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Abstract. In this paper, we report on the backend C compiler developed
to target the Virtex II Pro PowerPC processor and to incorporate the
Molen architecture programming paradigm. To verify the compiler, we
used the multimedia video frame M-JPEG encoder of which the Discrete
Cosine Transform (DCT*) function was mapped on the FPGA. We ob-
tained an overall speedup of 2.5 against a maximal theoretical speedup of
2.96. The performance efficiency of 84 % is achieved using automatically
generated but non-optimized DCT* hardware implementation.

1 Introduction

Reconfigurable computing (RC) is becoming increasingly popular as it bears the
promise of combining the flexibility of software with the performance of hard-
ware. Some concern can be expressed because the current state of the art assumes
that the developer has a deep understanding of both software and hardware de-
velopment before the benefits of this technology can be exploited. This justified
concern underlines the necessity to intensify research and development efforts to
support the designer in this process. The Delft Workbench is an initiative that
investigates the integration and development of tools supporting the different de-
sign phases starting at code profiling, synthesis and ending at the generation of
binary code. The idea is to automate as much as possible the design exploration
and the final development process. This paper addresses an important part of
the tool chain, namely the construction of a backend compiler that targets such
a hybrid platform. The compiler allows on the basis of function annotations, the
automatic modification of applications to generate the appropriate binaries.

The current paper reports on the completed compiler targeting the Molen
implementation on the Virtex IT Pro platform FPGA. The contributions of the
paper can be summarized as follows :

— A compiler backend targeting the PowerPC processor included in the Molen
prototype has been developed.

— The theoretical compiler extensions presented in [1] have been implemented
and adjusted to the target Field-programmable Custom Computing Machine
(FCCM) features.

— Software/hardware development tools have been integrated to automatize
the design flow phases.



The application that was used for experiments is M-JPEG encoder. Mea-
surements show that the resulting code executed on the implementation of the
Molen organization on the Virtex II Pro board, allows to obtain overall speedups
of 2.5 when compared to the software only execution. We emphasize that the
goal of this experiment is not to study multimedia extensions but rather to
provide a proof of concept of the compiler toolset targeting FCCMs. We also
stress that in contrast to the work discussed in [1], the presented paper bases all
experimentation on a real Molen prototype rather than estimations.

The paper is organized as follows. In the next section, we present the Molen
organization and discuss related work. In section 3, we present the compiler
extensions required for the PowerPC processor and the Molen prototype. We
then present the case study where the computation intensive DCT function is
mapped on the reconfigurable fabric and show that speedups of 2.5 are achieved.

2 Background and Related Work

In this section, we briefly discuss the Molen programming paradigm [2], describe
the Molen machine organization that supports it and discuss related work.

The Molen programming paradigm [2] is a sequential consistency paradigm
for programming FCCMs possibly including a general-purpose computational
engine(s). The paradigm allows for parallel and concurrent hardware execution
and is intended (currently) for single program execution. For a given ISA, a one
time architectural extension (based on the co-processor architectural paradigm)
comprising 4 instructions (for the minimal 7ISA as defined in [2]) suffices to
provide an almost arbitrary number of operations that can be performed on the
reconfigurable hardware. The four basic instructions needed are set, execute,
movtx and movfx. By implementing the first two instructions (set/execute)
an hardware implementation can be loaded and executed in the reconfigurable
processor. The movtx and movfx instructions are needed to provide the
communications between the reconfigurable hardware and the general-purpose
processor (GPP). The Molen machine organization [3] that supports the Molen
programming paradigm is described in Figure 1. The two main components in
the Molen machine organization are the ‘Core Processor’, which is a GPP and
the ‘Reconfigurable Processor’ (RP). Instructions are issued to either processors
by the ‘Arbiter’ by means of a partial decoding of the instructions received from
the instruction fetch unit. The support for the SET/EXEC instructions required
in the Molen programming paradigm is based on reconfigurable microcode. The
reconfigurable microcode is used to emulate both the configuration of the Custom
Computing Unit (CCU) and the execution of implementations configured on the
CCU. A detailed description of how the Molen organization and programming
paradigm compare with other approaches is presented in [1].

An overview of research that aims to combine GPPs and reconfigurable hard-
ware and to provide software support for programming these FCCMs and a
discussion of how they relate to research reported in this paper includes the
following;:
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Fig. 1. The Molen machine organization

Reconfigurable Architectures Performance: Several reconfigurable ar-
chitectures have been proposed in the last decade (see [4] for a classification).
The reported performance improvements are mainly based on simulation (see
for example [5]) or estimation (e.g. [6] [7]) results. Eventhough some implemen-
tations exist [8], in most cases the performance is just estimated. In this paper,
we present the validation of the Molen approach based on a real and running
implementation of the Molen reconfigurable processor platform.

Compilers for Reconfigurable architectures: When targeting hybrid ar-
chitectures to improve performance, the applications must be partitioned in such
a way that certain computation intensive kernels are mapped on the reconfig-
urable hardware. Such mapping is not simple as it assumes deep understanding
of both software and hardware design. Several approaches (e.g. [5] [7]) use stan-
dard compilers to compile the applications to FCCMs. As standard compilers do
not target reconfigurable architectures, the kernel computations implemented in
hardware are manually replaced by the appropriate instructions for communica-
tion with and controlling the reconfigurable hardware. This replacement is done
manually and it is a time-consuming [9] and error-prone process. In order to
facilitate the design and development process, much effort is put in the develop-
ment of automated tools (compilers) to perform such tasks [10] [6] [11]. However,
the extensions of the cited compilers mainly aim to generate the instructions for
the reconfigurable hardware and they are not designed to easily support new
optimizations that exploit the possibilities of the reconfigurable hardware. The
Molen compiler presented in this paper, is based on a a flexible and extensible in-
frastructure that allows to add easily new optimization and analysis passes that
take into account the new features of the target reconfigurable architecture.



Compiler Support for Hiding the Reconfiguration Latency: One of
the major drawbacks of the reconfigurable hardware is the the huge reconfig-
uration latency [12] [4]. Different techniques such as configuration caching and
prefetching (e.g. [3]) have been proposed to reduce the reconfiguration latency.
These hardware techniques should be combined with compiler optimizations
that provide an efficient instruction scheduling to use the available parallelism
between different FCCMs components in the hardware reconfiguration phase.
Nevertheless, many FCCMs do not expose a specific instruction for hardware
reconfiguration (see [4] for FCCMs classification), thus impeding compiler sup-
port for hiding reconfiguration latency. We schedule the SET instruction (which
performs the hardware configuration) as early as possible from the hardware
execution phase, resulting in exploiting the parallelism between the GPP and
the FPGA during the configuration stage.

3 The Molen Compiler

The Molen compiler comprises the Stanford SUIF2[13] (Stanford University In-
termediate Format) Compiler Infrastructure for the front-end and the Harvard
Machine SUIF framework[14] for developing compiler backends and optimiza-
tion. In [1], the theoretical compiler extensions target a virtual Molen recon-
figurable architecture including an 286 processor as a GPP. In this section we
present the implemented compiler backend and extensions required for the Molen
hardware implementation on the Virtex II Pro platform FPGA which includes
a PowerPC processor.

PowerPC Backend: The first step is to have a backend C-compiler that
generates the appropriate binaries to be executed on the PowerPC processor
integrated on the Virtex II Pro board. Current MachineSUIF backends excluded
the backend for PowerPC architecture. In consequence, we developed a PowerPC
compiler backend and implemented the PowerPC instruction generation, Pow-
erPC register allocation, PowerPC EABI stack frame allocation and software
floating-point emulation (not completed). Additionally, in order to exploit the
opportunities offered by the reconfigurable hardware, the PowerPC backend has
to be extended in several directions, as described in the rest of this section.

Hiding Configuration Latency: Due to the lack of support for dynamic
reconfiguration in the current Molen implementation ( there was not sufficient in-
formation about the Virtex IT Pro platform) and taking into account that in our
experiments there is only one function (DCT*) executed on the reconfigurable
hardware, the Molen compiler generates in advance only one SET instruction
for DCT* at the application entry point. The SET instruction does not stall
the GPP implying that the compiler can issue this instruction as far ahead as
possible from the hardware execution phase. This scheduling allows the GPP to
execute in parallel with the FPGA during the configuration stage. This is partic-
ularly useful for the cases when the SET instruction is initially included in a loop.
Thus, issuing the SET instruction at the application entry point avoids unneces-
sary repetitive hardware configuration. The cases when multiple operations are



sequentially executed on the reconfigurable hardware and do not simultaneously
fit on the target FPGA are not covered by this scheduling.

Compiler Extensions for Molen Implementation: First of all, a general
purpose reconfigurable architectural scheme (presented in [3]) has been adopted.
We implemented the minimal instruction set extension, containing the following:

— SET/EXECUTE instructions are included in the MIR (Medium-level Inter-
mediate Representation) and LIR (Low-level Intermediate Representation)
of the Molen compiler. In order not to modify the PowerPC assembler and
linker, the compiler generates the instructions in binary form. For exam-
ple, for the instruction exec 0z80000C the generated code is .long 14000031
where the encoding format (presented in [15]) is recognized by the arbiter.

— MOVTX/MOVFX: The equivalent PowerPC instructions are mtdect/mfdcr.
Moreover, the XRs (exchange registers) are not physical registers but they
are mapped at fixed memory addresses.

la 3, 12016(1) #load the address of the first param

la 12, 12016(1) #load the address of the second param
mtdcr 0x00000056,3 #send the address of the first parameter
mtdcr 0x00000057,12 #send the address of the second parameter

sync #

nop #synchronization

nop #

nop #

bl main. label0 Ffinstr. required by the arbiter impl.

main._labelQ:
Jong 0x1A000031 #exec 0x8000C
nop #synchronization

Fig. 2. Code generated by the Molen compiler for the reconfigurable DCT* execution

In Figure 2, we present the code generated by the Molen compiler for the
DCT* function call executed on the reconfigurable hardware. In order to cor-
rectly generate the instructions for hardware configuration and execution, the
compiler needs information about the DCT* hardware implementation. This
information is described in an FPGA Description File, which contains for the
DCT* operation the fields presented in Figure 3. Line 2 defines the start memory
address from where the XRs are mapped. In line 3, the compiler is informed that
there is a hardware implementation for the DCT* operation with the microcode
addresses for SET/EXECUTE instructions defined in lines 4-5. The sync instruc-
tion from Figure 2 is a PowerPC instruction that ensures that all instructions
preceding sync in program order complete before sync completes. The sequences
of sync and nop instruction are used to flush the processor pipeline. The SET
instruction is not included in the above example because it has been scheduled
earlier by the Molen compiler previously presented.



1: NOXRS = 512 # number of available XRs

2: START XR = 0x56 # the memory address of the first XR,

3: OP.NAME = dct # info about the DCT* operation

4: SET_ADDR = 0x39A100 # the address of the DCT* SET microcode
5: EXEC_ADDR = 0x80000C # the address of the DCT* EXEC microcode
6: END_OP # end of the info about the DCT* operation

................................. # info about other operations
Fig. 3. Example of an FPGA Description File
4 M-JPEG Case Study

In this case study we report the performance improvements of the Molen im-
plementation on the Virtex II Pro for the multimedia video frame M-JPEG
encoder.

Design Flow: The design flow used in our experiments is depicted in Fig-
ure 4. In the target application written in C, the software developer introduces
pragma annotations for the functions implemented on the reconfigurable hard-
ware. These functions are translated to Matlab and processed by the COM-
PAANJ16]/LAURAJ17] toolchain to automatically generate the VHDL code. The
commercial tools can then be used to synthesize and map the VHDL code on
the target FPGA. The application is compiled with the Molen compiler and the
executable is loaded and executed on the target Molen FCCM.

M-JPEG

encoder
C application

Main.c .-
DCT.c

#pragma call flgga dct
*in,

void dct(TBlocl
Thlock *out ) {

}

b
SW Implemention W Implemention
MATLAB

MOLEN COMPILER

Assembler
Linker
(_ VHDL synthesizer )
PowerPC MOLEN FPGA
405 FCCM

VIRTEX Il Pro Platform FPGA

Fig. 4. The design flow

M-JPEG, Software and Hardware Implementations: The application
domain of these experiments is the video data compressing. We consider a real-
life application namely Motion JPEG (M-JPEG) encoder which compresses se-
quences of video frames applying JPEG compression for each frame. The in-



put video-frames used in these experiments are presented in Table 1. The M-
JPEG implementation is based on the public domain implementation described
in "PVRG-JPEG CODEC 1.1”, Portable Video Research Group, Stanford Uni-
versity. The most demanding function in M-JPEG application is 2D DCT with
preshift and bound transforms (named in this paper as DCT*). In consequence,
DCT* is the first function candidate for hardware implementation. The only
modification of the M-JPEG application that indicates the reconfigurable DCT*
execution is the introduction of the pragma annotation as presented in Figure
4. The hardware implementation for execution of the DCT* function on the
reconfigurable hardware is described in [9]. The VHDL code is automatically
extracted from the DCT* application code using COMPAANJ[16]/LAURAJ[17]
tools. The Xilinx IP core for DCT and the ISE Foundation[18] are used to syn-
thesize and map the VHDL code on the FPGA. After the whole application is
compiled with the Molen compiler described in the previous section, in the final
step we use the GNU assembler and linker and the C libraries included in the
Embedded Development Kit (EDK) [19] from Xilinx to generate the application
binary files. The target FCCM is the implementation of the Molen reconfigurable
architecture on the Virtex II Pro platform FPGA of Xilinx described in [15]. In
this implementation, the GPP is the IBM PowerPC 405 processor immersed into
the FPGA fabric.

Name |# frames|Resolution|Format|Color/BW
[pixels]

tennis 8 48x48| YUV color

barbara 1 48x48| YUV color

artemis 1 48x48| YUV color

Table 1. M-JPEG video sequences

Performance Measurements: The current Molen implementation is a pro-
totype version, which imposes the following constraints:

— the memory size for text and data sections are limited to maximum 64K. In
order for the M-JPEG executable to fulfill these limitations, we rewrote the
original application preserving only the essential features for compressing
sequences of video frames. Moreover, these limitations also restrict the size
of the input video frames to 48x48 pixels (Table 1, column 3).

— dynamic reconfiguration is not supported (yet) on the Molen prototype. In
consequence, we could not measured the impact on performance of repetitive
hardware configurations.

In addition, the performance measurements have been performed given the
following additional conditions:

— the input/output operations are extremely expensive for the current Molen
prototype, due to the standard serial connection implemented by UART at
38400 bps between the Molen prototype and the external environment; this



limitation can be removed by the implementation of faster I/O system. We
therefore did not include the I/O operation impact in our measurements as
they are not relevant for RC paradigm

— the DCT* hardware implementation requires a different format for the in-
put data than the software implementation. Consequently, an additional
data format conversion is performed in software before and after the DCT*
execution on reconfigurable hardware.

— taking into account that the target PowerPC processor included in the
Virtex-II Pro platform does not provide hardware floating-point support and
that the required floating-point software emulation is extremely expensive,
the integer DCT is used for both software and hardware implementation to
allow a fair comparison.

The execution cycles for M-JPEG encoder and comparisons are presented in
Table 2. As we considered a sequence of 8 video frames for tennis input sequence,
we present only the minimal and maximal values for each measurement in order
to avoid redundant information.

Pure Software Execution: In Table 2(a), we present the results of our
measurements performed on the the Virtex II Pro platform, when the M-JPEG
application is entirely executed on the PowerPC processor. In row 1, the number
of cycles used for executing the whole M-JPEG application is given. In row
2, the cycles consumed by one execution of the DCT* function are given and
the next row contains the total number of cycles spent in DCT*. From these
numbers, we can conclude that 66% of the total execution time is spent in
the DCT* function, given the input set. This 66% represents the maximum
(theoretical) improvement that can be obtained by hardware acceleration of the
DCT* function. The corresponding theoretical speedup - using Amdahl’s law -
is presented in Table 2(c), row 2.

Execution on the Molen prototype: In Table 2(b), we present the num-
ber of cycles for the M-JPEG execution on the Molen prototype. From row 1
we can conclude that an overall speedup of 2.5 (Table 2(c), row 1) is achieved.
The DCT* execution on the reconfigurable hardware takes 4125 cycles (row 2)
which is around 300 times less than the software based execution on the Pow-
erPC processor (Table 2(a), row 2). However, due to the data format conversion
required by the DCT* hardware implementation, the overall number of cycles
for one DCT* execution becomes 102,589 (Table 2(b), row 3), resulting in a
10 fold speedup for DCT* and a 2.5 speedup globally. The performance effi-
ciency is about 84% as presented in Table 2(c), last column. It is noted that this
efficiency is achieved even though i) the hardware implementation has been auto-
matically but non-optimally obtained (using COMPAAN([16]/LAURAJ[17] tools)
and ii) additional software data conversion diminished the DCT* speedup in
hardware. From these measurements, we can conclude that even non-optimized
implementation can be used to achieve considerable performance improvements.
In addition, taking into account that only one function (DCT*) is executed on
the reconfigurable hardware, we consider that an overall M-JPEG speedup of



tennis [0-7] barbara| artemis
MIN]  MAX
M-JPEG |33,671,821|33,779,813|34,014,157|34,107,893
Pure DCT* 1,242,017| 1,242,017| 1,242,017| 1,242,017
Software DCT* 22,356,306(22,356,306|22,356,306(22,356,306
Execution | cumulated
(a) Maximal 66.18% 66.39% 65.73% 65.55%
improvement
Execution on| M-JPEG |13,443,269(13,512,981(13,764,509|13,839,757
Molen DCT* HW 4,125 4,125 4,125 4,125
prototype [DCT* HW + 102,589 102,589 102,589 102,589
(b) Format conv.
Practical 2.50 2.51 2.47 2.46
speedup
Comparison | Theoretical 2.96 2.98 2.92 2.90
(c) speedup
Efficiency 84.17% 84.65% 84.70% 84.91%

Table 2. M-JPEG execution cycles and comparisons

2.5x from the theoretical speedup of 2.96 x confirm the viability of the presented
approach.

5 Conclusions

In this paper, we presented the implemented compiler support for the Molen
implementation on the Virtex IT platform FPGA. The compiler allows the auto-
matic modification of the application source code using the extensions following
the Molen Programming Paradigm. The experiment evaluated the effectively re-
alized speedup of reconfigurable hardware execution of the DCT* function of the
M-JPEG application. The generated code was executed on the Molen prototype
and showed a 2.5 speedup. This speedup consumed 84% of the total achievable
speedup which amounts to 2.9. Taking into account that hardly any optimiza-
tion was performed and only one function ran on the reconfigurable fabric, a
significant performance improvement was nevertheless observed. We emphasize
that we do not compare the RC paradigm to other approaches for multimedia
applications boosting performance (such as MMX, 3DNow!, SSE). The focus of
this paper was rather on the compiler support for the Molen FCCM under the
RC paradigm. Further research on the compiler will address optimizations for
dynamic configurations and parallel execution on the reconfigurable hardware.
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