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Abstract— The ability to control the transport of individual
electrons within single electron tunneling based circuits cre-
ates the conditions for implementing single electron encoded
threshold logic gates. This paper investigates the implemen-
tation of binary addition based on such gates. We first
propose implementations of full adder and 4-bit lookahead
carry generator blocks and verify the designs by means of
simulation. We then evaluate the area, delay, and power
consumption of 16-bit and 64-bit ripple carry and carry-
lookahead adders based on these blocks.

Index Terms— Single electron tunneling, threshold logic
circuits, addition

I. INTRODUCTION

Addition is a basic operation that is frequently used
in arithmetic circuits. This paper investigates ripple carry
(RC) and carry-lookahead (CLA) addition based on full
adders and carry generators. We propose single electron
encoded threshold gate based implementations of these
blocks and calculate their area, delay and power consump-
tion. Based on the obtained results we estimate the same
for 16-bit and 64-bit RC and CLA adders.

The remainder of this paper is organized as follows.
Section II briefly presents the SET theory and threshold
logic gate. Section III proposes threshold gate based full
adder and carry generator implementations. Section IV
investigates 16 and 64 bit ripple carry and carry-lookahead
adders based on these implementations. Finally, Section V
concludes the paper.

II. BACKGROUND AND GENERIC THRESHOLD GATE

Single Electron Tunneling (SET) circuits [1], [2] are
centered around tunnel junctions. Charge transport through
a tunnel junction is referred to as tunneling, the transport of
a single electron is referred to as a tunnel event. Tunneling
is a stochastic process. The critical voltage Vc across a
tunnel junction is the voltage threshold that is required
to create a non-zero probability that a tunnel event will
occur. If we define the voltage across a junction as Vj , it
is assumed that a tunnel event through this tunnel junction
will occur if and only if |Vj | ≥ Vc.

Given the stochastic nature of electron tunneling, delay
cannot be analyzed in the traditional sense. Instead, one
can describe the switching delay as

td =
−ln(Perror)qeRt

|Vj | − Vc

(1)

where Perror is the chance that the desired tunnel event
has not occurred after td seconds. For the tunnel resistance
we assume Rt = 105Ω (though depending on the physical
implementation this value is typically assumed).

When charge transport occurs through a tunnel junction,
the difference in the total amount of energy present in the
circuit before and after the tunnel event can be calculated
by

∆E = Einitial −Efinal = qe(|Vj | − Vc) (2)

Therefore the energy consumed by switching activity can
be calculated by summarizing the energy ∆E consumed
by each of the individual tunnel events.

The implementations discussed in here are independent
of their physical implementation. Circuit area is evaluated
in terms the total number of utilized circuit elements
(capacitors and junctions) in order to provide a metric
for comparison. Thermally induced tunneling and co-
tunneling are beyond the scope of this investigation.

Threshold logic gates are devices that are able to com-
pute any linearly separable Boolean function given by:

F (X) = sgn{F(X)} =

{

0 if F(X) < 0
1 if F(X) ≥ 0

(3)

where F(X) =
∑n

i=1 ωixi − ψ, xi are the n Boolean
inputs and wi are the corresponding n integer weights. The
linear threshold gate performs a comparison between the
weighted sum of the inputs Σn

i=1ωixi and the threshold
value ψ. If the weighted sum of inputs is greater than
or equal to the threshold, the gate produces a logic 1.
Otherwise, the output is a logic 0.

A generic SEEL threshold gate structure has been
proposed earlier in [3] and is depicted in Figure 1(a).
The generic threshold gate can be used as a basis for
implementing linear threshold gates with both positive
and negative weights. However, due to the passive nature
of the threshold gate, buffers are required in order for
the gate to operate correctly in networks [4]. A buffer
requires active components, for which SET transistors can
be utilized (see for example [5]). If two SET transistors
share a single load capacitor, such that one transistor can
remove a single electron from the load capacitor (resulting
in high output) while the other can replace it, we arrive at
the non-inverting static buffer [6] depicted in Figure 1(b).
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Fig. 1. Linear Threshold Gates (LTG) and inverting buffer.

In the remainder of this paper, the following parameters
will be consistently used. For input variables and supply
voltages we use logic ’0’ = 0 Volt and logic ’1’ = Vb =
Vs = 16mV . For the threshold gate and the inverting
buffer we use: Cj = Cg = C1 = C2 = C3 = C4 =
0.1aF , Cc = 4.85aF , Cl = 9.8aF , and ΣCn + Co =
9.8aF . We assume an error probability Perror = 10−8.

The SET threshold gate combined with the inverting
output buffer serves as a basic building block for the
implementations discussed in the remainder of this paper.

III. ADDITION BUILDING BLOCKS

The full adder block and the lookahead carry generator
block form the basis for ripple-carry adders and carry-
lookahead adders. This section presents the threshold gate
based implementations of these two blocks.

A. Full Adder

The full adder (FA) calculates the addition of two input
bits (ai and bi) and a carry-in ci−1, and produces a sum
bit si and a carry-out ci. A threshold gate based FA can be
implemented in two gates and in two logic levels [7], and
is defined in correspondence with Equation (3) as follows

ci = sgn{ai + bi + ci−1 − 2} (4)
si = sgn{ai + bi + ci−1 − 2ci − 1} (5)

Given that the threshold gate discussed in Section II
requires an inverting buffer, each of the above threshold
equations is implemented as a threshold gate calculating
its inverse (calculating for example ci instead of ci). Thus
when combined with an inverting buffer the gates produce
the correct output. Inverted threshold equations can be
derived in a straightforward manner by inverting the sign
of each weight, and subtracting 1 from the threshold value
and inverting the sign of the result. Consequently, the FA

implementation based on buffered threshold gates adheres
to the structure displayed in Figure 2.
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Fig. 2. Threshold gate based full adder implementation.

In order to evaluate the FA implementation the following
circuit parameters are utilized (in addition to the general
parameters described in Section II). For tlg1 we use
Cn

1 (ω = −1) = Cn
1 (ω = −1) = Cn

1 = (ω = −1) =
0.5aF , Cb = 12.1aF . For tlg2 we use Cn

1 (ω = −1) =
Cn

1 (ω = −1) = Cn
1 = (ω = −1) = 0.2aF , Cp

1 (ω =
2) = 0.6aF , Cb = 12.1aF . The FA implementation has
been verified by means of simulation using the single-
electron device and circuit simulator SIMON (SIMulation
Of Nanostructures) [8]. The simulation results are depicted
in Figure 3. As can be observed, the FA’s logic function
is correctly implemented.
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Fig. 3. Threshold gate based full adder - simulation results.

B. Lookahead Carry Generator

Carry-lookahead addition is based on unrolling the
recurrence in the calculation of the carry. Each carry ci+1

is calculated as ci+1 = gi + pici, where gi = aibi
and pi = ai + bi. After a single unrolling step we find
ci+1 = gi + pigi−1 + pipi−1ci−1. The unrolling process
can be continued further, such that all carries are generated
in parallel. However, given that the number of gate inputs
is limited, 4-bit lookahead carry generators, as depicted in
Figure 4, are typically used as building blocks for larger
networks. The output signals g[i,i+3] and p[i,i+3] are the
generate and propagate signals of the entire 4-bit block.
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Each output signal of the 4-bit lookahead carry genera-
tor can be formulated as a single threshold logic equation
[9]. However, in order to reduce the size of the weights,
we utilize the intermediate signal g[i,i+2]. Resulting, the
calculation of the output signals of the 4-bit lookahead
carry generator (type 1) can be implemented by 6 thresh-
old gates and in 2 logic levels as follows.

g[i,i+2] = sgn{5gi+2 + 3pi+2 + 2gi+1 + pi+1

+gi − 5} (6)
ci+1 = sgn{2gi + pi + ci − 2} (7)
ci+2 = sgn{5gi+1 + 3pi+1 + 2gi + pi

+ci − 5} (8)
ci+3 = sgn{4g[i,i+2] + pi+2 + pi+1 + pi

+ci − 4} (9)
p[i,i+3] = sgn{pi+3 + pi+2 + pi+1 + pi − 4} (10)
g[i,i+3] = sgn{2gi+3 + pi+3 + g[i,i+2] − 2} (11)

Each of the above threshold equations is implemented
as a threshold gate calculating the inverse (derived by
means of the method described in Section III-A) and an
inverting buffer. In order to evaluate the implementation
the following circuit parameters are utilized (in addition to
the general parameters described in Section II). For tlg1
(g[i,i+2]) and tlg3 (ci+2) we use Cn

1 (ω = −5) = 0.75aF ,
Cn

2 (ω = −3) = 0.45aF , Cn
3 (ω = −2) = 0.3aF , Cn

4 (ω =
−1) = Cn

5 (ω = −1) = 0.15aF , Cb = 11.9aF . For tlg2
(ci+1) and tlg6 (g[i,i+3]) we use Cn

1 (ω = −2) = 1aF ,
Cn

2 (ω = −1) = Cn
3 (ω = −1) = 0.5aF , Cb = 12.1aF .

For tlg4 (ci+3) we use Cn
1 (ω = −4) = 1aF , Cn

2 (ω =
−1) = Cn

3 (ω = −1) = Cn
4 (ω = −1) = Cn

5 (ω =
−1) = 0.25aF , Cb = 12.5aF . For tlg5 (p[i,i+3]) we
use Cn

1 (ω = −1) = Cn
2 (ω = −1) = Cn

3 (ω = −1) =
Cn

4 (ω = −1) = 0.5aF , Cb = 16aF . The implementation
has been verified by means of simulation (using SIMON
[8]). The simulation results are depicted in Figure 5. The
inputs gi+1, gi+2 and gi+3 have not been depicted as they
remain 0. As can be observed, the logic function of the
4-bit lookahead carry generator is correctly implemented
by the threshold gate network.

Carry generator blocks are used as components of carry-
lookahead adders. A 16 bit carry-lookahead adder for
example consists of a tree structure of 5 4-bit lookahead
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Fig. 5. Type 1 lookahead carry generator - simulation results.

carry generator blocks. The gi and pi inputs are either the
group generate and propagate outputs signals of another
carry generator (g[i,i+3] and p[i,i+3]) or calculated directly
from the adder’s input signals (gi = aibi and pi = ai+bi).
In the second case this would require an additional 8 gates
per carry generator block. However, with threshold logic
these calculations can be embedded within the block. This
results in the type 2 lookahead carry generator block,
whose outputs can be calculated by 5 threshold gates and
in 1 logic level as follows.

ci+1 = sgn{ai + bi + ci − 2} (12)
ci+2 = sgn{2ai+1 + 2bi+1 + ai + bi

+ci − 4} (13)
ci+3 = sgn{4ai+2 + 4bi+2 + 2ai+1 + 2bi+1

+ai + bi + ci − 8} (14)
p[i,i+3] = sgn{8ai+3 + 8bi+3 + 4ai+2 + 4bi+2

+2ai+1 + 2bi+1 + ai + bi − 15} (15)
g[i,i+3] = sgn{8ai+3 + 8bi+3 + 4ai+2 + 4bi+2

+2ai+1 + 2bi+1 + ai + bi − 16} (16)

Each of the above threshold equations is implemented
as a threshold gate calculating the inverse and an inverting
buffer. The following parameters are used for evaluation.
For tlg1 (c1) we use Cn

1 (ω = −1) = Cn
2 (ω = −1) =

Cn
3 (ω = −1) = 0.6aF , Cb = 12.5aF . For tlg2 (c2)we use

Cn
1 (ω = −2) = Cn

2 (ω = −2) = 0.6aF , Cn
3 (ω = −1) =

Cn
4 (ω = −1) = Cn

5 (ω = −1) = 0.3aF , Cb = 13aF .
For tlg3 (c3) we use Cn

1 (ω = −4) = Cn
2 (ω = −4) =

0.6aF , Cn
3 (ω = −2) = Cn

4 (ω = −2) = 0.3aF , Cn
5 (ω =

−1) = Cn
6 (ω = −1) = Cn

7 (ω = −1) = 0.15aF , Cb =
13.3aF . For tlg4 (p[0,3]) and tlg5 (g[0,3])we use Cn

1 (ω =
−8) = Cn

2 (ω = −8) = 0.56aF , Cn
3 (ω = −4) = Cn

4 (ω =
−4) = 0.28aF , Cn

5 (ω = −2) = Cn
6 (ω = −2) = 0.14aF ,

Cn
7 (ω = −1) = Cn

8 (ω = −1) = 0.07aF , Cb(tlg4) =
15aF , Cb(tlg5) = 15.3aF .

The implementation has been verified by means of
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Fig. 6. Type 2 lookahead carry generator - simulation results.

simulation (using SIMON [8]). The simulation results are
depicted in Figure 6. The inputs bi+1, bi+2 and bi+3 have
not been depicted as they remain 0. As can be observed,
the logic function of the type 2 lookahead carry generator
is correctly implemented by the threshold gate network.

IV. ADDITION SCHEMES

Given the methodology described in Section II and the
parameters derived in Sections II and III, the calculated
area, delay and energy consumption per (output) switching
of the full adder (FA) and the type 1 and 2 carry generator
(CG) are summarized in Table I. For the FA delay1 is the
delay of tlg1 (carry) and delay2 is the delay of tlg2 (sum).
For the CG blocks delay1 is the delay of the p[i,i+3] and
g[i,i+3] signals, and delay2 is the delay of the carry signals
(ci+1, ci+2 and ci+3).

Block Area Delay1 Delay2 Energy
FA 31 1.7 ns 2.8 ns 1.1 meV

CG type1 84 4.7 ns 5.0 ns 5.7 meV
CG type2 91 3.4 ns 6.2 ns 4.6 meV

TABLE I
AREA DELAY AND POWER OF FA AND CG BLOCKS.

Ripple carry addition (RC) and Carry-LookAhead Ad-
dition (CLA) are two commonly used schemes for n-bit
addition. An n-bit RC adder requires n FA blocks, with
the carry out of the ith FA connected to the carry-in input
of the i+ 1th FA. The 16-bit and 64-bit CLA adders can
be constucted with a network of type 1 and type 2 CG
blocks as depicted in Figure 7, combined with 1 threshold
gate for each bit position to calculate the final sum bits
(tlg2 of the FA block). We estimated the area, delay and
energy consumption of 16-bit and 64-bit RC and CLA
adders by utilizing the results obtained from FA and CG
blocks, and summarized the results in Table II. It can be
observed that, when compared with their RC counterparts,
the CLA adders require approximate 40% more area and

energy, but result in a significant reduction in delay (75%
for 64-bit addition).
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Fig. 7. 16-bit and 64-bit carry-lookahead adders.

AdderType Area Delay Energy
16-bit ripple carry 496 28.3 ns 17.6 meV

16-bit carry-lookahead 704 17.4 ns 24.1 meV
64-bit ripple carry 1984 109.9 ns 70.4 meV

64-bit carry-lookahead 2900 27.1 ns 102.1 meV

TABLE II
AREA DELAY AND POWER OF ADDER SCHEMES.

V. CONCLUSIONS

This paper investigated the implementation of binary
addition based on single electron encoded threshold logic
gates. We first proposed implementations of full adder
(FA) and 4-bit lookahead carry generator (CG) blocks
and verified the designs by means of simulation. We then
evaluated the area, delay and power consumption of 16
and 64 bit ripple carry and carry-lookahead adders based
on the results obtained for the FA and CG blocks.
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