
Logic-Enhanced Memory for 3D Graphics Tile-Based Rasterizers

D.Crisu, S.D. Cotofana and S. Vassiliadis P. Liuha
Computer Engineering Laboratory, EEMCS Nokia Research Center

Delft University of Technology, Delft, The Netherlands Visiokatu-1, SF-33720
Mekelweg 4, 2600 GA Delft, The Netherlands Tampere, Finland
E-mail:{dan, sorin, stamatis}@ce.et.tudelft.nl E-mail: petri.liuha@nokia.com

Abstract— An efficient logic-enhanced memory architecture to
accelerate primitive traversal in 3D graphics tile-based rasteriz-
ers is presented. The memory contains the same number of bits
as the number of pixels in the tile, and during rasterization time
it is filled up in several clock cycles by a systolic primitive scan-
conversion subsystem with the stencil of the primitive: ones are
written for memory locations that represent tile pixels covered by
primitive, otherwise zeros are stored. Once the shape of the prim-
itive has been coded inside the memory, the memory internal logic
is capable of delivering, on request, up to four hit positions (po-
sitions inside the primitive) per clock cycle to the pixel process-
ing pipelines, signaling when all the hit positions were consumed.
The logic-enhanced memory architecture presents the following
benefits: it handles ”ghost” primitives efficiently, hit positions are
communicated in a spatial pattern that increases the hit ratio of
texture caches in pull texture architectures, and hit positions can
always be mapped to different memory banks in the Z-buffer or
color-buffer breaking the “read-modify-write” dependency asso-
ciated with depth test and color blending, thus allowing efficient
pipelining. Hardware implementation in a typical 0.18µm process
technology for a QVGA 3D graphics hardware accelerator with
a tile size of 32 × 16 pixels has indicated that the memory can be
clocked at 200MHz and consumes an area of 120000µm2.

I. Introduction

The challenge posed by the formidable cost constraints on
products for the mobile consumer market requires a new breed
of graphics rendering hardware with very low power consump-
tion and implementation costs which precludes the utilization
of the advanced features and the high throughput achieved in
high-end systems. To fulfil these design constraints, tiling or
chunking architectures [1] were proposed as a way to save
memory bandwidth on framebuffer accesses, since an external
memory access typically is one of the most energy-consuming
operations, and to counteract the huge increase in storage re-
quired by full-scene antialiasing. In a tiling architecture, the
screen is divided in a number of non-overlapping regions, or
tiles, which are processed serially. Every frame, primitive ge-
ometry is sorted first by screen location and dumped into one
or more bins, one bin per tile. Geometry that overlaps a tile
boundary is referenced in each tile it is visible in. When all the
primitive geometry has been specified, it is rendered from bin
N to the tile N before moving to the tile N + 1. The advan-
tage of the tile-based architectures is that all the data (colors,
depth) can be maintained in on-chip tile-sized buffers and ac-
cesses to external memories are required only to dump the tile
color buffer content to the global off-chip frame buffer when
all the primitive geometry for the current processed tile at the
current frame was rasterized.

In traditional full-screen architectures efficient rasterization
algorithms [2][3] are based on edge functions [4] and rely on

Only Bounding Box Overlap

No overlap

Bounding Box & Triangle Overlap
y

T(A,B,C)

x

0

1

2

0 1 2 3

Bounding Box of T

B

A

C

Fig. 1. “Ghost” triangle for tiles (0, 2), (1, 0), (2, 0), and (2, 2).

the following paradigm: while not all the positions inside the
primitive are exhausted do 1) save the rasterization context, 2)
move to a new rasterization position, 3) test the edge functions
value for that position to see if the position is a hit, 4) if it
is inside communicate this hit position to the pixel processing
pipelines and update the rasterization context else restore the
rasterization context, 5) based on the edge functions computed
earlier try to predict a new hit position.

The main difficulty in tile-based rasterization with this algo-
rithm is to find the first hit position in the to be rasterized primi-
tive, from our experiments the overhead can be 50%-300% (in-
cluding testing if any of the primitive vertices or the primitive
center of gravity are in the current rasterized tile to be consid-
ered the starting rasterization position or the hit point). In ad-
dition there is always overhead associated with ”ghost” primi-
tives (depicted in Figure 1), primitives that are assigned to the
current tile when they have nothing in common with it (this is
due to the simple software driver algorithm that assigns primi-
tives to tiles based on a primitive bounding box test; other more
complex tests in the software driver were envisaged eliminating
the ”ghost” primitive problem completely but moving the costs
to software). In full-screen rasterization this overhead is inex-
istent due to the fact that a starting point inside the primitive
can always be found, e.g., the center of gravity.

In addition, several studies [5]–[7] have revealed that the
primitive pixel rasterization order is crucial for low-cost tile-
based architectures that don’t have dedicated texture memories
(pull texture architectures) and are relying on a robust texture
cache hit ratio to reduce the latency and energy consumption of
texel fetches from the external system memory.

To overcome the previously mentioned problems we propose
an efficient logic-enhanced memory architecture to accelerate
primitive traversal in 3D graphics tile-based rasterizers. The
memory contains the same number of bits as the number of
pixels in the tile, and during rasterization time it is filled up
in several clock cycles by a systolic primitive scan-conversion
subsystem with the stencil of the primitive: ones are written for
memory locations that represent tile pixels covered by primitive
and zeros for the rest. Once the shape of the primitive has been
coded inside the memory, the memory internal logic is capable
to deliver, on request, to the pixel processing pipelines at least
one and up to four hit positions per clock cycle while signaling



A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

x

y

Quad 11 (Group 10, Block 00)

Group 01 (Block 00)

Block 00

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

8

8
Pixel

Fig. 2. Proposed pixel rasterization order in tile.

when all the hit positions were consumed or if none existed.
The logic-enhanced memory architecture presents the follow-
ing benefits: it handles “ghost” primitives efficiently, hit posi-
tions are communicated in a spatial pattern that increases the
hit ratio of texture caches in pull texture architectures, and hit
positions can always be mapped to different memory banks in
the Z-buffer or color-buffer breaking the “read-modify-write”
dependency associated with depth test and color blending thus
allowing efficient pipelining. Hardware implementation in a
typical 0.18µm process technology for a QVGA 3D graphics
hardware accelerator with a tile size of 32 × 16 pixels has in-
dicated that the memory can be clocked at 200MHz and con-
sumes an area of 120000µm2.

The rest of the paper is organized as follows. The logic-
enhanced memory architecture is described in Section II. In
Section III, hardware implementation results are presented. Fi-
nally, in Section IV, the conclusions are drawn.

II. Logic-EnhancedMemory Architecture

The quest to an efficient hardware algorithm for rasteriza-
tion has to start from finding a suitable pixel rasterization or-
der. In Figure 2 the pixel grid of the tile around the origin
of the tile coordinate system is depicted and a space-filling
path indicated with arrows starting from the origin is presented.
Space-filling paths are known to improve the texel coherency
generating high hit-ratio in texture caches [1]. In addition, if
2 × 2 regions of fragments can be generated during rasteriza-
tion they can be mapped on different memory banks A, B, C,
D. Supposing that the shape or stencil of a triangle has been
already coded in a memory representing the bi-dimensional
tile, now hit locations have to be forwarded to the pixel pro-
cessing pipeline. The most appropriate way to select between
many hit locations according to the space-filling path traver-
sal order is via priority encoding. After the hit location was
communicated, the bit for that location has to be reset in or-
der for a priority encoding scheme to work further. Referring
to Figure 2, an (x, y) offset position can be encoded in terms
of block positions (8 × 8 fragment regions), group positions
(4 × 4 fragment regions), quad positions (2 × 2 fragment re-
gions), and positions in quad. Assuming a 32 × 16 pixel tile,
the location (x, y) = (x4x3x2x1x0, y3y2y1y0) can be encoded as
(Block,Group,Quad, Pos) = (y3x4x3, y2x2, y1x1, y0x0). With
this encoding, priority can be restated hierarchically: hit loca-
tions in a block (respectively group, quad) encountered earlier
on the space-filling path have a higher priority than any hit lo-
cations in a block (respectively group, quad) encountered later
on the path (see Figure 3).

In the following a logic-enhanced memory architecture based
on a hierarchical priority encoding scheme supporting a tile

Quad01 10 1100
Pixel Pixel Pixel Pixel

Group10 1100 01
Quad Quad Quad Quad

Priority decreasing

Fig. 3. Pixel and Quad coding.

size of 32 × 16 pixels is presented. The memory is used in
conjunction with a systolic primitive scan-conversion subsys-
tem, using edge functions, that works on a sliding window of
8 × 8 locations (a block) and outputs every clock cycle the
primitive shape (encoded with one bit per location) for a dif-
ferent 4 × 4 pixel region (a group) inside the currently pro-
cessed block. The sliding window is moved according to the
space-filling path traversal order until all the tile locations are
exhausted, also the groups generated by the systolic subsystem
on the block-sized window are output according to the space-
filling path traversal order. The logic-enhanced memory has
a word line width equal to the size of a group (16 bits) and
is capable of working back-to-back with the systolic subsys-
tem meaning that every clock cycle the primitive shape for a
group of locations is transfered inside the memory. The mem-
ory contains 32 wordlines (1tile=8blocks×4groups) and can be
filled up by the systolic subsystem with the primitive shape in
32 clock cycles. The systolic subsystem sliding window size
was designed to lead to hardware costs that match the hard-
ware size of a full-screen rasterizer, therefore larger sizes, al-
though benefic from a performance viewpoint, were considered
too costly. The systolic subsystem is described in detail in [8].
Once the shape of the primitive has been completely transferred
to the logic-enhanced memory, quads which contain at least a
hit location (less than four hit locations if the quad is situated
on the primitive edges) will be output at a rate of one per cycle
to the pixel procesing pipeline in the proper space-filling raster-
ization order until all the hit locations are exhausted. The mem-
ory output interface includes the individual bits of the quad, the
encoding of the quad in the (Block,Group,Quad) format, and
a signal that indicates if all the hit locations were transferred
out. The (Block,Group,Quad) format is suitable for compu-
tations in the subsequent pixel processing stages resulting only
in multi-operand additions that can be implemented efficiently
as described in [8].

The logic-enhanced memory architecture is presented in Fig-
ures 4, 5, and 6. The memory contains 32 wordlines, each
wordline contains a group, each group contains four quads, and
each quad contains four locations bits. An entire group can be
written per clock cycle but only one quad can be read out per
clock cycle. For write operations the memory behavior is iden-
tical to any CMOS SRAM read/write memory thus it will not
be described in detail; further the differential bit lines used for
writing are omitted from the drawings. When a quad containing
hit locations is requested, the priority tokens of all quad words
are transmitted to the group priority encoder, and all group pri-
ority tokens are transmitted to the global priority encoder. After
a decision is taken by the global priority encoder on the highest
priority quad containing hit locations, information is bounced
back only to the group word line containing the quad, the quad
being read out and its non-zero bits reset to prepare the memory
for the next read. The location information is stored using static
RAM bit cells but the logic circuitry is implemented in domino
dynamic logic clocked by the precharge signal Pre. The pri-
ority encoders are similar to the high-speed low-power n-type



Pre Pre

M1

M3

M5

M6

M4

M2

M8_00 M8_01 M8_10 M8_11

QuadRdClr

QuadNZ

M10

M9

GrpWrEn GrpWrEn

M7

DLY_BUFF

I
n
T
r
i
W
H
0
0

I
n
T
r
i
R
0
0

I
n
T
r
i
W
L
0
0

I
n
T
r
i
R
0
1

I
n
T
r
i
W
H
0
1

I
n
T
r
i
W
L
0
1

I
n
T
r
i
R
1
0

I
n
T
r
i
W
H
1
0

I
n
T
r
i
W
L
1
0

I
n
T
r
i
R
1
1

I
n
T
r
i
W
H
1
1

I
n
T
r
i
W
L
1
1

Fig. 4. Quad Cell.

Group
Priority
Encoder

QuadCell_01 QuadCell_10 QuadCell_11QuadCell_00

D1

D2

D3

D0 EP0

EP1

EP2

EP3

QuadRdClr_11

QuadRdClr_10

QuadRdClr_01

QuadRdClr_00

QuadNZ_01

QuadNZ_00

QuadNZ_10

QuadNZ_11

Quad Code

to all GroupCells

Pre

GrpPri

GrpNZ

LA

Fig. 5. Group Cell.

domino logic design described in [9]: the 4-bit group priority
encoder has one-level lookahead and the 32-bit global priority
encoder is constructed from 8-bit priority encoders connected
through the third-level lookahead signals.

In Figure 4 the Quad Cell circuit diagram is presented where
four locations bit cells are depicted. Each bit cell consists of
a storage cell (transistors M1, M2, M3, M4 and the two cross-
coupled inverters), one of the four parallel transistors (M8) of
a distributed domino four-input OR gate (that includes addi-
tionally transistors M9 and M10), the conditional read circuitry
(transistors M5, M6) and the reset transistor M7. For write op-
eration, when the signal GrpWrEn is asserted, one of the two
storage nodes is pulled down, and the other is pulled up. This
requires the pullup in both inverters to be weaker than the series
pulldown transistors. The storage cell is write-only because the
conditional read signal is formed internally based on the con-
tent of the storage cell and the signal QuadRdClr formed out-
side the Quad Cell (see Figure 5). The role of the OR gate is to
detect if hit locations are stored in the quad cell, then the signal
QuadNZ will participate in priority encoding in the Group Cell.
If based on the priority encoding scheme the quad contains the
hit locations with the highest priority in the memory, the signal
QuadRdClr will be asserted for the read and clear operation on
the quad bits. The static delay buffer DLY BUFF insures that is
enough separation in time between reading the quad bits (the
precharged read bit line InTriR can be discharged enough to
be detected as logic 0 by the charge-redistribution amplifiers)
and clearing the quad bits. The size required for DLY BUFF is

small because the memory has only 32 word lines.

The role of the Group Cell additional logic circuitry presented
in Figure 5 is to pass forward the QuadNZ signals from the four
Quad Cells to the group priority encoder. GrpNZ is connected to
the lookahead ouput port (LA) of the group priority encoder and
signals that at least one of the Quad cells contains hit locations
and this is input in the global priority encoder. If the global pri-
ority encoder decides that the Group Cell has the highest prior-
ity among the other Group Cells the signal GrpPri is asserted.
GrpPri together with the priority encoded lines EP from the
group priority encoder is anded using four two-input domino
AND gates forming QuadRdClr signals for the Quad Cells. In
addition two domino OAI gates are used to form the quad code
— if a quad having the highest priority exists in the Group Cell
then two precharged bit lines are discharged broadcasting the
quad code to the memory output.

Finally, in Figure 6 the block diagram of the logic-enhanced
memory is presented. The signals from the Group Cells are
input in the global priority encoder that decides which one of
the Group Cells has the highest priority. MoreNZQuadsLeft is
connected to the lookahead ouput port (LA) of the global pri-
ority encoder and signals that at least one of the Quad cells
contains hit locations, therefore indicating outside the memory
if there are any hit locations left. The quad code returned is
used for multiplexing the highest priority quad bits from the
highest priority Group Cell, and logic similar to that presented
in Figure 5 is used to generate the block code and group code
outputs. The memory input interface contains the GetNZQuad



(
f
o
r
 
w
r
i
t
e
 
o
p
e
r
a
t
i
o
n
)

G
r
o
u
p
 
D
e
c
o
d
e
r

QuadCell_00

QuadCell_00

Group & Block Code

Amplifiers

Pre

Quad

4

D0

EP0

D31

EP31
Grp_31

Group Priority Encoder
& LogicQuadCell_11

Group Priority Encoder
& LogicQuadCell_11

GrpNZ_0

GrpPri_0

GrpPri_31

GrpNZ_31

Priority Encoder

&
Logic

Quad_11 Bit
Amplifiers

4:1

Quad_00 Bit
Amplifiers Amplifiers

Quad CodeGroup

Drivers

16

NZ

5

Control

Grp_0

GroupCell_0

Group

GrpSel

GrpWriteEn

GetNZQuad

QuadCode GrpCode BlockCode M
o
r
e
N
Z
Q
u
a
d
s
L
e
f
t

I
n
T
r
i
R
0
0

I
n
T
r
i
R
0
1

I
n
T
r
i
R
1
0

I
n
T
r
i
R
1
1

LA

Fig. 6. Logic-enhanced memory architecture.

TABLE I

Logic-Enhanced Memory Hardware Implementation Results

IC Technology UMC Logic18-1.8V/3.3V-1P6M

Critical Path Latency [ns] 2.387

Area [µm2]
Bit Cell 144
Quad Cell 636
Group Cell 2894
Total (including peripheral circuitry) 118985

signal that has to be asserted in order for a quad with hit loca-
tions to be read out. The rest of the circuitry is identical to any
CMOS SRAM read/write memory and thus it is not described
in further details.

III. Hardware Implementation Results

The logic-enhanced memory was designed at the physical
level in a commercial 0.18µm IC manufacturing technology.
After the parasitics were extracted from layout the annotated
circuits composing the critical path (starting in Quad Cell 11
of the Group Cell 31, going through the global priority encoder
than back in the originating cell, than to the Quad 11 Bit Am-
plifiers, and finally reaching the Quad output port) were simu-
lated using the HSPICE circuit simulator. The results are re-
ported in Table I. The critical path latency translates in a maxi-
mum clock frequency of 200 MHz assuming that the precharge
and the evaluation phase take half the clock cycle.

IV. Conclusions

An efficient logic-enhanced memory architecture to acceler-
ate primitive traversal in 3D graphics tile-based rasterizers was
presented. The memory contains the same number of bits as
the number of pixels in the tile, and during rasterization time it
is filled up in several clock cycles by a systolic primitive scan-
conversion subsystem with the stencil of the primitive: ones are
written for memory locations that represent tile pixels covered
by primitive, and zeros for the rest of locations. Once the shape
of the primitive has been coded inside the memory, the memory
internal logic is capable of delivering, on request, at least one
and up to four hit positions (positions inside the primitive) per
clock cycle to the pixel processing pipelines, signaling when
all the hit positions were consumed or if none initially existed.

The logic-enhanced memory architecture presents the follow-
ing benefits: it handles “ghost” primitives efficiently, hit posi-
tions are communicated in a spatial pattern that increases the
hit ratio of texture caches in pull texture architectures, and hit
positions can always be mapped to different memory banks in
the Z-buffer or color-buffer breaking the “read-modify-write”
dependency associated with depth test and color blending thus
allowing efficient pipelining. Hardware implementation in a
typical 0.18µm process technology for a QVGA 3D graphics
hardware accelerator with a tile size of 32 × 16 pixels has in-
dicated that the memory can be clocked at 200MHz and con-
sumes an area of 120000µm2.

References

[1] T. Akenine-Möller and E. Haines, Real-Time Rendering, A K Peters,
Ltd., 2002.

[2] M.D. Waller, J.P. Ewins, M. White, and P.F. Lister, “Efficient primitive
traversal using adaptive linear edge function algorithms,” Computer &
Graphics, vol. 23, pp. 365–375, 1999.

[3] J. McCormack and R. McNamara, “Tiled Polygon Traversal Us-
ing Half-Plane Edge Functions,” in Proceedings of the 2000 SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware, 2000, pp.
15–21.

[4] J. Pineda, “A Parallel Algorithm for Polygon Rasterization,” Computer
Graphics (ACM SIGGRAPH ’88 Conference Proceedings), vol. 22, no. 4,
pp. 17–20, 1988.

[5] Ziyad S. Hakura and Anoop Gupta, “The Design and Analysis of a Cache
Architecture for Texture Mapping,” in Proceedings of the 24th Interna-
tional Symposium on Computer Architecture. 1997, pp. 108–120, ACM
Press.

[6] Michael Cox, Narendra Bhandari, and Michael Shantz, “Multi-Level Tex-
ture Caching for 3D Graphics Hardware,” in Proceedings of the 25th An-
nual International Symposium on Computer Architecture. 1998, pp. 86–
97, IEEE Press.

[7] Homan Igehy, Matthew Eldridge, and Kekoa Proudfoot, “Prefetching in a
Texture Cache Architecture,” in Proceedings of the 1998 EUROGRAPH-
ICS/SIGGRAPH Workshop on Graphics Hardware. 1998, pp. 133–142,
ACM Press.

[8] D. Crisu, S. Cotofana, and S. Vassiliadis, “A Proposal of a Tile-Based
OpenGL Compliant Rasterization Engine - Progress Report,” Tech. Rep.
(2004-01), Computer Engineering Laboratory, EEMCS, Delft University
of Technology, Mar. 2004.

[9] C.-H. Huang, J.-S. Wang, and Y.-C. Huang, “Design of High-Performance
CMOS Priority Encoders and Incrementers/Decrementers Using Multi-
level Lookahead and Multilevel Folding Techniques,” IEEE Journal of
Solid-State Circuits, vol. 37, no. 1, pp. 63–76, Jan. 2002.


