Dynamic Hardware Reconfigurations:
Performance Impact for MPEG2

Elena Moscu Panainte, Koen Bertels, and Stamatis Vassiliadis

Computer Engineering Lab
Delft University of Technology, The Netherlands
{E.Panainte, K.Bertels, S.Vassiliadis}@et.tudelft.nl

Abstract. In this paper, we study the impact dynamic reconfigura-
tion has on the performance of current reconfigurable technology. As a
testbed, we use the Xilinx Virtex IT Pro, the Molen experimental platform
and the MPEG2 encoder as the application. We show for the MPEG2
encoder that a substantial overall performance improvement, up to 34 %,
can be achieved when SAD, DCT and IDCT functions are executed on
the reconfigurable hardware when the compiler anticipates and separates
configuration from execution. This study also considers the impact inap-
propriate scheduling can have on the overall performance. We show that
slowdowns of up to a factor 1000 are observed when the configuration
latency is not hidden by the compiler. Our experiments show that appro-
priate scheduling allows to exploit up to 97% of the maximal theoretical
speedup.

1 Introduction

The development of architectural improvements is a complex process as it deals
with a large number of highly interconnected factors. An improvement in one
component does not necessarily result in an improved system performance.
This complexity increases considerably as heterogeneous architectures are in-
cluded. The combination of a general purpose processor (GPP) and a Field
Programmable Gate Array (FPGA) is becoming increasingly popular (e.g. [1],
[2], [3]) as it allows developers to better partition and manage their projects
(e-g- [4], [5] and [6]). Reconfigurable computing is a new style of computer ar-
chitecture which, thanks to the availability of high density programmable logic
chips, allows the designer to combine the advantages of both hardware (speed)
and software (flexibility). A general paradigm that eliminates the shortcomings
of other approaches in reconfigurable computing is described in [7] and in [8] and
is referred to as the Molen Programming Paradigm. An important drawback of
RC paradigm is the huge reconfiguration latency of the actual FPGA platforms.
Based on the work described in [9] where a compiler for the Molen approach was
presented, this paper addresses some open issues which primarily involve the
hardware reconfiguration impact on performance. As will be explained in the re-
mainder of this paper, the potential speedup of the kernel hardware executions
can be completely wasted by inappropriate repetitive hardware reconfigurations.

In this paper, we investigate the impact on the overall performance for the MPEG
2 benchmark of hardware reconfiguration in two cases: a) the straightforward ap-
proach when each hardware execution is preceded by the coresponding hardware
configuration and b) when the hardware configuration can be anticipated and
efficiently scheduled referring to the hardware execution. In this paper, we only
Analise MPEG 2 encoder benchmark. Whenever in the remainder of the paper,
we mention MPEG 2, we refer only to MPEG 2 encoding phase.
The main contributions of the paper can be summarized as follows:

— Based on profiling results, we determine that the maximal performance im-
provement of the Molen approach versus the pure software approach for the
MPEG 2 benchmark that can be achieved by hardware execution of the ker-
nel operations SAD, DCT and IDCT is about 65 %. We consider a set of real
hardware implementations of these kernels and determine that the kernels
hardware execution is up to 31x faster than the pure software execution.

— We estimate that, in the straightforward approach when each hardware ex-
ecution is preceded by the coresponding hardware configuration, the huge
reconfiguration latency of the hardware reconfiguration can slowdown the
MPEG 2 benchmark by 3 order of magnitudes.

— A scheduling that anticipates the hardware configuration can eliminate the
previous described drawback and provide a performance improvement up to
97 % from the maximal performance improvement of MPEG 2 benchmark.

The paper is organized as follows: in the next section, we present the Molen pro-
gramming paradigm and describe a particular implementation, called the Molen
processor. Section 3 describes the necessary compiler extensions for the Molen
programming paradigm. Consequently, we present a profiling experiment and an-
alyze the impact on performance of the hardware reconfiguration for the MPEG
2 benchmark. Finally, we conclude by discussing future research directions.

2 The Molen Programming Paradigm

The Molen programming paradigm [8] is a sequential consistency paradigm for
programming CCMs possibly including a general purpose computational en-
gine(s). The paradigm allows for parallel and concurrent hardware execution
and is intended (currently) for single program execution. It requires only a one
time architectural extension of few instructions to provide a large user recon-
figurable operation space. The added instructions include SET < address >
implying that at a particular location the hardware configuration logic is de-
fined and EXECUTE < address > that serves to control the executions of
the operations on the reconfigurable hardware. In addition, two MOVE instruc-
tions for passing values to and from the GPP register file and the reconfigurable
hardware are required.

For the moment, we only consider code fragments in the form of functions
having a number of parameters. These parameters are passed to special recon-
figurable hardware registers denoted as Exchange Registers (XRs). In order to

maintain the correct program semantics, the code is annotated and Custom
Computing Machine (CCM) description files provide the compiler with imple-
mentation specific information such as the addresses where the SET and EXE-
CUTE code are to be stored, the number of exchange registers, etc. It should be
noted that this programming paradigm allows modularity, meaning that if the
interfaces to the compiler are respected and if the instruction set extension (as
described above) is supported, then custom computing hardware provided by
multiple vendors can be incorporated by the compiler for the execution of the
same application. The modular approach also implies that the application can
be ported to multiple platforms with mere recompilation.

| Main Memory |

v ¢

Instruction Data
Fetch Fetch
. Memory
Arbiter ¢ MUX

[A

h

XREGs |« g
File < »
h 4 h 4
Register ¢ Core
File Processor

Fig. 1. The Molen machine organization

Finally, it is noted that every user is provided with at least 2("=°P) directly
addressable functions, where n represents the instruction length and ’op’ the op-
code length. The number of addressable functions can be easily augmented to an
arbitrary number by reserving additional opcodes for indirect opcode accessing.

The Molen reconfigurable processor: The Molen pu-coded processor
has been designed having in mind the programming paradigm previously pre-
sented. The Molen machine organization is depicted in Figure 1. The arbiter
performs a partial decoding of the instructions fetched from the main memory
and issues them to the corresponding execution unit. The parameters for the
FPGA reside in the Exchange Registers. In the Molen approach, an extended
microcode - named reconfigurable microcode - is used for the emulation of both
SET and EXECUTE instructions. The microcode is generated when the hard-
ware implementation for a specific operation is designed and it cannot be further
modified.

3 Compiler Extensions for the Molen Programming
Paradigm

The compiler system relies on the Stanford SUIF2[10] (Stanford University Inter-
mediate Format) Compiler Infrastructure for the front-end, while the back-end
is built over the framework offered by the Harvard Machine SUIF[11]. The last
component has been designed with retargetability in mind. It provides a set
of back-ends for GPPs, powerful optimizations, transformations and analysis
passes. These are essential features for a compiler targeting a CCM. We have
currently implemented the following extensions for the x86 processor:

— A special pass in the SUIF front-end identifies the code that is mapped on
the reconfigurable hardware. Using special pragma annotation, all the calls
of those functions are marked for further modification.

— The Instruction Set has been extended with SET/ EXECUTE instructions
at both MIR (Medium Intermediate Representation) level and LIR (Low
Intermediate Representation) level.

— Exchange Registers (XRs) are added to the Register File Set. These regis-
ters are used for passing operation parameters to the reconfigurable hard-
ware and returning the computed values after the operation execution. In
order to avoid dependencies between the RU and GPP, the XRs receive their
data directly from the GPP registers. The XR allocation phase, introduced
in Machine SUIF at LIR level, precedes the GPP register allocation. The
conventions introduced for the XRs are implemented in this pass.

— Code generation for the reconfigurable hardware is performed when trans-
lating SUIF to Machine SUIF IR, and affects the function calls marked in
the front-end.

An example of the code generated by the extended compiler for a function call
when the considered function is executed on the reconfigurable fabric is presented
in Figure 2. The standard function call is replaced by the appropriate instructions
for sending parameters (two for the considered example) to the reconfigurable
hardware in XRs, hardware configuration phase, hardware execution and finally
returning the computed result to the GPP registers. The presented code is at
Medium-level Intermediate Representation (MIR), before register allocation and
code finalization passes.

mov $vr2.s32 + paraml

movtx $vrl.s32(XR) < $vr2.s32 # send paraml in XR
mov $vrd.s32 < param?2

movtx $vr3.s32(XR) « $vrd.s32 # send param?2 in XR
set address_opl_SET # hardware configuration
exec address_op2 EXEC # hardware execution
movfx $vr6.s32 < $vr5.s32(XR) # return result

mov res <+ $vr6.s32

Fig. 2. MIR Code generated by the Molen compiler

Certain information about the target architecture such as microcode address
of SET and EXECUTE instructions, the number of XRs, the fixed XR associated
with each operation, etc. are extracted by the compiler from a description file.

4 A MultiMedia Based Evaluation

In order to evaluate the impact on performance of the hardware configuration
we consider the MPEG2 encoder multimedia benchmarks and the test sequences
presented in Table 1. Building on previous work [9][7], we look at the following
time consuming functions that are implemented in reconfigurable hardware: SAD
(sum of absolute-difference), 2D DCT (2 dimensional discrete cosine transform)
and IDCT (inverse DCT). As explained before, we consider a Molen machine
organization with an x86 as the Core Processor. More specifically, the compiler
generates code for the x86 architecture while the measurements are performed
on an AMD Athlon XP 1900+ at 1600 MHz.

| Name |# frames|Resolution|

carphone 96| 176x144
claire 168| 360x288
container 300| 352x288
football 125 352x240
foreman 300 352x288
garden 115| 352x240
mobile 140 352x240
tennis 112| 352x240

Table 1. MPEG test sequences

MPEG 2 Profiling Results for Pure Software Execution We first
compute the number of cycles each function consumes for the input sequences
given in Table 1, when executed on the target GPP without reconfigurable hard-
ware acceleration. These profiling results for the MPEG2 encoder benchmarks
are presented in Table 2. The cumulated time spent by SAD, DCT and IDCT
functions (Table 2, column 3,5 and 7) in the pure software approach represents
about 65 % of the total MPEG2 execution time. In consequence, the hardware
acceleration of these functions (as proposed in the Molen approach) can produce
a significant speedup of the MPEG2 encoder up to 3x. The results from Table
2, column 3 suggest that the SAD function is the best candidate for hardware
implementation as it can provide up to around 40 % performance improvement.
Whereas for the encoding phase, IDCT cannot yield substantial performance
improvement, in decoding, this function is heavily used and can produce a sig-
nificant performance increase.

MPEG?2 Performance Estimation for Molen CCM Execution As the
presented Molen CCM is not currently implemented, we determine the perfor-

Video SAD (16x16) DCT (8x8) IDCT (8x8)
sequence |# Cycles|% Time|# Cycles|% Time|# Cycles|% Time
carphone| 997 31.69 | 37796 | 28.19 2612 1.95
claire 1092 36.46 37796 26.44 2177 1.53
container| 1008 34.44 37590 27.04 2208 1.59
football 1484 42.74 37537 22.93 2827 1.73
foreman 1298 39.93 37572 24.35 2193 1.42
garden 1311 40.21 37594 24.70 2463 1.62
mobile 1092 35.95 37536 26.30 2519 1.77
tennis 1344 41.23 37531 24.39 2221 1.44

|Average | 1203 [37.83 | 37593 | 25.54 | 2402 [1.63]

Table 2. Profiling results for MPEG2 encoder

mance of the Molen CCM based on the measured profiling results for the GPP
included in the MOLEN CCM as follows:

NMolen ™ NX86 — Nf + Neall - COSE (1)
cost = TSET + YEXEC (2)

where

— Npolen: the total number of GPP cycles spent in the considered application
by the Molen processor;

— nxsge: the total number of GPP cycles when the considered

— function f is implemented on the FPGA application is executed exclusively
on the GPP;

— ny: the total number of GPP cycles spent in function f when the considered
application is performed only on the GPP;

— Nequ: the number of calls to function f in the considered application;

— cost: the number of cycles for one execution of function f on FPGA;

— zgpT: the number of GPP cycles required for one configuration of the FPGA
for function f;

— ypxec: the number of GPP cycles required for one execution on the FPGA
of function f; for the considered hardware implementation, the execution
time is not dependent on the input data.

In our experiments, we have measured the values for nxss, ny and ngqy
included in Formula 1. To this purpose, we used the Halt library[12] available
in Machine SUIF. This library is an instrumentation package that allows the
compiler to change the code of the program being compiled in order to collect
information about the program own behavior (at run-time). In order to minimize
the impact of external factors on the measurements, we run the applications in
single mode and with the highest priority in Linux.

Hardware Execution and Reconfiguration Before discussing the hard-
ware acceleration, we present the target FPGA platform included in our exper-
iments. We used the Xilinx Virtex IT Pro, XC2VP20 chip and the 2D DCT and

2D IDCT cores available as IPs in the Xilinx Core Generator Tool as well as the
SAD implementation presented in [7]. After synthesis, the area required by each
function is given in Table 3, column 3. We measured the hardware execution
time of each function in terms of the target Athlon processor cycles, given in
Table 3, column 3. Based on the characteristics of the XC2VP20 chip, for which
a complete configuration of 9280 slices takes about 20 ms, we estimate the re-
configuration time for the considered functions as presented in Table 3, column
2.

Op | Area] EXEC|HW Speedup SET SET_MAX |SET/SET_MAX
[slices]|[cycles] [ms]| [cycles]|Mean|st.dev

SAD 831 133 9x| 2| 32000001 1070 167 2991

DCT | 4314 1184 31 x| 10{16000000(36409 80 439

IDCT| 5436 1200 2 x| 12|19200000| 1202 225 15973

Table 3. Hardware configuration and execution parameters

We basically performed two experiments to assess not only the impact of
hardware acceleration but also the impact of an appropriate scheduling of the
reconfiguration phase.

A Simple Hardware Reconfiguration Scheduling On the basis of the
hardware execution times from Table 3 and the average software execution time
given in Table 2 column 2,4,6, we determine that the hardware acceleration of the
considered kernels (Table 3, column 4) is up to 31x. However, a direct scheduling
where the corresponding SET and EXECUTE instructions for hardware config-
uration and hardware execution are consecutively executed for each operation
can completely waste the hardware speedup. In this consecutive scheduling, the
hardware reconfiguration is each time performed before the hardware execution.
Due to the huge reconfiguration latency and repetitive hardware configuration
imposed by this scheduling, the use of reconfigurable hardware can slowdown
the MPEG2 benchmark (computed as npsoien/nxs¢ using Formula 1) by 2-3
orders of magnitude (Table 4, row 2) compared to complete execution on the
GPP alone.

Based on the profiling result (Table 2), reconfigurable hardware execution
times (Table 3) and Formula 1, we determine the upper boundary for a SET
instruction latency that ensures that the Molen CCM is not slower than the pure
software approach (naroren =~ nxss). We refer to this boundary as SET_MAX

and is described by:

SET_MAX ~

- 3
Necall yExBC ()

The mean SET_MAX values and standard deviations are presented in Table
3, (columns 7-8). We notice that the complete hardware configuration of the
currently available FPGA platforms (SET) accounts for 3-4 orders of magnitude
(see Table 3, column 9) more reconfiguration time than SET_MAX and produces
for the MPEG 2 benchmark a performance decreasing of 2-3 order of magnitude

(Table 3, last column). In consequence, without an appropriate scheduling of
the SET instructions, the overall performance is decreased due to the huge re-
configuration latency in spite of the faster hardware execution time. Such an
appropriate scheduling is discussed in the rest of this section.

Out of Loop Hardware Reconfiguration The above presented limita-
tion can be eliminated by simply scheduling the hardware configuration phase
as early as possible. This transformation can be particularly beneficial when
there is only one operation executed in hardware included in a loop-body. This
situation is encountered in MPEG2 encoder for all three considered functions.
In the rest of this section, we estimate the effect of this transformation on the
performance of the Molen processor. In this respect, we use the ceteris paribus
approach meaning that we look at the influence of each function individually
to estimate the performance improvement while considering that none of the
other functions are implemented in reconfigurable hardware. As we previously
explained, performing the hardware configuration before each hardware execu-
tion can decrease the performance for the Molen processor versus the GPP alone.
Nevertheless, removing the unnecessary repetitive SET instructions (when the
hardware is already configured) results in a significant performance improvement
(computed as “I—TeatTBEXEC_2IET) The performance efficiency (presented in
Table 4, row 4) emphasizes that the individual improvement of each function is
very close to the maximum possible improvement.

Video sequence SAD | DCT |IDCT
Simple Scheduling 1012 x| 108 x | 131 x
Slowdown

Out-of-loop Scheduling|33.61 %|24.68 %|0.75 %
Performance Impr

Theor. Maximal 37.83 %(25.54 %|1.63 %
Performance Impr

Performance 89 % | 97 % | 46 %
Efficiency

Table 4. MPEG 2 encoder performance results with and without anticipated hardware
configuration

We emphasize that the execution of both SAD and DCT simultaneously
on the reconfigurable hardware will not provide a cumulative performance im-
provement due to the required switching of configurations in order to preserve
the overall application behavior. The compiler optimizations are expected to
play a key role in handling these more complicated cases.

5 Conclusions

In this paper, we used the compiler technology developed to support the Molen
programming paradigm to study the conditions under which substantial perfor-

mance improvements can be obtained with hardware acceleration using CCM’s.
Based on profiling results, we showed that potential speedups can be completely
outweighed by inappropriate scheduling of the reconfiguration instruction. When
theoretically a performance improvement of up to 40 % is achievable, the slow-
down caused by improper scheduling can be as large as a factor 1000 (e.g. for
SAD). We also showed that given a suitable scheduling up to 97 % of the maximal
performance improvement can be obtained.

Future research will focus on compiler optimizations to allow for concurrent
execution. We also intend to extend the compiler to take into account complex
knowledge about the target reconfigurable platform and thus to achieve an effi-
cient schedule of the different operations performed on the reconfigurable fabric.

References

1. Campi, F., Toma, M., Lodi, A., Cappelli, A., Canegallo, R., Guerrieri, R.: A VLIW
Processor with Reconfigurable Instruction Set for Embedded Applications. In: In
ISSCC Digest of Technical Papers. (2003) 250-251

2. Sima, M., Vassiliadis, S., S.Cotofana, van Eijndhoven, J., Vissers, K.: Field-
Programmable Custom Computing Machines - A Taxonomy. In: 12th International
Conference on Field Programmable Logic and Applications (FPL). Volume 2438.,
Montpellier, France, Springer-Verlag Lecture Notes in Computer Science (LNCS)
(2002) 79-88

3. Becker, J.: Configurable Systems-on-Chip : Commercial and Academic Approaches.
In: Proc. of 9th IEEE Int. Conf. on Electronic Circuits and Systems - ICECS 2002,
Dubrovnik, Croatia (2002) 809-812

4. Gokhale, M.B., Stone, J.M.: Napa C: Compiling for a Hybrid RISC/FPGA Archi-
tecture. In: Proceedings of FCCM’98, Napa Valley, CA (1998) 126-137

5. Rosa, A.L., Lavagno, L., Passerone, C.: Hardware/Software Design Space Explo-
ration for a Reconfigurable Processor. In: Proc. of DATE 2003, Munich, Germany
(2003) 570-575

6. Ye, Z.A., Shenoy, N., Banerjee, P.. A C Compiler for a Processor with a Recon-
figurable Functional Unit. In: ACM/SIGDA Symposium on FPGAs, Monterey,
California, USA (2000) 95-100

7. Vassiliadis, S., Wong, S., Cotofana, S.: The MOLEN pu-Coded Processor. In: 11th
International Conference on Field Programmable Logic and Applications (FPL).
Volume 2147., Belfast, UK, Springer-Verlag Lecture Notes in Computer Science
(LNCS) (2001) 275-285

8. Vassiliadis, S., Gaydadjiev, G., Bertels, K., Moscu Panainte, E.: The Molen Pro-
gramming Paradigm. In: Proceedings of the Third International Workshop on
Systems, Architectures, Modeling, and Simulation, Samos, Greece (2003) 1-7

9. Moscu Panainte, E., Bertels, K., Vassiliadis, S.: Compiling for the Molen Program-
ming Paradigm. In: 13th International Conference on Field Programmable Logic
and Applications (FPL). Volume 2778., Lisbon, Portugal, Springer-Verlag Lecture
Notes in Computer Science (LNCS) (2003) 900-910

10. (http://suif.stanford.edu/suif/suif2)

11. (http://www.eecs.hardvard.edu/hube/research/machsuif.html)

12. M.Mercaldi, Smith, M.D., Holloway, G.: The Halt Library. In: The Machine-SUIF
Documentation Set, Hardvard University (2002)

