• Channel: As the place where the communication takes
place, channels are implemented in the shared memory. It
consists of channel buffer and channel administration values.

– Channel buffer: The buffer is a part of memory area
where the transferred data is stored. It is an ordered FIFO
in our case as decided in [4], and uses contiguous memory.

– Channel administration: The administration is the
place where the status of the channel buffer is stored. Tasks
initiate communication and coordinate with each other ac-
cording to the channel administration values. The channel
administration consists of static values and dynamic values.
Static values, including buffer size and base addresses of the
buffer, are set during the system setup. Dynamic values, in-
cluding synchronization constructs and reading/writing posi-
tions, are modified by tasks during run-time. The adminis-
tration values are centralized allocated in the shared mem-
ory for the sake of cheapness and fast access on the CAKE
tile platform.

From above explanations, the ITC is indeed transformed
into inter-processor communication and operations on the
shared memory as illustrated in Fig. 3. In oval shapes, P rep-
resents a producer task and C is a consumer task. They sep-
aratly run on CPU1 and CPU2 shown in rectangular shapes.
The channel through with they are communicating is in the
shared memory. The producer writes data to the channel
buffer while the consumer reads from it. Both tasks access
and update the channel administration values.

channel buffer

channel
administration

Shared
Memory

channel construct

CPU1 CPU2

Task Task
CP

Fig. 3. The platform implementation view of the ITC

The synchronization entails accessing and updating the
channel administration values, which always involves pro-
cessors concurrently loading from or storing to the same
area of the shared memory. Therefore, the behavior between
the processors and the shared memory determines the per-
formance of the ITC, especially when tasks run on multiple
processors.

3

B. Architectural issues and solutions

The architectural problems rise from concurrent access
and update of the shared channel administration values.
Reads and writes to the same memory location are unavoid-
able and must be kept consistent. On the CAKE tile plat-
form, the write-invalidate snooping protocol for cache co-
herence defines memory-cache behavior. A processor has
exclusive access to a data item before it writes that item. All
other cached cache blocks holding the item in other proces-
sors are invalidated. Each cache block is currently set to
128-bytes, which may hold multiple data items of smaller
sizes. When another processor tries to read a data item
from the invalidated cache block, a load miss occurs, and
the value will be returned when the first processor finishes
writing to its cache. Invalidation increases cache misses,
which is regarded as coherence misses and occurs in inter-
processor communication. The coherence miss is the archi-
tectural synchronization overhead of our inter-task commu-
nication. The fewer misses there are, the better performance
of the task synchronization we can achieve.

There are two sources of coherence misses: false shar-
ing misses and true sharing misses. The former misses oc-
cur when a processor attempts to read a data item not being
written by another processor on the invalidated cache block;
the later misses occur when a processor attempts to read the
same data item being written by another processor. Software
solutions in TTL implementation are investigated to reduce
these misses respectively.

B.1 Reducing false sharing misses

• Padding arrays
The origin of false sharing misses is that multiple data items
are allocated in the same cache block and they are read or
written by different processors. The intuition is that this
can be solved by allocating them in separate cache blocks.
Inserting empty spaces by defining empty arrays between
the channel administration values should be feasible. These
arrays are regarded as padding arrays which intend to pad
spaces. The size of the padding arrays should be equal to the
size of cache block 128-bytes. The number of array elements
varies depending on different data types used.
The main disadvantage of using the padding arrays is the
waste of memory. However, the more padding arrays are
used, the more false sharing misses can be reduced. This is
a trade-off between performance and memory cost. There
is one ultimate solution for the best performance that: all
the values are separated by a padding array. The number of
the padding array increases with the number of the channel
values, which is sure to waste a lot of memory.
• Cache allocation mechanism
Not all the values need to be in a separate cache block, and
whether two values can stay in one cache block is determined
by their processor read/write patterns. The cache allocation
mechanism we conclude explains how to group the values
according to their processor access patterns.
We group the values into three catogories:

1. Read-only values: These values are only read by pro-

cessors. They are initialized during system setup. The static
channel administration values belong to this group. These
values can be allocated in one cache block.

2. One-processor read/write values: These values are
only read and written by one processor. In other words,
these values are only accessed or updated either by the pro-
ducer task or by the consumer task. For example, the head
position of the data in the channel buffer is only needed by
the consumer task; the tail position of the data in the chan-
nel buffer is only needed by the producer task. The values
are only updated by the processor that the producer or the
consumer task runs on. The one-processor read/write values
can be allocated in different cache blocks according to their
processors or tasks ownerships.

3. Multi-processor read/write values: These values are
read and written by multiple processors. True sharing
misses should occur on the access to these values. The syn-
chronization constructs in the dynamic channel administra-
tion values belong to this group because they should be up-
dated by both the producer and the consumer tasks. Al-
locating each of such values in a separate cache block can
surely achieve the best reduction on the misses. If the num-
ber of such values is small(e.g.2, 3 or 4), we recommend to
allocate each of the values in a separate cache block. When
the number grows big, we recommend to combine the values
with the one-processor read/write value groups. The update
frequency of each processor should be taken into account
when deciding the combination. A value should be better al-
located at the side that more frequently updates the value.
The values with equal update frequencies of processors are
to be allocated in separate cache blocks.

Static values

Read−only

Dynamic values Dynamic values

read/write

128
bytes

128

bytes

array
Padding Padding

array

Multi−processorOne−processor
read/write

Channel

Administration

cache block
boundary

Fig. 4. Cache allocation with padding arrays

An example of applying padding arrays is conceptually
given in Fig. 4 on the cache allocation of the static and dy-
namic channel administration values. Three major groups
of values are separated by spaces of padding arrays.

B.2 Reducing true sharing misses

True sharing misses occur when concurrent processor
operations applied on the same value at the same time.
From platform perspective, the chances mostly depend on
the speeds of the running processors and the workload of
tasks on the processors. These factors are hardly controlled
through the communication implementation. Our objective
is to reduce the chances of such concurrent operations in
the software implementation of the ITC. In the task com-
munication primitive, the operations on the synchronization
construct are unavoidable. The more often such operations
are needed in each task, the more probable they occur at

4

the same time. Therefore, the effective way to reduce this
probability is to decrease operations on the synchronization
construct.
• Local storage: Instead of operating on the synchro-
nization construct every time the communication primitives
are called, it is suggested to locally store the calculated
amount of available room (for producer task) or data (for
consumer task) on the channel. These values are only pri-
vately read and written by the task. The amounts are prob-
ably more than what the tasks need, but no more than ac-
tual available on the channel at that time. When the local
stored data show that the channel is empty or full, the task
can not proceed and operations on the original synchroniza-
tion construct occur to get the newest values. The advantage
of this mechanism is that: local storage is to be cached lo-
cally in the processor on which the task runs and will not
suffer from sharing problems; other tasks may update the
shared synchronization construct, when a task runs with its
local value. This method can be also called pre-fetching.
• Local accumulation: We also suggest to locally accu-
mulate the amount of room (for consumer task) or data
(for producer task) to be released in accumulating coun-
ters. When the counter reaches a threshold, a number of
room/data is released to the channel at once. Therefore, the
number of synchronization operations in releases are pend-
ing and reduced. This method can be called post-flushing.
Post-flushing may cause deadlock when the producer task
exits but its local accumulating counter has not reached the
threshold. In this situation, the consumer task does not know
there is data on the channel and will be blocked until dead-
lock. For this problem, block handling and exit handling
are suggest to flush pending room/data when tasks block and
exit. Due to the implementation complexity, we focus the im-
plementation with pre-fetching in this paper, and will discuss
the one with post-flushing and deadlock handling in future
papers.

In fact, the methods we introduced above on reducing
sharing misses are general that can be optionally applied
on other appropriate implementation cases on symmetric
shared-memory multiprocessor platforms.

C. Synchronization construct alternatives

For the constructs that represent room/data status
of channels, we investigate two possible alternatives.
Semaphore is chosen because it’s directly support by CAKE
TRT for thread synchronization; Index/offset is chosen be-
cause it might benefit on future hardware/software ITC im-
plementation extension.

C.1 Semaphores based

Semaphores are non-negative counters. The P and V op-
erations on semaphores operate counter values and block
the calling tasks. Available room and data are represented
in semaphores, which match the TTL communication se-
mantics very well. The synchronization is done throung
semaphore operations. With application of padding array,
cache allocation mechanism and local storage, we define the

channel administration values as the following: (T repre-
sents the data type of the token, which can be basic (e.g.
char, integer) or complex (e.g. struct) data types)

integer padding_array1[32] # 128-bytes

#----static values, read-only values ----#
size # size of channel buffer

*first # starting address of the buffer memory

*last # end address of the buffer memory
integer padding_array2[32]

#---- consumer task updated only ----#
T* r # current reading position
local storage of prefetched amount of data
integer local_data
integer padding_array3[32];

#---- producer task updated only ----#
T* w # current writing position
local storage of prefetched amount of room
integer local_room
integer padding_array4[32];

#---- multi-tasks read/write ----#
semaphore room # amount of available room
integer padding_array5[32];
semaphore data # amount of available data
integer padding_array6[32];

The padding arrays at the beginning and the end of the
channel administration are applied to separate the channel
values from other values in the program. How the channel
administration values are related with the channel buffer is
illustrated in Fig. 5. The basic principles of pre-fetching have

���������������
���������������
���������������
���������������

*w*r semaphore
room

semaphore
data

size *first *last

amount of
available room

room
availableavailable

datadata
acquired acquired

room
available

room
0 size

amount of
available data

Fig. 5. The basic channel implementation: semaphore-based

been explained. Here to exemplify, the algorithms for pro-
ducer and consumer tasks in semaphore-based implemen-
tation with pre-fetching are shown below in pseudo code,
refer to Algorithm 1 and Algorithm 2. In the algorithms,
sem Pn decrements room/data to 0 and return the decre-
mented amount.

In this paper, we aim to show proof of our suggested
method for improving the application performance. There-
fore, we mainly explain the semaphore-based implementa-
tion in detail and briefly describe the difference in the chan-

5

Algorithm 1 Semaphore: Producer acquire and release
1: procedure ACQUIRE ROOM()
2: if local room == 0 then
3: local room← sem Pn(room, MAX INT)
4: end if
5: local room−−
6: end procedure
1: procedure RELEASE DATA()
2: sem V (data) . semaphore V operation on data
3: end procedure

Algorithm 2 Semaphore: Consumer acquire and release
1: procedure ACQUIRE DATA()
2: if local data == 0 then
3: local data← sem Pn(data, MAX INT)
4: end if
5: local data−−
6: end procedure
1: procedure RELEASE ROOM()
2: sem V (room) . semaphore V operation on room
3: end procedure

nel construction of the index/offset-based implementation.
The reason is that the suggested optimization methods are
applied in the same way as the semaphore-based implemen-
tation. Moreover, in Section IV, we will give experiment
results of semaphore-based implementation only since it is
sufficient to show the improvement. Details and results of
index/offset-based implementation can be received from [7].

C.2 Indexes or offsets based

The index or offset points to the values representing po-
sitions on the channel buffer. The channel status can be
checked by reading these values. At least four elements are
needed to distinguish the four areas of acquired room/data
and available room/data, which are conceptually shown in
Fig. 6. And at least one index is necessary to keep track of

lastfirst

reserved

(i)

write
index

read
index

(i)

reserved
read

index

write
index

(i)

offset
reserved

(o)
reserved

offset

available
data

acquired
data

room available
room

acquired

(o)

(i)

offset
reserved

(o)

Fig. 6. Conceptual illustration of index and offset meanings,
symmetric examples

reading and writing positions. The other elements can be
either index or offset. By index, it means the position; by

offset, it means the variable that counts the number of ac-
quired room/data towards basic indexes. Therefore, there
are four possible combinations of index and offset:

1i+3o #--1 index + 3 offsets
2i+2o #--2 indices + 2 offsets
3i+1o #--3 indices + 2 offsets
4i #--4 indices

We choose symmetric ones which keep the producer and
consumer views identical on the channel. Hence, the com-
bination of 2i+2o and 4i are chosen. It is not enough with
only indexed and offsets to distinguish the emptyness or full-
ness of the channel. There are two options for this problem:
one is using wrap flags with indexes indicating the wrapping
around of the index across the end of channel buffer; the
other is wasting one token buffer assuming that the channel
is full when the distance between the read and write indexes
is 1. Therefore, options lie in: 2i+2o+2wf, 4i+4wf, 2i+2o
and 4i. The content of each option is given in Table IIIn
Fig. 7, it exemplifies the channel structure and administra-
tion values meanings for 2i+2o+2wf. For synchroniza-

TABLE II
OPTIONAL INDEX/OFFSET-BASED STRUCTURES

Option Contents
1 2i+2o+2wf basic reading/writing indexes: read and write

offset to read/write

wrap flags for read/write

2 4i+4wf basic reading/writing indexes: read and write

indexes to where room/data can be acquired

wrap flags for all the indexes

3 2i+2o basic reading/writing indexes: read and write

offset to read/write

4 4i basic reading/writing indexes: read and write

indexes to where room/data can be acquired

reserved data
available room
 available data
 reserved
room

Channel

Buffer

wwrap = 0
rwrap = 0

read
 readrsv
 write
 writersv

Channel

administrative

values

Dynamic

(first+size)

0
 size

read

readrsv

write

(first+

(read+readrsv)

mod size)

(first+

(write+writersv)

mod size)

writersv*
writersv

rwrap
 wwrap
size
 *first
 *last

Static

Fig. 7. Channel administration illustration with 2i+2o+2wf

tion in the index/offset scheme, task suspend method sup-
ported by CAKE TRT is applied. As mentioned previously,
priniciple channel construction of the index/offset-based im-
plementation is provided in this paper. Detailed explanation

6

is not presented here because we intend to show the perfor-
mance improvement made by our solution in this paper.

III. EXPERIMENT SETUP

A. Interface choice

The TTL interface totally defines seven communication
interface types, trying to consider different needs of stream-
ing application modelinng and various potential platform
implementations. All TTL communication interfaces are
based on the above explained logical model. And the clas-
sification is based on whether the synchronization and data
transfer are combined or separated, whether the task blocks
or doesn’t block when the synchronization condition is not
met, etc. [4]. In this paper, we choose TTL CB (combined
synchronization and data transfer, task block) interface be-
cause it is the easiest and most-commonly used interface
type. Abserving the performance of CB interface is very
meaningful for application designers.

B. Benchmark applications

• Producer-Consumer application: This is the simplest
application model with only one producer and one consumer
(P-C) and we don’t include any computation in this model.
In our experiments, the token data type is fixed to integer.
The channel size is fixed to 2048 tokens (i.e. if a token is of
integer, channel size is 8-Kbytes). To show results of syn-
chronization performance, we only use scalar operations of
tranferring a small token every time. We set the number to
100000 integers in total per inter-task communication.
• JPEG decoder application: Besides simple P-C model,
we want to test the performance with more complicated ap-
plication examples. Modeled with flat task graph and uti-
lized the CB interface, the JPEG decoder application was
chozen. Totally 48 tasks are defined in its network.

C. Benchmark

• Cycles Per Token transfer (CPT): To evaluate the per-
formance of an inter-task communication implementation,
the time of communicating one token is wanted to show the
speed of the communication. It includes the time on writing
and reading the token, and can be calculated as the follow-
ing:

CPT = T (write) + T (read) = (T (N)− T (0))/N
We assume that the time of the application initialization is
independent of the number of the tokens communicated.
T (N) represents the total number of cycles including the ap-
plication initialization and communication of N tokens. T (0)
represents the total number of cycles including the applica-
tion initialization and communication of zero tokens. The
result of the subtraction of these two values is the total com-
munication time for transferring N tokens. Therefore, CPT
is the algorithmic average of the total communication time
by N. The CPT of running on one processor indicates the ac-
tual cycles for the instructions of read and write involved in
communicating a token. The CPT of running on more than
two processors also includes influences of cache coherence.
We apply CPT with the test of P-C application.

• Total number of cycles: The total execution cycle time
of an application includes: the time on initialization, the
time spent on communications and the time spent on com-
putations. We apply this benchmark with the test of the
JPEG decoder application to overview the application per-
formance.

D. Simulation environment

The CAKE simulator, CakeSim, is used in the experiment.
It is a cycle-true simulator based on TSS1 model. Different
number of MIPS and TriMedia processors can be requested
by configuration. In this paper, we only provide test results
with MIPS processors because results TriMedia repeat sim-
ilar performance outcomes. And for P-C application, max-
imally 2 processors are necessary since only two tasks exe-
cute. Details of CakeSim can be found in [8]. The configura-
tion of CakeSime in our experiment is as the following:

MIPS model: PR4450
Cache set associative: 12
Shared memory size: 12-Mbytes
Number of memory banks: 8
Bus burst size: 64-bytes

IV. RESULTS

We first provide results explaining the performance im-
provement achieved by the suggested padding array and lo-
cal storage mechanism. The results are from the test with
P-C application. Then we compare our ITC implementation
performance with a predecessor interface implementation
called YAPI (one of the predecessors of TTL interface, has
same communication primitives as TTL CB interface). In
our results, CB-NOOPT stands for the implementation of CB
interface without local storage optimization; CB-PREFETCH
stands for the scheme with local storage. Padding or no
padding stands for if padding arrays are applied or not.

A. Improvement achieved by padding arrays

As illustrated in Fig. 8, applying the padding arrays does
not affect the performance of executions on 1 processor, but
it improves the performance on 2 processors greatly. In case
of 2 processors, the improvement percentages are 50.2% for
CB-NOOPT and 88.9% for CB-PREFETCH. That’s indeed
a lot.

B. Improvement achieved by local storage

On the base of applying padding arrays, we can see that
CB-PREFETCH is much better than CB-NOOPT especially
in the case of running on 2 processors. The improvement
percentages are respectively 7.3% on 1 processor and 74.5%
on 2 processors. We here present the results in Fig. 9 again
to compare more distinguishingly.

We also compare CB-PREFETCH with YAPI running P-
C application. The comparison can be found in Table III.

1TSS is a cycle accurate C language based simulation framework
used within Philips

7

Fig. 8. Results indicate padding-array’s improvement

Fig. 9. Results indicate local storage improvement

We can find the improvement percentage is 26.4% on 1 pro-
cessor and 32.3% on 2 processors.

TABLE III
COMPARE TO YAPI, P-C APPLICATION, CPT

Scheme 1 MIPS 2 MIPS
YAPI 68.29 36.24

TTLCB-PREFETCH 50.27 26.16

C. Performance of JPEG application

Previously only measurements with P-C applications are
presented. With padding arrays applied, we also test our
best implementation solution CB-PREFETCH with JPEG
decoder application. The results in total execution cycles are
given in Fig. 10.

From the results we can see that: with the increasing
number of processors, the total number of cycles decreases.
But it is nonlinear. When the number of processors is 8, the
number of cycles goes back to increase.

Fig. 10. Performance measurements of JPEG application

We compare the JPEG application results with results of
running YAPI. The comparison is given in Table IV. We find
that our implementation TTLCB-PREFETCH improves the
performance of the application by 18.7% on 1 MIPS, 19.3%
on 2 MIPS and 22.7% on 4 MIPS.

TABLE IV
COMPARE TO YAPI, JPEG APPLICATION, TOTAL CYCLES

Scheme 1 MIPS 2 MIPS 4 MIPS
YAPI 49351167 26288530 19009813

TTLCB-PREFETCH 40122939 21212258 14687685

From the above given results, our TTL ITC implemen-
tation achieve comparable and better performance. We
proved that our suggested methods of padding arrays, cache
allocation mechanism and local storage are efficient and re-
duce communication cost.

V. CONCLUSION

In this paper, we analized the architectural factors affect-
ing communication efficiency and discussed possible solu-
tions to overcome the architectural obstacle. We focus on
the synchronization perspective. It is found that the true
and false cache coherence misses are mainly the issues that
affect synchronization performance. We suggested applying
padding arrays and cache mechanism to reduce false shar-
ing misses; and advised applying local storage and local ac-
cumulation of channel administration values to reduce true
sharing misses. Two kinds of synchronization constructs
were discussed: semaphore and index/offset. Results which
aim to prove the performance improvement achieved by our
suggest solutions are presented and compared. On multipro-
cessors, the padding array with cache allocation mechanism
can improve the performance by 89%, and the local storage
can improve by 74%. And compared to YAPI a predeces-
sor implementation, JPEG application performance can be
improved by 23%. We successfully provide software solu-
tions for reducing synchronization overhead and data trans-

8

fer cost to achieve total communication time improvement,
especially on multiple processors.

REFERENCES

[1] Jeffrey Kang, Gerben Essink, Pieter van der Wolf and Tomas Hen-
riksson, Position of TTL in a System Architecture, Technical Re-
port PR-TN-2003/00703, Nat.Lab. Philips Research, 2003

[2] Gilles Kahn, The Semantics of a Simple Language for Parallel
Programming, Proc. of IFIP Congress 74, North-Holland Pub-
lishing Co., 1974

[3] Pieter van der Wolf, Erwin de Kock, Tomas Henriksson, Wido
Kruijtzer and Gerben Essink, Design and Programming of Em-
bedded Multiprocessors: An Interface-Centric Approach, Pro-
ceedings of CODES+ISSS’04 (Stockholm, Sweden), September
8-10 2004

[4] Gerben Essink, Andrei Rădulescu, Pieter van der Wolf and Jeffrey
Kang, Task Transaction Level Interface, Inter-task Communica-
tion, Technical Report Version 0.1, Nat.Lab. PHilips Research,
2004

[5] Paul Stravers and Jan Hoogerbrugge, Homogeneous Multipro-
cessing and the Future of Silicon Design Paradigms, Proceed-
ings of the International Synposium on VLSI Technology, Sys-
tems and Applications (VLSI-TSA 2001), April 2001

[6] John L. Hennessy and David A. Patterson, Computer Architec-
ture, A Quantitative Approach, 3rd ed., Morgan Kaufmann, 2003

[7] Bei Li, Pieter van der Wolf and Koen Bertels, TTL inter-task com-
munication implementation on a shared-memory multiprocessor
platform, Master Thesis, August 2004.

[8] Paul Stravers and Jan Hoogerbrugge, the spaceCAKE simulation
framework, 2003.

