
The Virtex II Pro ™ MOLEN Processor

G.Kuzmanov, G.N. Gaydadjiev, and S. Vassiliadis

Computer Engineering Lab, EEMCS, TU Delft, The Netherlands
E-mail :{G.Kuzmanov,G.N.Gaydadjiev,S.Vassiliadis }@ET.TUDelft.NL

http://ce.et.tudelft.nl/

Abstract. We use the Xilinx Virtex II Pro™ technology as prototyping plat-
form to design a MOLEN polymorphic processor, a custom computing machine
based on the co-processor architectural paradigm. The PowerPC embedded in the
FPGA is operating as a general purpose (core) processor and the reconfigurable
fabric is used as a reconfigurable co-processor. The paper focuses on hardware
synthesis results and experimental performance evaluation, proving the viability
of the MOLEN concept. More precisely, the MPEG-2 application is accelerated
very closely to its theoretical limits by implementing SAD, DCT and IDCT as re-
configurable co-processors. For a set of popular test video sequences the MPEG-2
encoder overall speedup is in the range between 2.64 and 3.18. The speedup of
the MPEG-2 decoder varies between 1.65 and 1.94.

1 Introduction

The MOLEN polymorphic processor [9], a Custom Computing Machine (CCM) based
on the co-processor architectural paradigm, resolves some shortcomings of many recent
reconfigurable processors (e.g., opcode space explosion, modularity and compatibility
problems identified for [2, 3, 6]). More specifically, the MOLEN concept suggests that
for a given ISA, a single architectural extension comprising between 4 and 8 additional
instructions suffices to provide an almost arbitrary number of reconfigurable functions.
In addition, unlike [1, 11], the concept allows implementations with large, virtually
unlimited, number of input and output parameters for the reconfigurable functions. In
this paper, we present a prototype design of the MOLEN CCM utilizing a Virtex II
Pro™ FPGA of Xilinx [10]. The implemented minimal PowerPC ISA augmentation
comprises only four instructions and the reconfigurable hardware utilization of the pro-
totype is extremely low with only 156 FPGA slices consumed. Experimental results
indicate that this prototype realization can speedup the MPEG-2 encoder between 2.64
and 3.18 when implementing SAD, DCT and IDCT as reconfigurable functions. When
implementing the IDCT operation alone, the projected speedup of the MPEG-2 decoder
is between 1.65 and 1.94 for a set of popular test video sequences. The reconfigurable
hardware costs of the aforementioned functions is between 8% and 53% of the utilized
xc2vp20 chip, depending on the particular configuration considered.

The remainder of the paper is organized as follows. Section 2 briefly introduces the
MOLEN CCM background. In Section 3, Virtex II Pro™ specific design considera-
tions and hardware evaluation of the MOLEN prototype infrastructure are presented.
Considering MPEG-2, Section 4 evaluates the prototype based on experimental results.



Reconfigurable hardware utilization by the custom functional units and performance
estimates are reported. Finally, concluding remarks are presented in Section 5.

2 Background on the MOLEN CCM

This section briefly describes the MOLENρµ-coded CCM organization, originally in-
troduced in [9]. The two main components in the MOLEN machine organization (de-
picted in Figure 1) are theCore Processor, which is a general-purpose processor (GPP),
and theReconfigurable Processor(RP). The ARBITER performs a partial decoding on
the instructions in order to determine where they should be issued. Instructions imple-
mented in fixed hardware are issued to the GPP. Instructions for custom execution are
redirected to the RP. Data transfers from(to) the main memory are handled by theData
Load/Storeunit. TheData Memory MUX/DEMUXunit is responsible for distributing
data between either the reconfigurable or the core processor. The reconfigurable proces-
sor consists of thereconfigurable microcode(ρµ-code) unit and thecustom computing
unit (CCU). The CCU consists of reconfigurable hardware and memory, intended to
support additional and future functions that are not implemented in the core processor.

Main Memory


Instruction

Fetch


Data

Load/Store


ARBITER

DATA


MEMORY

MUX/DEMUX


Reconfigurable Processor


Core

Processor


reconfigurable

microcode


unit

CCU


Register File


Exchange

Registers


Fig. 1. The MOLEN machine organization

Pieces of application code can be implemented on the CCU in order to speed up the
overall execution of the application. A clear distinction exists between code that is exe-
cuted on the RP and code that is executed on the GPP. Data must be transferred across
the boundaries in order for the overall application code to be meaningful. Such data
includes predefined parameters (or pointers to such parameters) or results (or pointers
to such results). The parameter and result passing is performed utilizing the so-called
exchange registers(XREGs) depicted in Figure 1.

An operation, executed by the RP, is divided into two distinct phases: set and exe-
cute. The set phase is responsible for reconfiguring the CCU enabling the execution of
the operation. Subsequently, in the execute phase the actual execution of the operations
is performed. No specific instructions are associated with specific operations to con-
figure and execute on the CCU as this would greatly reduce the opcode space. Instead,
pointers toreconfigurable microcode(ρµ-code) are utilized. Theρµ-code emulates both



the configuration of the CCU and the execution of implementations configured on the
CCU resulting in two types of microcode: 1.) reconfiguration microcode that controls
the configuration of the CCU; and 2.) execution microcode that controls the execution
of the implementation configured on the CCU.
Arbiter operation. The arbiter directs instructions to either the core processor or the
reconfigurable processor. A general view of an arbiter organization, the operation of
which is entirely based on decoding the instruction flow is depicted in Figure 2. Instructions

Decode
 Controls

Arbiter Emulation


Instructions


MUX


Control


Arbiter


Instructions from

Memory


Instructions

to the Core Processor


Occupy

Memory
 micro address
 Ex/Set


Start

reconf.


operation


End of 
reconf.

operation


Fig. 2. General arbiter organization.

from the original GPP ISA are directed (via MUX) to the core processor. Up-on decod-
ing of an RP instruction, ”arbiter emulation instructions” are multiplexed through the
core processor instruction bus to drive the GPP into a wait state. In the same time,
control signals are issued (via the control block in Figure 2) to the RP (in essence the
ρµ-code unit) to initiate a reconfigurable operation. The microcode location address is
redirected to theρµ-code unit and the data memory control is transferred to the RP.
After an RP operation is completed, data memory control is released back to the GPP,
an instruction sequence is generated to ensure that the GPP exits the wait state and the
program execution continues with the instruction immediately following the executed
RP instruction. More details regarding arbiter operation can be found in [5].
The ρµ-code unitcomprises three main parts: the sequencer, the reconfigurable control
(ρ-control) store, and the reconfigurable microcode (ρµ-code) loading unit. Theρµ-
code loading unit, loadsρµ-code into theρ-control store from the main memory. The
sequencer generates the address of the next microinstruction from theρ-control store.
More details regardingρµ-code loading and related design considerations can be found
in [4]. The ρ-control store is used to store microcodes and comprises two sections -
a set and anexecutesection. Both sections can be identical and are further divided
into afixedand apageablepart. The fixed part stores the resident reconfiguration and
execution microcode of theset andexecutephases, respectively. Other microcode is
stored in memory and the pageable part of theρ-control store acts like a cache to provide
temporal storage. For more details regarding the considered cache mechanisms and the
ρ-control store organization, the interested reader is referred to [9].
The MOLEN programming paradigm is a sequential consistency paradigm targeting
the MOLEN organization (for details see [7]). The complete list of the eight required
instructions, denoted as polymorphic instruction set architecture (πISA), is as follows:
1) partial set (p-set<address>) performs common and frequently used configurations;



2) complete set (c-set<address>) completesthe CCU’s configuration to perform less
frequent functions; 3)execute<address>: controls the execution of the operations on
the CCU configured by theset instructions; 4)set prefetch<address> and 5)exe-
cute prefetch: prefetch the needed microcodes responsible for CCU reconfigurations
and executions into a local on-chip storage (theρµ-code unit); 6)break: synchronizes
the parallel execution of the RP and the GPP; 7)movtx XREGa ← Rb and 8)movfx
Ra ← XREGb: move the content of general-purpose register Rb to/from XREGa. The
<address> field in the instructions introduced above denotes the location of the re-
configurable microcode for the configuration and execution processes.

We note that it is not imperative to include all eight instructions when implementing
a MOLEN organization. In our prototype design, we have considered aminimal πISA
which comprises four basic instructions, namelyset(more specifically:c-set), execute,
movtx andmovfx. By implementing the first two instructions (set/execute) any CCU
implementation can be loaded and executed on the reconfigurable processor. Themovtx
andmovfx instructions are needed to provide the input/output interface between the RP
targeted code and the remainder application code. The minimalπISA is essentially the
smallest set of MOLEN instructions needed to provide a working scenario.

3 Prototype design considerations and hardware estimation

In this section, we present Virtex II Pro™ specific design considerations and evalu-
ate the reconfigurable hardware utilized by the MOLEN prototype infrastructure, i.e.,
excluding any CCU implementations. We consider a minimalπISA comprising the in-
structionsset, execute, movtx, andmovfx. Specific software considerations andπISA
instruction encoding are referred. Some implementation issues are presented as well.
The development platform.We experimented with the Alpha Data XPL Pro™ lite
development board (ADM-XPL). As a reconfigurable hardware platform, we used a
Xilinx xc2vp20-5 device from the Virtex II Pro™ family. The MOLEN organization
has been described in VHDL and synthesized by the Xilinx XST tool of ISE 5.2, SP3.
Software considerations.Due to performance reasons, we do not use PowerPC special
operating modes instructions as arbiter emulation instructions (e.g., exiting power-down
modes requires an interrupt). We employed the‘branch to link register’ instruction
(blr ) to emulate a ’wait’ state and‘branch to link register and link’(blrl ) to move the
processor out of this state. Thus the arbiter emulation instructions (Figure 2) are reduced
to only one instruction for ’wait’ and one for ‘wake-up’. Implementation details and
additional performance enhancing software considerations are discussed in [5].
Instruction encoding. We mapped themovtx andmovfx instructions to the existing
PowerPC instructionsmtdcr andmfdcr . This implementation solution has been im-
posed by the fact that the Virtex II Pro™ PowerPC core has a dedicated interface to the
so called Device Control Registers (DCR) [10]. We implemented the XREGs as DCRs
and utilized themtdcr andmfdcr instructions to support XREG transfers. Thus only
thesetandexecuteinstructions have to be considered for encoding. As a guideline, we
decided to closely follow the already established PowerPC instruction format. We have
chosen an opcode from the set of unused opcodes to represent both instructions. Figure
3 depicts the implemented RP instructions format, referred to astheρ-form. The manner



to distinguish asetinstruction and anexecuteinstruction (using the same opcode) is via
instruction modifiers. This encoding allows us to utilize a 24-bits address (embedded in
the instruction word) to specify the location of the microcode. Finally, we have to note
that within this address field, a modifier bit R/P (resident/pageable) specifies where the
microcode is located and how to interpret the address field. That is, either a location in
the memory (R/P=1) or in the on-chipρµ-code unit (R/P=0).

24-bit microcode address
000110


0
 5
 6
 29
 30
31


00 - complete set;
10 - partial set;
01 - execute.
OPC = 6


Fig. 3. Theρ-form: set(p-set, c-set) andexecuteinstructions.

Memory organization. For the memory design, we considered the on-chip memory
blocks of the utilized FPGA. The available BRAM blocks in xc2vp20 allow the im-
plementation of 128 KBytes memory for both data and instructions. The PowerPC has
a Harvard architecture with separated instruction and data addressing spaces. There-
fore, for better performance, we separated the main memory into two equal segments
- 64 KBytes for instructions and other 64 KBytes for application data. In this case, we
note that the amount of memory is limited only by the available on-chip memory. By
utilizing external memories, it is possible to extend the memory volume up to the en-
tire memory space addressable by PowerPC (i.e., 32-bit addresses). The later option,
however, has not been considered in our prototype and in the experiments to follow.
Clock domains.Due to the polymorphic nature of the MOLEN processor and for per-
formance efficiency, three clock domains have been implemented in our prototype:

– PPC clk- clock signal to the core processor. The frequency of this signal has been
set to 250 MHz, the maximum recommended for the PowerPCs in xc2vp20-5;

– mem clk- clock signal to the main memory. This signal has been set to be three
times lower than the PPCclk, i.e., 83 MHz;

– CCU clk- clock signal to the CCU driven by an external pin. It may be utilized by
any CCU, which requires frequencies, different from the PPCclk and memclk.

Additional design parameters.For the prototype implementation, we have considered
a microcode word length of 64 bits. A 32MByte memory segment has been considered
for storing microprograms into a 64-bit organized main memory. Theρ-control store
has been designed to handle 8KBytes 64-bit microcode words. As primary microcode
storage units for theρ-control store, we have used the BRAM blocks of the FPGA
fabric, configured as a dual port memory. Each port is unidirectional - a read-only port
is used to feed the microinstruction register, while a write-only port loads microcodes
from the external memory into the pageable section of theρ-control store. The XREGs
have been implemented in a single BRAM organized as512× 32-bit storage.
Synthesis results.Hardware costs reported by the synthesis tools are presented in Ta-
ble 1. The first column displays the FPGA resources considered. Column two reports
the actual values of these resources, consumed by the reconfigurable processor, with-
out considering any CCU implementation, i.e., theρµ-code unit and the associated
infrastructure. This includes theρµ-code loading unit, the sequencer and theρ-control



store. Column three presents resource utilization of the arbiter. In column four, the
resources consumed by the entire MOLEN organization are displayed, including the re-
configurable processor infrastructure, the arbiter and the XREGs. Finally, columns five
and six respectively present the available FPGA resources in the xc2vp20 chip and the
utilized part of these resources by the MOLEN organization (in %). Synthesis results
strongly suggest that the MOLEN infrastructure consumes trivial hardware resources,
thus leaving virtually all FPGA resources available for CCU implementations.

Table 1.MOLEN Organization Synthesis Results (* without any CCU implemented)

Device xc2vp20 Reconfig.Arbiter Total incl. Available %
Speed Grade -5 Processor* XREGsResources
Number of Slices 71 84 156 10304 1
Number of Slice Flip Flops 78 69 147 20608 1
Number of 4 input LUTs 171 150 322 20608 1
Number of BRAMs: 4 N.A. 5 112 3
Maximum Frequency [MHz] 130 143 130 N.A. N.A.

4 Prototype evaluation

In this section, we describe the experiments that have been carried out to evaluate the
MOLEN prototype performance and report the obtained results. We target and profile
the MPEG-2 application. The profiling data are used to identify and design perfor-
mance critical kernels as CCU implementations. Due to memory limitations, we run
only the extracted kernels on the prototype MOLEN processor and directly measure the
performance gains. Using these measurements, the profiling data, and Amdahl’s law,
we estimate the projected overall speedup, rather than directly run the entire MPEG-2
application on MOLEN. Hardware estimations for the considered CCUs are presented.
Software profiling results. The first step of the experimentation involves identifying
the functions that are suitable for hardware implementations. The objective is to identify
the most time-consuming kernels from the application. To this purpose, we performed
the measurements on a PowerPC 970 running at 1600 MHz. The considered applica-
tion is the Berkeley implementation of the MPEG-2 encoder and decoder included in
libmpeg2. As input data, we used a representative set of four popular video sequences,
namelycarphone, claire, containerand tennis. Profiling results for each considered
function and its descendants (obtained with the GNU profilergprof) are presented in
Table 2. For the MPEG2 encoder, the total execution time spent in SAD, DCT and
IDCT operations (Table 2, column 6) emphasizes that these functions require around
2/3 of the total application time. Although the IDCT function in MPEG2 encoder takes
only around 1% of the application time (Table 2, column 5), in the MPEG2 decoder
it requires on average around 42%. Consequently, all considered functions are good
candidates for hardware implementations although their individual contribution to the
performance improvement may differ per sequence and application.
Synthesis results for the considered CCU implementations.We implemented the
functions, suggested by the profiling results, into reconfigurable hardware. Synthesis
results for the xc2vp50 chip are reported in Table 3. For the SAD function, we imple-
mented the organization proposed in [8]. The super-pipelined 16-byte version of this



Table 2.MPEG2 profiling results for each of the considered functions and its descendants

MPEG2 encoder MPEG2 decoder
sequence# frames@ResolutionSAD(16x16)DCT(8x8) IDCT(8x8) Total IDCT(8 x 8)

carphone 96@176x144 51.1 % 12.5 % 1.3 % 64.9 % 50.4 %
claire 168@360x288 53.8 % 11.8 % 1.0 % 66.6 % 37.6 %

container 300@352x288 56.2 % 10.7 % 1.0 % 67.9 % 40.4 %
tennis 112@352x240 60.0 % 9.5 % 0.8 % 70.3 % 40.5 %

SAD organization (SAD16) is capable of processing one 16-pixel line (1 pixel is 1
byte) of a macroblock in 17 cycles at over 300 MHz. The 128-byte version (SAD128)
processes eight macroblock lines in 23 cycles, and the 256-byte version (SAD256), pro-
cesses an entire 16x16-pixel macroblock in 25. SAD256 requires more resources than
available in the xc2vp20 chip, therefore we consider it for future implementation on a
larger FPGA (e.g., xc2vp50). To support the DCT and IDCT kernels, we synthesized
the 2-D DCT and 2D-IDCT v.2.0 cores available as IPs in the Xilinx Core Generator
Tool. Considering the implemented clock domains and synthesis results (from Table 3)
in our experiments, we have run the DCT and IDCT functions at memclk frequency
(83MHz). The SAD designs were clocked by PPCclk (250MHz).

Table 3.Synthesis Results per CCU implementation

Device xc2vp20 SAD16 SAD128 SAD256 DCT IDCT Available
Speed Grade -5 (xc2vp50) Resources
Number of Slices 831 6807 13613* 4314 5436 10304
Number of Slice Flip Flops 1448 11862 23724* 7964 9876 20608
Number of 4 input LUTs 1390 11379 22757* 6832 8624 20608
Number of BRAMs: N.A. N.A. N.A. * 2 2 112
Maximum Frequency [MHz] 310 310 310* 96 96 N.A.

Experimental results.We have embedded the considered CCU implementations within
the MOLEN organization and carried out experiments in two stages:
Stage 1.Compile the software kernels for the original PowerPC ISA and run them on
one of the PowerPC405 processors, embedded in the xc2vp20 device. The kernels have
been extracted from the original application source code (the ANSI C code used for the
profiling) without any further code modifications. For our experiments, we considered
the same data sequences as used in the profiling phase. The PowerPC timers are ini-
tialized before a kernel is executed and are read immediately after the kernel execution
has completed. Thus, the exact number of PowerPC cycles, required for the entire ker-
nel execution can be obtained. After we derived the cycle counts for the PowerPC ISA
software runs, we initiated the next stage of the experiment.
Stage 2.The kernel software code is substituted with a new piece of code to support
πISA. The corresponding kernel CCU configuration is present in the reconfigurable
processor. Identically to the preceding experimentation stage, we obtain the exact num-
ber of PowerPC cycles required to complete the entire kernel operation on MOLEN.

Figure 4 depicts the measured cycles obtained in the two experimentation phases.
The first four chart groups present cycle counts for the original PowerPC ISA. The
last chart group presents the cycle numbers, consumed by MOLEN while processing



Fig. 4. Cycle numbers for kernels execution in original PowerPC ISA and fixedµ-code inπISA

the same data. In this figure, only fixed microcode implementations are depicted. In
addition, we have considered both fixed and pageable microcode implementations for
SAD16 and SAD128. Table 4 reports cycle numbers for executing these SAD imple-
mentations over a single macroblock. After obtaining the execution cycle numbers for
each kernel both on PowerPC and MOLEN, the kernel speedup is calculated for all
data sequences with respect to each CCU implementation. Table 5 presents the calcu-
lated kernel speedups.

Table 4.Cycle numbers per macroblock for different SAD implementations

SAD16 SAD128SAD256
fixed microcode 898 311 264
peageable microcode914 331 284

Table 5.Speedup for Different MPEG-2 Kernels

SAD16 SAD128 SAD256 DCT IDCT
fixed pag.fixed pag.fixed pag. fixed fixed

carphone 6.5 6.4 18.9 17.7 22.2 20.6302.3 24.4
claire 8.3 8.1 23.9 22.5 28.2 26.2302.2 24.4
container12.2 12.0 35.2 33.1 41.5 38.6302.1 24.4
tennis 12.1 11.9 35.0 32.9 41.2 38.3302.1 32.3

Projected application speedup.To calculate the projected speedup of the entire appli-
cation, we employed the well known Amdahl’s law, utilizing the following notations.
Let us assumeT to be the execution time of the original program (say measured in cy-
cles) andTSEi - time to execute kerneli in software, which we would like to speed-up
in reconfigurable hardware. AssumeTρi is the execution time (inπISA) for the recon-
figurable implementation of kerneli. Assumingai = TSEi

T andsi = TSEi

Tρi
, the speed-up

of the program with respect to the reconfigurable implementation of kerneli is:

Si =
T

T − TSEi + Tρi
=

1
1− (ai − ai

si
)

(1)



Identically, assuminga =
∑

i ai, all the kernels potential candidates for reconfigurable
implementation would speed-up the program with:

S =
T

T −∑
i TSEi +

∑
i Tρi

=
1

1− (a−∑
i

ai

si
)
, (2)

Smax = lim
∀si→∞

S =
1

1− a
(3)

WhereSmax is the theoretical maximum speed-up. Parametersai are the profiling re-
sults from Table 2 and parameterssi are the results from Table 5.
The projected speedup figures for the entire MPEG-2 encoder and MPEG-2 decoder ap-
plications are reported in Table 6. It can be observed that SAD128 and SAD256 CCU

Table 6.Speedup per kernel for the Entire MPEG2

encoder decoder
SAD16 SAD128 SAD256 DCT IDCT IDCT

fixed pag.fixed pag.fixed pag.fixed fixed fixed
carphone1.76 1.76 1.94 1.93 1.95 1.95 1.14 1.01 1.94
claire 1.90 1.89 2.06 2.06 2.08 2.07 1.13 1.01 1.56
container2.07 2.06 2.20 2.20 2.21 2.21 1.12 1.01 1.63
tennis 2.22 2.22 2.40 2.39 2.41 2.41 1.10 1.01 1.65

implementations clearly outperform SAD16 due to their parallel processing organiza-
tion. That is, depending on the CCU implementation, the entire application speedup
can be severely affected. The projected overall speed up figures for the entire MPEG-2
encoder and MPEG-2 decoder applications are reported in Table 7. For the MPEG-2

Table 7.Overall MPEG2 Speedup

MPEG2 encoder*MPEG2 decoder
theory impl. theory impl.

carphone 2.85 2.64 2.02 1.94
claire 2.99 2.80 1.60 1.56
container 3.12 2.96 1.68 1.63
tennis 3.37 3.18 1.68 1.65
* fixed µ-code SAD128 + DCT + IDCT

encoder, the simultaneous configuration of the SAD128, DCT, and IDCT operations
employing fixed microcode implementations has been considered. For the MPEG-2
decoder, only the IDCT has been implemented. Columns, indicated by label ”theory”
contain the theoretically achievable maximum speedup calculated with respect to Equa-
tion (3). Columns labelled by ”impl.” have been calculated employing Equation (2) and
contain data for the projected speedups with respect to the considered MOLEN imple-
mentation. Results in Table 7 strongly suggest that the actual speedup of the MPEG-2
encoder and decoder obtained during our practical experimentation very closely ap-
proach the theoretically estimated maximum possible speedups.



5 Conclusions

In this paper, we presented a prototype design of the MOLEN polymorphic processor,
a custom computing machine based on the co-processor architectural paradigm. The
prototype was implemented on a Xilinx Virtex II Pro™ FPGA. One of the PowerPC
cores embedded in the Virtex II Pro™ FPGA was used as a general purpose proces-
sor and the reconfigurable fabric operated as a reconfigurable co-processor. The paper
presented hardware synthesis results for the MOLEN infrastructure and for three cus-
tom computing units implemented as reconfigurable processors, namely SAD, DCT
and IDCT. The reconfigurable hardware costs of the aforementioned functions were
between 8% and 53% of the utilized xc2vp20 chip, depending on the particular config-
uration considered. The performance of the design was evaluated by experiments. More
precisely, the MPEG-2 application was accelerated very closely to its theoretical limits
by implementing SAD, DCT and IDCT as reconfigurable co-processors. The MPEG-2
encoder overall speedup was in the range between 2.64 and 3.18 while the speedup of
the MPEG-2 decoder varies between 1.65 and 1.94. These results proved the viability
of the MOLEN concept and showed its potentials for accelerating complex real-life
applications at trivial hardware costs.

References

1. F. Campi, M. Toma, A. Lodi, A. Cappelli, R. Canegallo, and R. Guerrieri. A VLIW Pro-
cessor with Reconfigurable Instruction Set for Embedded Applications. InISSCC Digest of
Technical Papers, pp. 250–251, Feb 2003.

2. M. Gokhale and J. Stone. Napa C: Compiling for a Hybrid RISC/FPGA Architecture. In
Proc. IEEE Symp. on FCCM, pp. 126–135, 1998.

3. S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimaera Reconfigurable Functional Unit. In
Proc. IEEE Symp. on FCCM, pp. 87–96, 1997.

4. G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis. Loading rm-code: Design considera-
tions. InProc. Third Intl. Workshop on Systems, Architectures, Modeling, and Simulation
(SAMOS’03), pp 8–11, 2003.

5. G. Kuzmanov and S. Vassiliadis. Arbitrating Instructions in anρµ-coded CCM. InProc.
13th Intl. Conf. FPL’03, Springer-Verlag LNCS, vol. 2778, pp. 81–90, 2003.

6. A. L. Rosa, L. Lavagno, and C. Passerone. Hardware/Software Design Space Exploration
for a Reconfigurable Processor. InProc. DATE 2003, pp. 570–575, 2003.

7. S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, and E. M. Panainte. The molen programming
paradigm. InProc. Third Intl. Workshop on Systems, Architectures, Modeling, and Simula-
tion (SAMOS’03), pp. 1–7,2003.

8. S. Vassiliadis, E. Hakkennes, S. Wong, and G. Pechanek. The Sum-of-Absolute-Difference
Motion Estimation Accelerator. InProc. 24th Euromicro Conf., pp. 559–566, 1998.

9. S. Vassiliadis, S. Wong, and S. Cotofana. The MOLENρµ-Coded Processor. In11th Intl.
Conf. FPL’01, Springer-Verlag LNCS, vol. 2147, pp. 275–285, 2001.

10. Xilinx Corporation.Virtex-II Pro Platform FPGA Handbook, v.1.0, 2002.
11. A. Ye, N. Shenoy, and P. Banerjee. A C Compiler for a Processor with a Reconfigurable

Functional Unit. InACM/SIGDA Symp. on FPGAs, pp. 95–100, 2000.


