
Scene Management Models and Overlap Tests
for Tile-Based Rendering

I. Antochi, B. Juurlink, S. Vassiliadis
Computer Engineering Laboratory

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: {tkg, benj, stamatis}@ce.et.tudelft.nl

P. Liuha
Nokia Research Center
Visiokatu-1, SF-33720

Tampere, Finland
E-mail: petri.liuha@nokia.com

Abstract

Tile-based rendering (also called chunk rendering or
bucket rendering) is a promising technique for low-power,
3D graphics platforms. This technique decomposes a scene
into smaller regions called tiles and renders the tiles one-
by-one. The advantage of this scheme is that a small mem-
ory integrated on the graphics accelerator can be used to
store the color components and z values of one tile, so that
accesses to the frame and z buffer are local, on-chip ac-
cesses which consume significantly less power than off-chip
accesses. Tile-based rendering, however, requires that the
primitives (commonly triangles) are sorted into bins cor-
responding to the tiles. This paper describes several al-
gorithms for sorting the primitives into bins and evaluates
their computational complexity and memory requirements.
In addition, we present and evaluate several tests for de-
termining if a triangle and a tile overlap. Experimental
results obtained using several suitable 3D graphics work-
loads show that various trade-offs can be made and that,
usually, better performance can be obtained by trading it
for memory. This information allows the designer to select
the appropriate method depending on the amount of mem-
ory available and the computational power.

1. Introduction

A huge market is foreseen for wireless, interactive 3D
graphics applications, in particular games[3]. Because con-
temporary wireless devices do not have sufficient computa-
tional power to support 3D graphics in real time and because
present accelerators consume too much power, several com-
panies and universities started to develop low-power 3D
graphics accelerators[14, 9]. Tile-based rendering architec-
tures appear to be promising for low-power implementation,
because they employ a small, on-board memory to render a
scene instead of a large, off-chip frame buffer. Tile-based

accelerators, however, require a large scene buffer to store
the primitives to be rendered. Furthermore, the primitives
have to be sent to the accelerator on a per tile basis. In other
words, they have to be sorted into bins that correspond to
the tiles.

In this paper we present several algorithms to manage
the scene buffer and evaluate their time and memory com-
plexity. Sorting and sending the primitives involves two
steps. First, the primitives are generated and buffered. Af-
ter that, the primitives are sent to the graphics accelerator
in tile-based order. By performing different computations
in each step, various implementations with different time
and memory complexity are possible. For example, one ap-
proach is to sort the primitives while they are buffered. This
approach, however, requires a substantial amount of addi-
tional memory because primitives generally cover several
tiles. Another approach is to leave the primitives unsorted
but to sort them while they are sent to the accelerator. This
approach requires no additional memory but generally con-
sumes more time than the previous algorithm. We show that
several intermediate approaches are possible as well.

In addition, we present and evaluate several tests that de-
termine if a primitive (in particular triangle) and a tile over-
lap. Some of these tests have been proposed before in a dif-
ferent context but we adapted them for testing if a triangle
and a tile overlap. Although some of these tests are com-
putationally more expensive than the commonly employed
bounding box test, they provide more accurate information,
which implies that less memory is needed and fewer trian-
gles need to be rendered by the graphics accelerator.

This paper is organized as follows. Section 2 briefly de-
scribes related work. In Section 3 we describe the triangle
to tile overlap tests we considered for our implementation.
The algorithms for scene management are presented in Sec-
tion 4. Experimental results are presented in Section 5, and
conclusions are given in Section 6.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

2. Related Work

Tile-based architectures were initially proposed for high-
performance, parallel renderers [8, 11, 10]. Since tiles cover
non-overlapping parts of a scene, the triangles that intersect
with these tiles can be rendered in parallel. In such archi-
tectures it is important to balance the load on the parallel
renderers [12]. These studies are, however, not very related
to our study since we consider a low-power architecture in
which the tiles are rendered sequentially one-by-one.

Tile-based rendering has also been used in power-aware
architectures [14, 9]. However, no details have been pro-
vided on how the primitives are sorted into bins correspond-
ing to the tiles. Furthermore, the only triangle-to-tile over-
lap test we could find in literature is the bounding box
test [14, 9, 5, 4]. However, algorithms developed for other
purposes (e.g. antialiasing [15] or collision detection [7, 1])
can be adapted for efficient primitive to tile sorting.

3. Overlap Tests

In this section we describe several triangle to tile overlap
tests. Our contribution consist of introducing an overlap-
ping test based on [15], but with the difference that our test
does not require any coverage mask.

We remark that some of the described tests perform only
partial classifications. They may yield a positive result even
if a triangle does not intersect a tile. This conservative ap-
proach is preferable to predicting that a triangle and a tile
do not overlap while in reality they do, because then “holes”
may appear in the rendered scene if triangles have been dis-
carded incorrectly. As can be expected, in general, more
accurate tests are computationally more expensive. This
allows various algorithms with different time and memory
complexities to be developed (Section 4).

3.1. Bounding Box Test (BBOX)

This test determines if the axis aligned bounding box of
a triangle intersects with the tile. This is illustrated in Fig-
ure 1. If the bounding box of the triangle does not overlap
with the tile then also the triangle does not overlap with the
tile. However, if the bounding box of the triangle overlaps
with the tile, the triangle might overlap the tile, but gener-
ally there is no precise answer so in this case additional tests
are required or it can be assumed that the triangle overlaps
the tile and it can be sent to the rasterizer (in this case the
rasterization of the triangle might generate no fragments if
the triangle does not overlap with the tile). If a triangle is
small, the BBOX test can be accurate (actually the accuracy
of this test depends also on the thinness and orientation of a
triangle) while for larger triangles the accuracy might drop

0 1

1

2

0

2

(A,B,C)

A

C

B

x

y

3

Bounding

No overlap

Bounding Box &
Triangle Overlap

Current Tile

Tr

Box of Tr

Overlap
Only Bounding Box

Figure 1. Triangle to tile BBOX test

significantly. We experimentally determined that, on com-
mon workloads, the BBOX test can generate up to 30% false
intersections for large triangles.

3.2. Linear Edge Function Test (LET)

This test employs edge functions [13] to determine if a
triangle intersects a tile. Edge functions are normally used
to determine if a point is inside a triangle or, for instance,
to compute a coverage mask for antialiasing[15]. In our
case, we extended the equations presented in [15] so that no
coverage mask is needed to determine if a triangle intersects
a tile.

Consider a 2D vector defined by two points A(X, Y) and
B(X + dX, Y + dY), and a line LAB that passes through
the two points. The edge function for a certain point (x, y)
is defined as:

ELAB (x, y) = (x − X) · dY − (y − Y) · dX. (1)

The edge function can be also be written using an incremen-
tal form as:

ELAB (x + δx, y + δy) = ELAB (x, y) + δx · dY − δy · dX.
(2)

The incremental form can be used to evaluate the edge func-
tion for a sequence of points more efficiently. In this case,
only for the first point the edge needs to be computed using
Equation (1) while for the rest of the points the incremental
form can be used. The incremental computation of the edge
function requires fewer operations than Equation (1). Fur-
thermore, commonly δx = 1 or δy = 1, in which case, the
incremental version requires only one multiplication.

The edge function can be used to determine the position
of a point (x, y) relative to the line LAB as follows:

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

0 1

1

2

0

2

A

C

B

x

y

3

No overlap

Current Tile

Triangle Overlap

EL E

EL

LCA

AB

BC

SC

Tr(A,B,C)

Figure 2. Triangle to tile test using linear func-
tions

If ELAB (x, y) > 0 then the point is to the right of LAB

If ELAB (x, y) = 0 then the point is on LAB

If ELAB (x, y) < 0 then the point is to the left of LAB

(3)
The conditions that can be used (but are not sufficient)

to determine if a counter-clockwise oriented triangle T , de-
fined by three vertices A(xA, yA), B(xB , yB), C(xC , yC),
intersects a square S defined by a center point CS(xcs, ycs)
and having a total width of l are:

ELAB (xcs, ycs) ≤ l
2 · (|xB − xA| + |yB − yA|)

ELBC (xcs, ycs) ≤ l
2 · (|xC − xB | + |yC − yB|)

ELCA(xcs, ycs) ≤ l
2 · (|xA − xC | + |yA − yC |)

(4)

Considering that a tile can be regarded as a rectangle R
defined by a center point M(xm, ym), and a width of w
and a height of h, we can transform the rectangle R into a
square S with a width of 1 using a normalization (division
by (w, h)). By performing the same operation on the ver-
tices of the triangle T , the conditions presented in Equations
(4), where l = 1 can be used to test if the triangle intersects
the tile. Because we do not use any masking mechanism
as used in [15], the Equations (4) are not sufficient to cor-
rectly classify the overlap of a triangle with a tile. In order
to eliminate false intersections, a bounding box test should
be performed first and followed by the Equations (4). Fig-
ure 2 depicts the outcome of the triangle to tile test using
linear functions. The triangle to tile test using LET test is
exact as opposed to the BBOX test where triangles might
have been classified as overlapping a tile even if there was
no real triangle to tile overlap.

We remark that there are more tests to accurately clas-
sify the triangle to tile overlaps. For example, the Sepa-
rating Axes Test (SAT) test described in [1, 7], and used

in the implementation of the Chromium [10] parallel ren-
dering system. The SAT test is based on the observation
that two convex objects do not overlap if there exists a
line for which their respective projections on the line do
not intersect. It is shown in [6] that is enough to con-
sider the normals to the edges of each polygon as projec-
tion lines. This method, however, even after aggressive op-
timizations remained more computationally intensive than
the LET method and it was not further employed in our
study.

4. Scene Management Algorithms

In this section we present several algorithms for sorting
primitives into bins corresponding to tiles and determine
their computational complexity and memory requirements.
As described in Section 1, sorting the primitives into bins
and sending them to the rasterizer involves two stages. In
the first stage the primitives are buffered and an initial sort-
ing step may be performed. In the second stage the primi-
tives are sent to the rasterizer in tile-based order, eventually
after a second sorting step.

Algorithm DIRECT This algorithm simply scans the
whole list of primitives for each tile and sends the prim-
itives that (potentially) overlap the current tile to the raster-
izer.

for each triangle Tr
buffer Tr

for each tile T
for each triangle Tr

compute bbox of Tr
if bbox of Tr and T overlap

send Tr

Let #tiles and #triangles be the number tiles and triangles,
respectively. The time complexity of algorithm DIRECT is

tbuf · #triangles +
tbbox-total · #tiles · #triangles +
tsend · #triangles · bbox overlap,

where tbuf is the cost of placing a triangle in the scene
buffer, tbbox-total is the cost of computing the bounding box
of a triangle and determining if a bounding box and a tile
overlap, tsend is the cost of sending a triangle to the raster-
izer, and bbox overlap is the overlap factor (i.e., the average
number of tiles a triangle covers) if the bounding box test
is employed.

The main advantage of algorithm DIRECT is that it re-
quires no memory in addition to the scene buffer. We also
remark that here we used the bounding box test, but other
tests may also be employed.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Algorithm TWO STEP In this algorithm the bounding
box of each triangle is computed and stored during the
buffering stage. This avoids having to recompute the bound-
ing box for each triangle/tile tuple during the sending stage.
It requires, however, that the bounding box of each primi-
tive is kept.

for each triangle Tr
buffer Tr
compute and store bbox of Tr

for each tile T
for each triangle Tr

if bbox of Tr and T overlap
send Tr

The complexity of this algorithm is

(tbuf + tbbox-compute) · #triangles +
tbbox-test · #tiles · #triangles +
tsend · #triangles · bbox overlap,

where tbbox-compute is the cost of computing the bounding
box of a triangle and tbbox-test is the cost of testing if a
bounding box of a triangle and a tile overlap (so t bbox-total =
tbbox-compute+tbbox-test). We assumed that the cost of storing a
bounding box is negligible since a storing operation is per-
formed by default while computing the bounding box com-
ponents. However, even if a separate bounding box storing
cost is added, its contribution to the total cost (complexity)
is negligible.

The amount of additional memory required by algo-
rithm TWO STEP is #triangles · sizeof(bbox), where
sizeof(bbox) is the size of a bounding box structure (i.e. 4
integers).

Algorithm TWO STEP LET This algorithm is similar
to the TWO STEP algorithm described above. The differ-
ence is that in the second stage a LET overlap test instead
of just BBOX is used. Since the LET test contains a BBOX
test, the main LET test (Equations 4) is applied only to tri-
angles that have passed the BBOX test.

for each triangle Tr
buffer Tr
compute and store bbox of Tr

for each tile T
for each triangle Tr

if LET test indicates Tr and T overlap
send Tr

The complexity of this algorithm is

(tbuf + tbbox-compute) · #triangles +
tbbox-test · #tiles · #triangles +
tlet-test · #triangles · bbox overlap +
tsend · #triangles · let overlap,

where tlet-test is the cost of testing if a triangle and a tile
overlap using LET test, and let overlap is the LET overlap
factor (i.e., the average number of tiles covered by a triangle
if the LET test is employed).

While the TWO STEP LET algorithm takes more time
than the TWO STEP algorithm, the number of triangles
sent to the rasterizer by the TWO STEP LET algorithm
(#triangles · let overlap) is lower than or equal to the num-
ber of triangles sent to the rasterizer in the TWO STEP al-
gorithm (#triangles · bbox overlap) since the LET test is
accurate while the BBOX test is approximative. By sending
less triangles to the accelerator this algorithm reduces the
computational requirements at the accelerator.

The amount of additional memory required by algorithm
TWO STEP LET is the same as for the TWO STEP algo-
rithm.

Algorithm SORT In this algorithm for each tile there is
a buffer with pointers to the primitives that overlap the tile
according to the BBOX test. For each tile only the primi-
tives that have a pointer in the corresponding tile buffer will
be sent to the rasterizer.

for each triangle Tr
buffer Tr
compute bbox of Tr
for each tile T that overlaps bbox of Tr

insert pointer to Tr in the buffer of T

for each tile T
for each triangle Tr in the buffer of T

send Tr

The complexity of this algorithm is

(tbuf + tbbox-compute) · #triangles +
tinsert · #triangles · bbox overlap +
ttiletrav · #tiles +
tsend · #triangles · bbox overlap,

where tinsert is the cost of inserting a pointer to a triangle in
the buffer of the tile. There is no need to add a t bbox-test cost
since there is no BBOX test performed (we can determine
from the bounding box coordinates in which tiles to insert
pointers). The ttiletrav is the cost to traverse a tile.

The amount of additional memory required by the SORT
algorithm is #triangles ·bbox overlap ·2 ·sizeof(pointer)+

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

#tiles ·2 · sizeof(pointer), where sizeof(pointer) denotes the
size of a pointer (4 bytes). In our current implementation
we use a (prealocated) linked list of pointers to primitives,
thus we need to store two pointers for each primitive (one
pointing to the primitive and one to the next primitive in
the tile). We also use two pointers for each tile (to the first
primitive for the tile and the last primitive inserted).

Algorithm SORT LET This algorithm is similar to the
previous algorithm. The difference is that eventually the
LET test is used to determine if a triangle overlaps a tile.
For each tile only the primitives that have a pointer in the
corresponding tile buffer will be sent to the rasterizer.

for each triangle Tr
buffer Tr
compute bbox of Tr
for each tile T that overlaps bbox of Tr

if LET test indicates Tr and T overlap
insert pointer to Tr in the buffer of T

for each tile T
for each triangle Tr in the buffer of T

send Tr.

The complexity of this algorithm is

(tbuf + tbbox-compute) · #triangles +
tlet-test · #triangles · bbox overlap +
tinsert · #triangles · let overlap +
ttiletrav · #tiles +
tsend · #triangles · let overlap,

The amount of additional memory required by the
SORT LET algorithm is #triangles · let overlap · 2 ·
sizeof(pointer) + #tiles · 2 · sizeof(pointer).

5. Experimental Results

In order to determine the computational and memory re-
quirements of the algorithms, we have simulated several
traces of 3D graphics applications and measured certain
statistics such as the BBOX and LET overlap factors. Fur-
thermore, we estimated most parameters such as tbuf and
tinsert by counting the number of elementary operations (as-
signments, comparisons, etc.) required to implement the
operation. Other parameters such as tbbox test can vary be-
cause the implementation of this operation contains if-then-
else statements which implies that the time depends on
the control flow. In order to estimate these parameters,
we wrote a program that performs these tests and inserted
counters to determine how often each branch was executed.
These statistics have been subsequently substituted in the

complexity formulae of the algorithms. We remark that
cycle-accurate simulations of the algorithms on all work-
loads are not feasible, because that is too time consuming.

This section is organized as follows. Section 5.1 de-
scribes the benchmarking suite. The efficiency of the over-
lap tests is discussed in Section 5.2. Section 5.3 presents the
values of the statistics and the parameters used to calculate
the time and memory required by each algorithm. Finally,
the runtime results and memory requirements of the algo-
rithms are presented and discussed in Section 5.4.

5.1. Benchmarking Suite

In order to compare the efficiency of the proposed al-
gorithms we used the benchmarking suite proposed in [2].
It consists of 7 components: Q3L, Q3H, Tux, Aw, ANL,
GRA, and DIN. The Q3L profile corresponds to a low reso-
lution (320x240) demo of the Quake III 3D FPS game. The
Q3H profile is based on the same demo as Q3L only that it
uses higher resolution (640x480). Tux is a 3D racing game
(guide a penguin) available on Linux platforms. The Aw
(Awadvs-04) profile is part of the Viewperf 6.1.2 package.
The ANL, GRA, and DIN are 3D VRML models for which
“fly-by” scenes were created and traced.

The traces were fed to our modified Mesa library. The
Mesa library performed primitive backface culling and gen-
erated lists of remaining primitives. The list of primitives
were sent to our tile-based accelerator simulator, where dif-
ferent primitive to tile algorithms were used. We used a tile
size of 32x16 pixels (as used in current tile-based hardware
accelerators [14]), and the window sizes were 320x240 for
Q3L, and 640x480 for the other benchmark suite compo-
nents.

5.2. Efficiency of the Overlap Tests

For each frame, all tiles are rendered sequentially and
only when all the tiles have been rendered, a new frame is
processed. We used two primitive to tile repartition strate-
gies. The BBOX strategy corresponds to a simple bounding
box primitive to tile overlap test. This strategy, as men-
tioned in Section 3.1 might not produce the optimal (low-
est) number of primitives to be sent to the rasterizer, but the
computational overhead of this test is generally low. The
LET strategy corresponds to a linear edge test for primi-
tive to tile overlap. The LET strategy produces an accurate
number of primitives that should be sent to the tile-based
rasterizer.

Table 1 presents the number of I/O write accesses to the
accelerator based on our simulator using the BBOX test or
LET test. The total I/O numbers represent the number of
accesses due to state-changing information (e.g. enable or
disable depth test) plus the number of I/O due to sending

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

triangles. Since the number of primitives sent to the acceler-
ator depends only on the overlapping test performed, these
numbers are independent of the algorithm used. The num-
ber of I/O writes needed to sent triangles to the accelerator
for the BBOX test was up to 62% larger than for the LET
test. Another interesting result from this table is that the
LET test not only reduces the number of I/Os, but also the
number of state changes. This happens due to the fact that
we used a lazy update mechanism for the state change (the
state changes are committed to the renderer when they are
needed, thus if some of the primitives are discarded some
state changes might not be required). Thus, using a more
accurate overlapping test is beneficial also for the amount
of state change information sent to the accelerator.

5.3. Parameters and Benchmark Statistics

Some of the parameters used to estimate the complex-
ity of the algorithms (tbbox compute, tbbox test, tlet test) can vary
across the workloads. In order to reduce the errors obtained
by estimating them statistically, we wrote programs to com-
pute the average number of elementary operations needed to
implement each test and obtained particular values for each
workload. The results are presented in Table 2. It can be
seen that the obtained tbbox compute and tbbox test parameters
are quite uniform across the workloads while t let test has a
larger variation.

Other parameters of the workloads such as the average
or maximum number of triangles per frame are presented in
Table 3. The average triangles / frame statistics represents
the average number of triangles sent from the Mesa library
to our driver after backface culling. This number is actually
the #triangles parameter used to compute the complexity
of the algorithms. The max. triangles represent the maxi-
mum number of triangles sent for one frame. This number
can be used to determine the maximum amount of memory
required to buffer the triangles for one frame. This num-
ber can also be used to determine the computational power
required for real-time operation.

For the other parameters, the following assumptions
were employed: tbuf = 50, tinsert = 6 (two additions, three
assignments, and one comparison), t tiletrav = 4 (two com-
parisons, one assignment, and one increment), t send = 40
(the number of I/O writes currently used to transfer the data
for a triangle in our simulator).

5.4. Runtime Results and Memory Requirements

This section presents the results we obtained for triangle
to tile repartition algorithms. We were not able to perform
a cycle accurate simulation of the workload due to the fact
that it is too time consuming.

The average time taken by each scene management al-
gorithm to process one frame of every benchmark is pre-
sented in Table 4, while Figure 3 depicts the time required
by each algorithm relative to the amount of time taken by
algorithm DIRECT. As expected, algorithm DIRECT re-
quires the largest number of operations by far, while SORT
takes the least amount of time. On average, across all
benchmarks, the SORT algorithm is 44 times as fast as
DIRECT. The TWO STEP algorithm, even though it also
scans the entire scene buffer for each tile, has reasonable
performance. It is slower than algorithm SORT by a fac-
tor of 6 on average. It can also be observed that algorithm
TWO STEP LET is hardly slower than TWO STEP and,
therefore, preferable, since it sends fewer triangles to the
rasterizer which means that the computational load on the
rasterizer is reduced. Algorithm SORT LET, on the other
hand, is slower than algorithm SORT by a factor of 1.6 on
average.

The amount of memory required by each algorithm, in
addition to the scene buffer which is needed to buffer the
primitives, is presented in Table 5. It is also visually de-
picted in Figure 4. As explained before, algorithm DIRECT
does not require any additional memory. Furthermore, as
expected, the SORT algorithm needs the most memory,
since the amount of additional memory it requires is pro-
portional to the number of triangles and the BBOX overlap
factor (the average number of tiles covered by a triangle if
the BBOX test is employed). Because the LET test is exact
while the BBOX test is not, SORT LET requires less mem-
ory than SORT. However, the difference is significant only
for one benchmark (Q3H) for which SORT needs almost
twice the amount of additional memory as SORT LET. For
the other benchmarks the difference is much smaller (a fac-
tor of 1.17 on average). The reason is that the BBOX
test is rather exact for all benchmarks except Q3H. The
TWO STEP and TWO STEP LET algorithms require the
same amount of memory and are, therefore, depicted to-
gether. On average, TWO STEP requires a factor of 3.2 less
additional memory than SORT. However, this difference de-
pends strongly on the benchmark. For benchmarks with a
small overlap factor (e.g., Aw), the difference is hardly sig-
nificant, while for benchmarks with a large overlap factor
(in particular Q3H) the difference is considerable.

Which algorithm is preferable depends, of course, on the
computational power and the amount of memory of a par-
ticular implementation. DIRECT is probably not a practi-
cal algorithm because it has poor performance. Our results
indicate that TWO STEP LET is better than TWO STEP,
since they require the same amount of memory and be-
cause TWO STEP LET takes only a bit more time than
TWO STEP. Furthermore, TWO STEP LET sends fewer
triangles to the rasterizer, which implies that the raster-
izer has to perform less work. SORT and SORT LET take

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Table 1. I/O writes for various overlapping tests
Q3L Q3H Tux Aw ANL GRA DIN

BBOX total I/O 701M 1,907M 664.5M 342M 524M 357M 215M
BBOX triangles I/O 432M 1,024M 320M 265M 338M 152M 160M

LET total I/O 583M 1,394M 565M 337M 459M 322M 206M
LET triangles I/O 340M 633M 235M 260M 281M 131M 150M

Table 2. Complexity parameters for each workload
Q3L Q3H Tux Aw ANL GRA DIN

tbbox compute 14.02 14 13.98 14.25 14.25 14.25 14.20
tbbox test 2.08 1.995 1.780 1.86 1.93 1.77 1.78
tlet test 50.5 43.40 48.93 59.15 52.9 54.66 57.79

0

5

10

15

20

25

Q3L Q3H Tux Aw ANL GRA DIN

%

TWO_STEP TWO_STEP_LET SORT SORT_LET

Figure 3. Time taken by each scene manage-
ment algorithm, relative to the amount of time
taken by algorithm DIRECT

less time than TWO STEP LET, but require more mem-
ory. So the 3D graphics system designer has to make
a trade-off between these algorithms. If SORT LET is
preferable to SORT or vice versa can also not be assured.
Although SORT LET sends fewer triangles to the raster-
izer, SORT requires significantly less time than SORT LET
while SORT LET reduces the memory requirements only
marginally for all but one benchmark.

6. Conclusions

A two stage model for triangle to tile repartition for tile-
based graphics accelerators has been presented. In addi-
tion, different algorithms to test the triangle to tile overlap
have been described. By comparing factors like computa-
tional power or memory required, a 3D graphics accelerator
designer can chose the most suitable algorithm for an im-
plementation. While the number of primitives sent to the
accelerator depends only on the triangle to tile overlap test
used, the memory required to sort and store the primitives
before being sent to the accelerator and also the computa-
tional power depends largely on the algorithm employed.

The DIRECT algorithm is probably not a practical al-

0

50

100

150

200

250

300

350

400

450

Q3L Q3H Tux Aw ANL GRA DIN

K
B

DIRECT TWO_STEP TWO_STEP_L SORT SORT_L

Figure 4. Memory requirements of the scene
management algorithms

gorithm because is has poor performance. However, the
TWO STEP algorithm, even though it also scans the entire
scene buffer for each tile, has reasonable performance while
it does not require a large amount of additional memory. If
the computational performance is more important than ad-
ditional memory required, then the SORT algorithm is more
suitable. To determine the best algorithm for a particular
implementation it should be taken into consideration also
the fact that using the LET overlap test, instead of BBOX,
more computational power is required at the scene manage-
ment stage, but depending on the computational power re-
quired to process and discard additional triangles on the ac-
celerator it might be a better choice to use LET instead of
BBOX since the computations at the accelerator to discard
the additional triangles generated by BBOX can be higher.

References

[1] T. Akenine-Möller and E. Haines. Real-Time Rendering
(second edition). A.K. Peters Ltd., 2002.

[2] I. Antochi, B. Juurlink, S. Vassiliadis, and P. Liuha. Graal-
Bench: A 3D Graphics Benchmark Suite for Mobile Phones.
In Proc. ACM SIGPLAN/SIGBED Conf. on Languages,

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Table 3. Relevant characteristics of the benchmarks
Q3L Q3H Tux Aw ANL GRA DIN

number of frames 1,379 1,379 1,363 603 600 599 600
average triangles / frame 3,350 3,436 1,825 11,053 4,455 3,681 4,150

max. triangles / frame 7,074 7,170 2,980 14,102 14,236 6,907 4,313
max. bbox / frame 19,288 53,154 11,789 18,822 37,771 11,233 9,858

max. let / frame 14,175 26,542 8,478 18,465 33,469 10,109 9,088
bbox overlap 3.06 7.03 4.17 1.34 4.08 2.28 2.06

let overlap 2.39 4.32 3.05 1.32 3.4 1.98 1.95
max. scene buffer
memory required

594k 602k 250k 1,185k 1,196k 580k 362k

Table 4. Number of elementary operations per frame for each scene management algorithm.
Q3L Q3H Tux Aw ANL GRA DIN

DIRECT 8.7M 34M 17.6M 108M 44.2M 35.8M 40.7M
TWO STEP 1.7M 5.3M 2.4M 13.6M 6.2M 4.5M 5.0M

TWO STEP LET 1.8M 5.4M 2.4M 14M 6.4M 4.6M 5.2M
SORT 0.7M 1.3M 0.47M 1.4M 1.13M 0.6M 0.66M

SORT LET 1.1M 2.0M 0.75M 2.3M 1.9M 1.0M 1.1M

Table 5. Additional maximum memory requirements (bytes) per frame for each scene management
algorithm.

Q3L Q3H Tux Aw ANL GRA DIN

DIRECT 0 0 0 0 0 0 0
TWO STEP/

TWO STEP LET
56.6k 57.4k 23.8k 112.8k 113.9k 55.26k 34.5k

SORT 155k 430k 99k 155k 306k 94k 83k
SORT LET 115k 217k 72k 152k 273k 86k 78k

Compilers, and Tools for Embedded Systems (LCTES’04),
pages 1–9. ACM Press, June 2004.

[3] ARM Ltd. ARM 3D Graphics Solutions. Available at
http://www.arm.com.

[4] M. Chen, G. Stoll, H. Igehy, K. Proudfoot, and P. Hanra-
han. Simple Models of the Impact of Overlap in Bucket
Rendering. In Proc. ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, pages 105–112, Lisbon,
Portugal, 1998. ACM Press.

[5] M. Cox and N. Bhandari. Architectural Implications of
Hardware-Accelerated Bucket Rendering on the PC. In
Proc. 1997 SIGGRAPH/Eurographics Workshop on Graph-
ics Hardware, pages 25–34. ACM Press, 1997.

[6] D. H. Eberly. Intersection of Convex Objects: The Method
of Separating Axes. http://www.magic-software.com/.

[7] D. H. Eberly. 3D Game Engine Design: A Practical Ap-
proach to Real-Time Computer Graphics. Morgan Kauf-
mann/Academic Press, 2001.

[8] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather,
D. Ellsworth, S. Molnar, B. T. G. Turk, and L. Israel.
Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics
System Using Processor-Enhanced Memories. Computer
Graphics, Vol. 23, No. 3, pages. 79–88, July 1989.

[9] E. Hsieh, V. Pentkovski, and T. Piazza. ZR: A 3D API
Transparent Technology for Chunk Rendering. In Proc.

34th ACM/IEEE Int. Symp. on Microarchitecture MICRO-
34, 2001.

[10] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D.
Kirchner, and J. T. Klosowski. Chromium: A Stream Pro-
cessing Framework for Interactive Rendering on Clusters. In
Proc. 29th Annual Conf. on Computer Graphics and Interac-
tive Techniques (SIGGRAPH 2002), pages 693–702, 2002.

[11] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting
Classification of Parallel Rendering. IEEE Comput. Graph.
Appl., 14(4):23–32, 1994. IEEE Computer Society Press.

[12] C. Mueller. The Sort-First Rendering Architecture for High-
Performance Graphics. In Proc. 1995 Symp. on Interactive
3D Graphics, pages 75–84. ACM Press, 1995.

[13] J. Pineda. A Parallel Algorithm for Polygon Rasterization.
In Proc. 15th Annual Conference on Computer Graphics
and Interactive Techniques, pages 17–20. ACM Press, 1988.

[14] PowerVR. 3D Graphical Processing (Tile Based
Rendering - The Future of 3D), White Pa-
per. http://www.beyond3d.com/reviews/videologic/
vivid/PowerVR WhitePaper.pdf, 2000.

[15] A. Schilling. A New Simple and Efficient Antialiasing With
Subpixel Masks. In Proc. 18th Annual Conference on Com-
puter Graphics and Interactive Techniques, pages 133–141.
ACM Press, 1991.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

	footer1:

