
Inter-task cache sharing for compositional embedded
multiprocessors

A.M. Molnos(∗)(∗∗) M.J.M. Heijligers(∗∗) S.D. Cotofana(∗) J.T.J. van Eijndhoven(∗∗)
(∗) Delft University of Technology Mekelweg 4, Delft, The Netherlands

(∗∗) Philips Research Laboratories HTC 5, 5656 AE Eindhoven, The Netherlands
email: molnos@natlab.research.philips.com

Abstract— In current multi-media systems a major part of the appli-
cation consists of multiple software tasks executed on a set of processors.
Composing the system performance out of the tasks performance is pos-
sible only if these tasks interfere with each other in a predictable way.
However, when the used memory hierarchy consists of shared caches,
tasks flush each others data out of the cache in a unpredictable manner.
This paper proposes a novel cache partitioning technique that ensures
performance compostionality combined with cache efficiency. We per-
form two partitioning types. First, each task and each inter-task com-
mon data gets a exclusive part of the cache sets. Second, inside the cache
sets of common data each task accessing it gets a number of ways. We
confirm the proposed method on a homogeneous multiprocessor using
two applications: H.264 decoding and picture-in-picture-TV. Our experi-
ments indicate that the difference between the sum of misses of individual
tasks in isolation and the number of misses of the complete application
is at maximum 3%, so we can conclude that compositionality is achieved.
Additionally, when compared to the shared cache scenario the execution
time is improved up to 16% and the miss rate is reduced with up to 9%.

I. Introduction

The predictability is the main required characteristic for
media applications for which guaranteeing the completions
of tasks before their deadlines is of crucial importance. The
low power and low cost demands of embedded domain make
the use of general purpose architectures with clock frequen-
cies in the order of several GHz inappropriate. Instead, in
the embedded domain Chip Multi-Processor (CMP) archi-
tectures are preferred.

On a CMP platform the application tasks interfere with
each other when they share memory and other hardware
components. In order to be able to reason about the sys-
tem performance, the performance of each individual task
must be preserved if the tasks are executed concurrently in
arbitrary combinations or if additional tasks are added. A
system satisfying this property is addressed as being com-
positional, and we believe that multitasking systems cannot
be predictable without being compositional.

Many state-of-the-art media applications process large
data that reside off-chip. The availability of these data at
the right moments in time is critical for the application
performance. A possible solution for on-chip data avail-
ability is to use shared cache memories [7]. However, when
using shared cache in conjunction with a CMP architec-
ture and multi-tasking applications, the following case can
occur: when a task Ti’s data is loaded into the cache it
may flush task Tj ’s data, eventually causing a future Tj
miss. Therefore, shared caches ruin the compositionality
of a CMP system.

Exclusive cache partitioning is an existing method to
deal with the inter-task cache interference and to acquire

systems compositionality [15]. However, when, for exam-
ple, multiple tasks execute the same function on different
data streams, exclusive cache partitioning leads to com-
positionality, but also to code multiplication in cache, so
to poor cache usage. For example, when the instructions
of several H.264 tasks are multiplied in cache, our exper-
iments indicate a 50% increase of the number of misses,
resulting in 10% execution time penalty compared with a
conventional shared cache. Providing a shared cache part
for the common instructions is not a viable alternative as
it leads to tasks trashing each others data in that shared
cache part, so to non-compositionality. As no principial dif-
ference between the two type of sharing exist, for simplicity
we use in the remainder of this paper the term ”common
regions” for both inter-task shared data and instructions.

In this paper we extend the work in [15] by tackling the
problem of sharing the common region cache while preserv-
ing the compositionality of the system. First, to ensure
compositionality, we separate tasks’ private and common
data in cache by allocating cache sets for them. Subse-
quently, we eliminate the inter-task conflicts in the shared
cache sets of common data, by allocating ways of those sets
to tasks. So, overall, we utilize mixed (set and associativity
based) cache partitioning.

We confirm the proposed method on a multiprocessor
using two multi-tasking applications: H.264 decoding and
picture-in-picture-TV. Our experiments indicate that for
both examples, the difference between the sum of misses
of individual tasks in isolation and the number of misses
of the complete application is at maximum 3%, so we can
conclude that compositionality is achieved. Additionally,
for typical cache sizes, our method has positive impact in
the overall performance. When compared to case of fully
shared cache, the performance improve as follows: (1) the
H.264 decoding exhibits 3% less L2 misses corresponding
to a 5% execution time improvement and (2) the PiPTV
applications experience 66% less L2 misses corresponding
to a 16% execution time improvement.

The outline of this paper is as follows: in Section II the
state of the art in the domain of cache partitioning is pre-
sented, in Section III the targeted system together with
the proposed cache partitioning method are presented, in
Section IV the implementation of the cache partitioning is
presented, the practical experiments are presented in Sec-
tion V and Section VI concludes the paper.

404



II. Related work

Cache partitioning on itself is not new. In the litera-
ture different (set or associativity based) cache manage-
ment methods were proposed.

In [8] the authors use an on-line associativity based par-
titioning algorithm achieving interesting performance im-
provement. They estimate the miss characteristics of each
process and partition the cache dynamically in order to
minimize the number of misses. However, this approach
cannot enable the performance compositionality mainly
due to the fact that the associativity based partitioning
has a too low granularity to be able to allocate exclusive
cache parts to all tasks and common data of the system
such that compositionality can be achieved.

The authors of [5] and [9] propose a compositional data
(respectively instructions) cache organization. A direct
mapped cache can be partitioned and configured at com-
pile time and controlled by specific cache instructions at
run time, considerably outperforming a conventional cache.
For our purposes, the main drawbacks of this approach are
that it is restricted to direct mapped caches and it is un-
clear if inter-task sharing of data (image frames of a video
application for example) can be made compositional.

In [4] the cache is partitioned among tasks at compile
and link time. In [2] a method to divide a cache into par-
titions for each real-time task and a larger partition called
the shared pool for the non-real-time tasks is described.
In both approaches the authors do not take into account
tasks’ common region, so they are not applicable for our
environment.

Liedtke et al. propose in [3] a cache partitioning method
controlled by the operating system. The major drawbacks
of this method are the limitation to physically indexed
caches and the basic partitioning unit assignable to a task
of one memory page.

The present work differs from existing approaches in the
sense that we focus on achieving performance composition-
ality for application executed on multiprocessor platforms.
Compositionality is a desired property because it increases
the system predictability and it decreases the engineering
complexity. Efficient cache usage is a subsequent purpose
and should not disturb the compositionality.

III. Sharing data and instructions with enabling
compositionality

This section presents the proposed cache management
technique for achieving performance compositionality and
sharing the cache for tasks common data and instructions.

A. Target architecture

The envisaged architecture is the CAKE platform [10].
This platform consists of a homogeneous network of com-
puting tiles (like the one in Figure 1) on a chip. Each tile
contains CPUs (Trimedia and/or MIPS cores), a router (for
out of tile communication), and memory banks. The pro-
cessors are connected to memory by a fast, high-bandwidth
interconnection network. The on-tile memory is actually

used as a unified L2 cache, shared between processors, fa-
cilitating a fast access to the main memory which is outside
the chip. In this paper we use one tile of the multiproces-
sor. On such a tile, the CAKE platform implements a cache
coherence protocol among the different L1’s and L2.

. . . 

. . . L2
cache

CPU CPUCPU

L1 cache L1 cache L1 cache

memory

bank

memory

bankbank

memory

interconnection network

ON CHIP

DRAM MEMORY

Fig. 1. Multiprocessor target architecture

The applications executed on this architecture consist of
sets of tasks that communicate through the memory hi-
erarchy, thus through the shared cache. Three types of
parallelism are possible in multimedia applications: func-
tional parallelism (where tasks perform different operations
on the same data input), data parallelism (where task per-
forms the same operation on different parts of the input
data), and a mix of the two previous ones. In the case of
data parallelism multiple tasks execute the same instruc-
tions on different parts of the input data. Moreover, in-
dependently of the parallelism type, multimedia task usu-
ally share variables (for example reference frames for video
codecs). Thus, in media applications tasks share code an
data, denoted in this paper with ”common regions”.

Our work targets conventional, set associative caches [6].
Such a cache is a rectangular array of memory elements
arranged in ”sets” (rows) and ”ways” (columns). The set
where a data instance can be placed is uniquely identified
by a part of the data address. Inside that set, all the ways
are searched to determine if the data is present in cache. If
a data instance is not found in cache, it should be loaded.
Loading of new data in a cache set implies that, if the set is
full, data already existing there is swapped out of the cache.
In a multi-tasking environment is possible that two tasks Ti
and Tj have data mapped in the same cache set. Therefore,
when Ti’s data is loaded into the cache it may flush task
Tj ’s data, eventually causing a future Tj miss. This kind
of unpredictability constitutes a major problem for real-
time applications. Ideally, the designer would like to have
a compositional system such that the overall application
performance can be predicted based on the performance of
its individual tasks.

B. The proposed cache partitioning

A common method to achieve performance composition-
ality is by allocating to each task its own exclusive cache
part. But when tasks have common regions, a copy of such
a region will reside in the cache part of every task using it,
causing coherence problems and having a negative impact
on cache utilization. Another option is to provide a shared

405



cache partition for every common region, but then its com-
positionality cannot be achieved due to the inter-task cache
trashing in that shared cache part.

Our method first ensures that the instances of private
tasks data and common regions don’t trash each other in
cache. For that we restrict the cache sets used by every
task and every common region. We address this technique
as ”set based cache partitioning”. Subsequently, we create
the premises such that tasks don’t trash each other data in
the cache sets of the common regions. For the cache sets
sharing problem we present two possible solutions:

- The cache allocated to the common data is as large as
the data instance itself. In this case no misses occur, hence
no unpredictable trashing is present.

- Inside the cache sets of a common region tasks use the
data if it is already there (sharing) but on a miss they are
not allowed to flush other tasks ways (don’t interfere).

The first solution depends on the application and on the
available cache, so it is not always applicable. For instance,
for the state of the art video definition reference frame
buffers typically do not fit in the cache. The second so-
lution is more general and can be applied regardless of the
relation between the sizes of available cache and the com-
mon data. This general solution can be easily implemented
by allocating to the tasks a number of ways in the sets a
common region. Because the number of ways in the cache is
denoted by ”associativity” [6], we denote this partitioning
type as ”associativity based”.

In conclusion, for achieving performance compositional-
ity we use mixed cache partitioning like depicted in Figure
2. The dark gray cache part is allocated to task T0 and the
light gray cache part is allocated to task T1. In the shared
T0 and T1 cache region tasks can can query all the four
ways of the corresponding cache set for a hit. However, if
for example a T1 access misses in cache, the replacement
takes place only in T1’s two ways.

�������������
�������������
�������������
�������������

����������������������������������������������������

����������������������������������������������������

����������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������

�������������������������
�������������������������
�������������������������
�������������������������

Exclusive T1

Shared T0&T1

Exclusive T0
SET0

WAY1 WAY2 WAY3

SET N

.

.

.

WAY0

Fig. 2. Mixed cache partitioning

When using associativity based partitioning the tasks
that access the common region should have each at least
one way of the shared cache sets, so cache associativity
should be greater or equal with the number of tasks sharing
the common region. We note however that the maximum
number of tasks that share a common region is typically
smaller than the number of tasks forming an application.
Future research will investigate the options to overcome
this restriction.

We apply the cache partitioning on the L2 shared cache,
because it is the most affected by the inter-task run-time

conflicts and we make two assumptions. Since the levels of
cache private to each processor are usually small and task
switching rate in multimedia application is typically low
enough, we assume that L1 cache can be considered pri-
vate to each task. The second assumption is that our work
is part of a large framework used to ensure compositional-
ity, where every shared resource (busses, networks, mem-
ory banks, memory ports etc.) should be also managed for
performance compositionality. Our work targets the cache
strategy and ensure that the number of misses of every
task is not disturbed by other tasks. Subsequent mecha-
nisms should take care that a miss takes a limited num-
ber of cycles, independent on the concurrency or shared
resource contention. In this paper we assume that these
shared resources suffice such that they don’t interfere in
the compositionality of the system.

We chose the set based and not the associativity based
partitioning to isolate different tasks and common regions
footprints in the cache. The motivation for this choice is
that typically in a cache there are more sets than ways,
therefore set based partitioning allows every task to have
its own exclusive part. In a large L2 cache, the state-of-
the-art number of ways is around 16. If we would have
used associativity partitioning for task footprint isolation
and the application would have more than 16 tasks, some
cache ways should have been shared among tasks, lead-
ing to the already presented inter-task flushing problem.
Therefore, in general associativity partitioning cannot en-
able compositionaly except if the number of ways is smaller
or equal with the number of task in the considered appli-
cation. Moreover, the low granularity of the associativity
partitioning limits the options of improving performance
by tuning the partitioning ratio to the tasks requirements.

In the following we present the implementation issues
first for set based partitioning and then for associativity
based partitioning.

IV. Cache partitioning implementation

In the organization of conventional, set associative cache
the address splits in three parts: ”tag”, ”index” and ”off-
set” [6]. The index directly addresses a cache set (row).
Every set has a number of M ways (column). The tag
part of the address is compared against all the tag parts
stored in a set to determine if there is a hit in one of the
set’s ways. In the following subsections we present in detail
the two types of partitioning that we apply. Given that we
provide the mechanisms to support both set and associativ-
ity cache partitioning and the fact that their combination
does not require additional steps, mixed partition is also
supported.

A. Set based cache partitioning

In set based partitioning every task and every common
region get a number of sets from the cache, as depicted is
Figure 3 A. The set based cache partitioning requires trans-
lating the index part of the address such that it access an-
other cache set than it originally did. The index translation
mechanism is controlled by the task id (for a private tasks

406



data access), or by the common region id (for a common
region access), as in Figure 4. To avoid expensive modulo
operations, the partition sizes are limited to power of two
number or sets. A table provides the MASK and BASE
values for every task and common region. To clarify the
mechanism, let us assume that an access to data A has the
index idxA if the cache would have been conventional. We
denote by 2k the size of partition for A and by 2C the size of
the total cache (both size values are considered in number
of sets). The MASKA actually selects the k least represen-
tative bits of idxA (instead of doing modulo with the cache
size 2C we do only modulo with the partition size 2k). The
BASEA fills the rest of the C − k index bits such that dif-
ferent tasks accesses are routed in disjoint parts of cache.
After index translation, two addresses that didn’t have the
same old index might end up having the same new index.
Therefore, the old tag and old index bits form the new tag
used for correct cache lookup. Hence, every tag has 10-12
extra bits (depending on cache size), representing less that
1% of the total L2 area, so the penalty implied is negligible.
The execution of the coherence protocol takes few cycles;
therefore, in parallel with it, the index translation for L2
accesses can be performed. This parallel execution results
in no additional delay penalty involved for the extra index
translation.

. . ..

.

.

.

.

�����������������
�����������������
�����������������

���������������
���������������
���������������

��������������������������������������������������������������������

������������������������������������������������������������WAY MWAY 0

for Task 1

for Task 0SET 0

SET 1

SET N

Fig. 3. Set based cache partitioning

Fig. 4. Set based cache partitioning - implementation

In order to perform a correct exclusive set based par-
titioning each memory access should be labeled with its
corresponding task id or comm reg id. The task id for ev-
ery processor is stored in a register and updated at every
task switch, therefore it can be used directly. Common re-
gions consist of data or code. In the following we present
the options to obtain a common region id first for data and
then for code.

There are several ways to obtain an id for the common

task data. A comm reg id register could be used, so the
compiler should keep that register up to date. Alterna-
tively, a part of the address could be used to encode the
comm reg id. This approach requires a cache aware mem-
ory allocator, reduces the usable address space (fragmenta-
tion), and also requires adapting the compiler for handling
shared static data structures. Nevertheless, for dynamic
memory allocation the partitioning can be implemented
relatively straightforward by providing a dedicated malloc
for shared buffers. A third approach is to keep a table with
intervals of shared memory and for every access the cache
can lookup if the address has an associated comm reg id.
This third approach is more expensive in terms of area and
power. For our experiments we choose the third alterna-
tive because we are mainly interested in the system level
aspects (e.g., inducing the compositionality, implication in
miss rate). The third approach is more generic than the
others because any address range can be placed in any place
in the cache. This easily allows for other experiments, like
for example separating tasks’ instructions and static vari-
ables in the cache or sharing some cache partitions.

Using the same method as for shared data we can ob-
tain a comm reg id for the common code. However, this
approach requires extra analysis to determine the address
ranges of the common regions of code. Another option is to
distinguish between code and data accesses, by labeling the
L2 accesses coming from the L1 instruction cache as code.
At compile time it is known which tasks are instantiated
multiple time, therefore the entries of the index translation
tables can be set such that the shared code accesses are
routed into the same cache partition.

B. Associativity based cache partitioning

In associativity based partitioning a task gets a number
of ways from a part of the cache sets, as depicted is Figure 5.
This partitioning is called column caching [11]. Allowing
every task to search all the cache ways for a hit (but in
case of a miss to replace data only task’s own ways) easily
ensures sharing of common task regions.

. . ..

.

.

.

.

���������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������

�����
�����
�����
�����
�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	WAY MWAY 0

for
Task 0

for
Task 1

SET N

SET 0

SET 1

Fig. 5. Associativity based cache partitioning

The associativity based partitioning is implemented by
changing the cache replacement policy in case of a miss.
Depending on the task id only a restricted number of ways
of one set are used for victimizing old data and bringing in
missed data. The associativity based partitioning requires
small additional logic and the penalty can be neglected.

In the existing light-weighted operating system respon-

407



sible with task scheduling we added primitives for loading
and modifying the necessary tables and registering address
ranges of common regions. During application initializa-
tion the designer can load the translation tables such that
a desired cache partitioning is imposed.

V. Experimental results

For our experiments we used a CAKE multiprocessor
platform [10] with 4 Trimedia processor cores and 4 ways
associative L2 shared cache. The experimental workload
consists of two multi-tasking applications: a H.264 decoder
and a Picture-in-Picture-TV (PiPTV) decoder. Both ap-
plications exhibit mixed data and functional parallelism
and are separately simulated on the CAKE platform. Nev-
ertheless, our technique is not restricted to these appli-
cations. For instance, every data parallel multimedia ap-
plication can benefit from instruction cache sharing in a
compositional manner.

The H.264 decoder consists of several tasks [13]. First an
entropy decoder task processes the input stream and passes
the data via a scheduler to a set of transform decoders and
loop filters tasks doing inverse quantization, transforma-
tion, prediction respectively deblocking on different parts
of the image. The transform decoders and loop filters are
data parallelized. They share the instructions and the ref-
erence frames.

The PiPTV consists of multiple tasks: two mpeg2 de-
coders, two video scalers, video multiplexing and demul-
tiplexing. The application is described in YAPI and it is
based on the work in [12].

Our experiments investigate two issues: (1) composition-
ality and (2) cache partitioning implications in system per-
formance. The used partitioning ratio is chosen such that
the overall application number of misses is minimized. The
process of finding this optimized ratio has first an informa-
tion gathering phase during which every task is individually
simulated having different amounts of cache. Then the op-
timized partitioning ratio is computed by minimizing the
sum of all task misses, under the constraint that all allo-
cated cache is not larger than the available cache.

We study the compositionality using the variation be-
tween the sum of misses of individual tasks in isolation
and the number of misses of the complete application. The
misses of every individual tasks in isolation are obtained
during the gathering phase. The number of misses of the
complete application is obtained by simulating all the tasks
together, using the optimized partitioning ratio. For both
examples the variation are smaller than 3%, so we can con-
clude that compositionality is achieved within reasonable
bounds. The 3% difference is due to the neglected effects
like L1 presence, task switching and migration.

The performance implications of mixed partitioning are
studied by comparing the L2 number of misses and ex-
ecution time for two cache configurations: (1) the cache
fully shared, and (2) the cache partitioned as proposed in
this paper, with the partitioning ratio optimized for overall
least number of misses. We execute the applications with
standard definition test sequences having different degree

of detail and movement [14]. In Figures 6, respectively 7,
the average miss rate and completion time for the two stud-
ied cache configurations are presented for the PiPTV and
respectively H.264 applications.

For both application one can observe that, for a small L2
size mixed partitioning degrades the performance of the
cache with up to 7%. This results in execution time in-
crease 20% for the PiPTV application and 25% for the
H.264 decoder. For the rest of the considered L2 sizes, the
partitioned cache outperforms or it is at least as good as
the shared cache. In these cases, the average miss rate re-
duction of partitioned cache over the shared cache is at 6%
for the PiPTV application and 3% for the H.264 decoder.

The typical L2 sizes for the CAKE platform are around
2 MBytes [10]. For this size the reductions in miss rate are
as follows: 3% for H.264 and 9% for PiPTV. The miss rate
reductions results in execution time improvement of 5% for
the H.264, respectively 16% for the PiPTV.

Two phenomenons determine the number of misses dif-
ference between a shared and a partitioned cache. If the
cache is partitioned, the inter-task cache flushing is elim-
inated (which means less misses) but every task can use
less cache space than in the shared case (which means more
misses). In our examples one can observe that for a small
L2 size the second effect is dominant, whereas for larger
L2’s eliminating inter-task flushing leads to performance
improvement. The variation of execution time with the
number of misses is not linear because by minimizing the
overall number of misses the sum of tasks execution times
is minimized. However, because the tasks are executed in
parallel the overall completion time is given by the criti-
cal path in the application and it is not the sum of tasks
execution times.

Fig. 6. PiPTV: shared vs. partitioned cache

Fig. 7. H.264: shared vs. partitioned cache

408



VI. Conclusions

This paper proposed a method that contributes to the
use of a multiprocessor with shared caches in real-time sys-
tems. We developed a set and associativity based cache
partitioning technique that ensure performance compos-
tionality within reasonable bounds and allows cache shar-
ing for common tasks data and/or instructions. Apart from
allowing the designer to predict the overall performance out
of the performance the parts, compositionality enables also
reuse and easy integration of tasks into systems, which de-
creases engineering efforts, therefore shortens the time to
market.

Our method removed the inter-task cache interference
by using two cache partitioning types. First, each task and
each inter-task common data had allocated a exclusive part
of the cache sets. Second, inside the cache sets of common
data each task accessing it had allocated a number of ways.
The proposed method was applied to the shared L2 cache
of a CAKE multiprocessor. Two multi-tasking applications
were used for the practical experiments: H.264 decoding
and picture-in-picture-TV. Our experiments indicate that,
for both applications, using our partitioning scheme the
sum of misses of the individual tasks executed separately
and the number of misses of all tasks executed concurrently
differs at most by 3%, so we can conclude that composition-
ality was achieved within reasonable bounds. Additionally,
for typical L2 sizes, the partitioned cache outperformed
the fully shared cache leading up to 16% execution time
reduction. Future work includes dynamic repartitioning
strategies.

References

[1] L. Chunho, M. Potkonjak, W.H. Mangione-Smith. Media-
Bench: A Tool for Evaluating and Synthesizing Multimedia
and Communicatons Systems. In International Symposium on
Microarchitecture, 1997.

[2] D.B. Kirk. SMART (Strategic Memory Allocation for Real-
Time) Cache Design. In IEEE symposium on Real Time Sys-
tems, 1989.

[3] J. Liedtke, H. Härtig, M. Hohmuth. OS-Controlled Cache PRe-
dictability for Real-Time Systems. In 3rd IEEE Real-Time
Technology and Applications Symposium, 1997.

[4] F. Mueller. Compiler Support for Software-Based Cache Parti-
tioning. In ACM SIGPLAN Notice, 1995.

[5] H. Muller, D. Page, J. Irwin, D. May. Caches with Composi-
tional Performance. In Proceedings, Embedded Processor De-
sign Challenges, 2002.

[6] J.L. Hennesy, D.A. Patterson. Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers, 2003.

[7] B.A. Nayfeh, K. Olukotun, ”Exploring the Design Space for a
Shared-Cache Multiprocessor”, In ISCA, 1994

[8] E.G. Suh, L. Rudolph, S. Devadas, ”Dynamic Partitioning of
Shared Cache Memory”, In The Journal of Supercomputing,
2004

[9] J. Irwin, D. May, H. Muller, D. Page, ”Predictable Instruction
Caching for Media Processors” In 13th International Confer-
ence on Application-specific Systems, Architectures and Pro-
cessors (ASAP) 2002

[10] J.T.J. van Eijndhoven, J. Hoogerbrugge, M.N. Jayram, P.
Stravers, A. Terechko, ”Cache-Coherent Heterogeneous Multi-
processing as Basis for Streaming Applications”, In In Dynamic
and robust streaming between connected CE-devices, to appear
in 2005.

[11] D. T. Chiou ”Extending the Reach of Microprocessors: Column
and Curious Caching”, PhD thesis Department of EECS, MIT,
Cambridge, MA, 1999.

[12] E.A. de Kock, and all ”YAPI: application modeling for signal
processing systems”, In Proceedings, 37th conference on Design
Automation ,2000.

[13] E.B. van der Tol, E.G. Jaspers, R.H. Gelderblom. ”Mapping of
H.264 decoding on a multiprocessor architecture, In Image and
Video Communications and Processing, 2003

[14] ftp://ftp.ldv.e-technik.tu-muenchen.de/pub/test sequences/
[15] A.M. Molnos, M.J.M. Heiligers, J.T.J. van Eijndhoven, S.D.

Cotofana ”Compositional memory systems for multimedia com-
municating tasks”, in Proceedings, DATE, 2005

409


