
JOURNAL OF ELECTRONIC TESTING: Theory and Applications 20, 245–255, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The United States.

Memory Fault Modeling Trends: A Case Study∗

SAID HAMDIOUI
Delft University of Technology, Faculty of Electrical Engineering, Mathematic and Computer Science,
Computer Engineering Laboratory, Mekelweg 4, 2628 CD Delft, The Netherlands; Intel Corporation,

2200 Mission College Boulevard, Santa Clara, CA 95052, USA
s.hamdioui@ewi.tudelft.nl

ROB WADSWORTH
STMicroelectronics, 850 rue Jean Monnet BP 16, F-38926 CROLLES Cedex, France

JOHN DELOS REYES
Intel Corporation, 2200 Mission College Boulevard, Santa Clara, CA 95052, USA

AD J. VAN DE GOOR
Delft University of Technology, Faculty of Electrical Engineering, Mathematic and Computer Science,

Computer Engineering Laboratory, Mekelweg 4, 2628 CD Delft, The Netherlands

Received July 1, 2003; Revised December 22, 2003

Editor: C. Landrault

Abstract. In recent years, embedded memories are the fastest growing segment of system on chip. They therefore
have a major impact on the overall Defect per Million (DPM). Further, the shrinking technologies and processes
introduce new defects that cause previously unknown faults; such faults have to be understood and modeled in
order to design appropriate test techniques that can reduce the DPM level. This paper discusses a new memory
fault class, namely dynamic faults, based on industrial test results; it defines the concept of dynamic faults based
on the fault primitive concept. It further shows the importance of dynamic faults for the new memory technologies
and introduces a systematic way for modeling them. It concludes that current and future SRAM products need to
consider testability for dynamic faults or leave substantial DPM on the table, and sets a direction for further research.

Keywords: memory tests, static faults, dynamic faults, data backgrounds, fault models, fault coverage

1. Introduction

According to the 2001 International Technology
Roadmap for Semiconductor (ITRS 2001), today’s sys-
tem on chip (SOC) are moving from logic dominant

∗A preliminary version of this work was presented at the 8th ETW
2003 in Maastricht.

chips to memory dominant chips, since future applica-
tions requiring a lot of memory. The memory share on
the chip is expected to be about 94% in 2014 [5]! As
result the overall DPM level will be determined heavily
by the memory DPM level.

To ensure a certain DPM level, memory test engi-
neers must use test algorithms that are able to deal with
the new defects that the new memory technologies and



246 Hamdioui et al.

process are introducing. Without such algorithms, the
required DPM level, driven by market demands, can-
not be achieved. New systematic defects in the new
memory technologies often manifest themselves in a
different way to the traditional ones. Adequate new
fault models and (diagnosis) test algorithms are there-
fore essential.

Researchers studying the faulty behavior of mem-
ory devices have been defining functional fault models
(FFMs) and developing tests to target them [1, 2, 6–10,
13–18]. However, most of the published work is limited
to static faults, which are faults sensitized by perform-
ing at the most one operation; e.g., a write operation
sensitizes the fault. These models were satisfactory to
deal with the defects in the old technologies.

Recent published work shows that another type of
faulty behavior can take place in the absence of static
faults [3, 10, 12]. This faulty behavior requires more
than one operation sequentially in order to be sensi-
tized. For example, a write operation, followed imme-
diately by a read operation, causes the cell to flip; how-
ever, if only a single write or a single read, or a read
which does not immediately follow the write is per-
formed, the cell will not flip. Faults requiring more than
one operation sequentially in order to be sensitized are
called dynamic faults. The traditional industrial mem-
ory tests are designed for static faults, and therefore
may not be able to deal with the dynamic faults. Little
has been published on dynamic faults. In [3] the exis-
tence of dynamic faults has been proven for embedded
DRAMs, based on defect injection and SPICE simu-
lation. In [10, 12], the validation of dynamic faults for
embedded caches has been proven; in addition, an ap-
propriate test for the observed dynamic faulty behavior
has been proposed.

This paper shows the importance of dynamic faults
for the new memory (e.g., SRAM) technologies, based
on industrial experiments done at ST Microelectron-
ics and at Intel. It gives a systematic way for mod-
eling them; and concludes that current and future
(SRAM) memory products need to consider testing
dynamic faults, or leave substantial DPM on the ta-
ble. The paper is organized as follows: Section 2 ex-
plains the concept of the dynamic faults; Section 3
presents industrial test results. Section 4 discusses
some detected unique faults, from which the impor-
tance of dynamic faults will follow; it also presents
a systematic way for modeling dynamic faults. Sec-
tion 5 gives a general framework for dynamic faults,
with which the space of dynamic faults can be

studied and analyzed; while Section 6 ends with
conclusions.

2. Dynamic Fault Concept

To mathematically define dynamic faults, the fault
primitive concept [20] will be used. The two basic in-
gredients for any fault model are: (a) A list of performed
memory operations, and (b) A list of corresponding
deviations in the observed behavior from the expected
one. Any list of performed operations on the memory is
called an operation sequence. An operation sequence
that results in a difference between the observed and
the expected memory behavior is called a sensitizing
operation sequence (S). The observed memory behav-
ior that deviates from the expected one is called the
faulty behavior (F).

In order to specify a certain fault, one has to specify
the S together with the corresponding faulty behavior
F and the read result (R) of S, in case S is a read
operation or a sequence of operations with a read as
last one in the sequence. The combination of S, F and
R for a given memory failure is called a Fault Primitive
(FP) [20], and is denoted as 〈S/F/R〉. S describes the
sensitizing operation sequence that sensitizes the fault
(e.g., a two successive read 0 operations from a cell
containing 0 (i.e., 0r0r0)), F describes the value or the
behavior of the faulty cell (e.g., the cell flips from 0
to 1), while R describes the logic output level of a read
operation (e.g., a wrong value 1) in case S is a read
operation, or is a sequence of operations with a read as
last one in the sequence. The example given here can
be thus denoted as 〈0r0r0/1/1〉.

By inspecting the definition of the FP concept, one
can see that the difference between static and dynamic
faults is determined by the number of operations re-
quired in S. Let #O be defined as the number of oper-
ations performed sequentially in S. For example, if a
single read operation applied to a certain cell causes
that cell to flip, then #O = 1. Depending on #O ,
memory faults can be divided into static and dynamic
faults:

• Static faults: These are faults sensitized by perform-
ing at the most one operation; that is #O ≤ 1. For
example, the state of the cell is always stuck at one
(#O = 0), a read operation to a certain cell causes
that cell to flip (#O = 1), etc. All published tradi-
tional fault models belong to static faults.



Memory Fault Modeling Trends: A Case Study 247

• Dynamic faults: These are faults that can only be
sensitized by performing more than one operation
sequentially; that is #O > 1. For example, two suc-
cessive read operations cause the cell to flip; how-
ever, if only one read operation is performed, the
cell will not flip. Depending on #O , a further classi-
fication can be made between 2-operation dynamic
faults whereby #O = 2, 3-operation dynamic faults
whereby #O = 3, etc. It has been shown that the prob-
ability of dynamic faults decreases as the number of
operations increases [4].

3. Industrial Validation of SRAM Tests

This section gives an industrial evaluation of the tra-
ditional tests as compared with the only test, March
RAW [10], specifically designed to target a few dy-
namic faults. March RAW is designed to target dy-
namic faults sensitized in a victim cell by applying a
read-after-write to the aggressor cell or to the victim
cell [10]. The test results of DPM screening done at
STMicroelectronics and at Intel for advanced SRAMs
will be presented; they validate the high fault cover-
age of March RAW in general, and show the impor-
tance of dynamic faults which still need to be worked
out.

Table 1. List of the used base tests (BTs).

No. BT name Test length Description

1 SCAN [1] 4n {⇑ (w0); ⇑ (r0); ⇑ (w1); ⇑ (r0)}
2 MATS+ [16] 5n {� (w0); ⇑ (r0, w1); ⇓ (r1, w0)}
3 MATS++ [6] 6n {� (w0); ⇑ (r0, w1); ⇓ (r1, w0, r0)}
4 March C− [14, 18] 10n {� (w0); ⇑ (r0, w1); ⇑ (r1, w0); ⇓ (r0, w1); ⇓ (r1, w0); � (r0)}
5 PMOVI [8] 13n {⇓ (w0); ⇑ (r0, w1, r1); ⇑ (r1, w0, r0); ⇓ (r0, w1, r1); ⇓ (r1, w0, r0)}
6 March SR [9] 14n {⇓ (w0); ⇑ (r0, w1, r1, w0); ⇑ (r0, r0); ⇑ (w1); ⇓ (r1, w0, r0, w1); ⇓ (r1, r1)}
7 March SS [11] 22n {� (w0); ⇑ (r0, r0, w0, r0, w1); ⇑ (r1, r1, w1, r1, w0);

⇓ (r0, r0, w0, r0, w1); ⇓ (r1, r1, w1, r1, w0); � (r0)}
8 March G [17] 23n {� (w0); ⇑ (r0, w1, r1, w0, r0, w1); ⇑ (r1, w0, w1);

⇓ (r1, w0, w1, w0); ⇓ (r0, w1, w0); ⇑ (r0, w1, r1); ⇑ (r1, w0, r0)}
9 March RAW [10] 26n {� (w0); ⇑ (r0, w0, r0, r0, w1, r1); ⇑ (r1, w1, r1, r1, w0, r0);

⇓ (r0, w0, r0, r0, w1, r1); ⇓ (r1, w1, r1, r1, w0, r0); � (r0)}
10 Hammer [19] 49n {⇑ (w0); ⇑ (r0, 10 ∗ w1, r1); ⇑ (r1, 10 ∗ w0, r0); ⇓ (r0, 10 ∗ w1, r1); ⇓ (r1, 10 ∗ w0, r0)}
11 GalColumn 6n + 4nR {⇑ (w0); ⇑b (w1b, col(r0, r1b), w0b); ⇑ (w1); ⇑b (w0b, col(r1, r0b), w1b)}
12 GalRow 6n + 4nC {⇑ (w0); ⇑b (w1b, row(r0, r1b), w0b); ⇑ (w1); ⇑b (w0b, row(r1, r0b), w1b)}
13 WalkColumn 8n + 2nR {⇑ (w0); ⇑b (w1b, col(r0), r1b, w0b); ⇑ (w1); ⇑b (w0b, col(r1), r1b, w0b)}
14 WalkRow 8n + 2nC {⇑ (w0); ⇑b (w1b, row(r0), r1b, w0b); ⇑ (w1); ⇑b (w0b, row(r1), r1b, w0b)}

3.1. Used Tests and Stress Combinations

In the experiment done at STMicroelectronics as well
as at Intel, a set of 53 tests has been used. A test consists
of a base test (BT) (i.e., test algorithm) applied using
a particular stress combination (SC). A SC specifies
the way the test is performed, and therefore influences
the sequence and/or the type of memory operations.
A SC consists of a combination of values of different
stresses; e.g., addressing, databackgrounds, etc.

3.1.1. Used Base Tests (BTs). The used BTs are
listed in Table 1; the test length of each BT is also
included, where n denotes the size of the memory
cell array, R denotes the number of rows and C the
number of columns. The used march notation is ex-
plained as follows: A complete march test is delim-
ited by the ‘{. . .}’ bracket pair, while a march ele-
ment is delimited by the ‘(. . .)’ bracket pair. March
elements are separated by semicolons, and the oper-
ations within a march element are separated by com-
mas. Note that all operations of a march element are
performed at a certain address, before proceeding to
the next address. The latter can be done in either an in-
creasing (⇑) or a decreasing (⇓) address order. When
the address order is not relevant, the symbol � is be
used.



248 Hamdioui et al.

For Hammer, the notation e.g., 10 ∗ w1 means that
the write operation is performed 10 times successively
to the same cell. For GalRow and GalColumn, the no-
tation e.g., row(r0, r1b) means apply a r0 operation in
an incrementing order to the cells of the row of the base
cell, and apply r1 operation to the base cell after each
r0 operation; a similar explanation applies to col(r0,
r1b). Similarly, for WalkRow and WalkColumn, the
notation e.g., row(r0) means apply a r0 operation us-
ing an incrementing address order to the row of the
base cell, and skip the base cell; a similar explanation
applies to col(r0).

3.1.2. Used Stresses. Two types of stresses have been
used; namely addressing and data-background stresses.
The used addressing stresses consist of two types of
addressing:

1. Fast X (fx): Fast X addressing is simply increment-
ing or decrementing the address in such a way that
each step goes to the next row. The sequence pro-
ceeds in the adjacent physical order of the word
lines.

2. Fast Y (fy): Fast Y addressing is simply increment-
ing or decrementing the address in such a way that
each step goes to the next column. The sequence
proceeds in the adjacent physical order of the bit
lines.

Table 2. List of the used BTs and their stress combinations.

Stress combination

fx fy

No. Base test (BT) # SC T.L. s c cs rs s c cs rs

1 Scan 4 4n − + + + − + − −
2 Mats+ 2 5n + − − − + − − −
3 Mats++ 2 6n + − − − + − − −
4 March C− 6 10n + − + + + − + +
5 PMOVI 8 13n + + + + + + + +
6 March SR 8 14n + + + + + + + +
7 March SS 8 22n + + + + + + + +
8 March G 2 23n + − − − + − − −
9 March RAW 8 26n + + + + + + + +

10 Hammer 1 49n + − − − − − − −
11 GalColumn 1 6n + 4nR + − − − − − − −
12 GalRow 1 6n + 4nC − − − − + − − −
13 WalkColumn 1 8n + 2nR + − − − − − − −
14 WalkRow 1 8n + 2nC − − − − + − − −

Fig. 1. The common data-backgrounds.

A data-background (DB) is defined as the pattern of
ones and zeros as seen in an array of memory cells. The
most common types of data-backgrounds are: Solid
(s), Checkerboard (c), Column Stripe (cs), and Row
Stripe (rs). Fig. 1 illustrates the four DBs, using a simple
4 × 4 array. Each DB is shown with the base and the
complement values.

Table 2 shows the total number of tests used. The col-
umn #SC gives the number of SCs each BT is used with;
and the column T.L. gives the test length of each BT.
In the table, the solid, the checkerboard, column stripe
and row stripe data-background are denoted as ‘s’, ‘c’,
‘cs’, and ‘rs’ respectively; while the fast-X and fast-Y
addressings are denoted as ‘fx’ and ‘fy’ respectively.



Memory Fault Modeling Trends: A Case Study 249

A ‘+’ in the table indicates that the corresponding SC
is applied, and a ‘−’ denoted that it is not. E.g., Mats+
is implemented two times: one using ‘fx’ en ‘s’ and one
using ‘fy’ en ‘s’.

3.2. STMicroelectronics Test Results

All listed BTs and their corresponding SCs in Table 2
have been implemented. From the large number of
SRAM chips (with a size of 512 Kbits) tested,
1134 chips fail all the tests; while 60 chips fail only
some tests. We will only concentrate on the 60 chips
since they are the most interesting. The data base of
the test results has been simplified and filtered for the
analysis purposes. Therefore the fault coverage of each
BT is considered instead of each test. The FC of a BT
is the union of the fault coverages of its corresponding
SCs. A die is considered detected by a BT if a least one
SC of that BT detects the faulty die.

Table 3 gives the unions and the intersections of the
used 14 BTs for low VDD and low speed testing. A
die belongs to the union of two BTs if at least one of
the two BTs found the die to be faulty, and belongs
to the intersection of two BTs if both BTs found the
die to be faulty. The first column in each table gives
the BT number; the second column the name of the
BT. The column ‘FC’ lists the fault coverage of the
corresponding BT; the column ‘UFs’ gives number of
unique faults (UFs) each BT detects. Unique faults are

Table 3. The union and the intersection of BTs (STMicroelectronics).

No. BT name FC UFs 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Scan 34 0 34 44 45 51 50 49 50 53 49 43 44 41 44 42

2 Mats+ 39 0 29 39 40 47 47 52 49 49 47 40 45 43 43 43

3 Mats++ 39 0 28 38 39 47 47 52 49 49 47 40 46 44 44 44

4 March C− 47 0 30 39 39 47 49 54 51 53 50 47 50 49 48 49

5 PMOVI 46 0 30 38 38 44 46 54 49 52 49 47 50 49 48 47

6 March SR 47 2 32 34 34 40 39 47 55 54 52 52 53 50 52 50

7 March SS 48 1 32 38 38 44 45 40 48 53 51 49 51 50 49 48

8 March G 49 1 30 39 39 43 43 42 44 49 52 49 52 52 51 50

9 March RAW 46 0 31 38 38 43 43 41 43 43 46 47 48 47 47 47

10 Hammer 32 0 23 31 31 32 31 27 31 32 31 32 45 42 43 42

11 GalColumn 34 0 24 28 27 31 30 28 31 31 32 21 34 41 37 43

12 GalRow 35 0 28 31 30 33 32 32 33 32 34 25 28 35 42 39

13 WalkColumn 35 0 25 31 30 34 33 30 34 33 34 24 32 28 35 41

14 WalkRow 37 0 29 33 32 35 36 34 37 36 36 27 28 33 31 37

faults that are only detected once with a single test; e.g.,
March SR detects 2 unique faults that are not detected
with any other test. The union and the intersection of
each pair of BTs is shown in the rest of the tables.
The numbers on the diagonal give the fault coverage
(FC) of the BTs, which are also listed in the column
‘FC’. The part above the main diagonal lists the union
of the corresponding BT pair, while the part below the
diagonal lists the intersection of each BT pair. Based on
the test result data base and Table 3, one can conclude
the following:

1. Total number of faulty chips detected: 60.
2. The best BTs, in terms of FC, are: March G with

FC = 49, March SS with FC = 48, and March SR
and March C− with FC = 47.

3. There are 4 unique faults, detected by 3 tests; these
are listed next together with their FC and the number
of unique faults (# UFs) each detects.

BT FC # UFs

March SR 47 2
March SS 48 1
March G 49 1

4. The best union pair, in terms of the FC, is March
SR and March SS with FC = 55.

5. There are 3 BTs which cover other BTs; e.g. March
SS covers all faults found by WalkRow since their
intersection is 37, which is the FC achieved with



250 Hamdioui et al.

WalkRow. The three BTs covering other BTs are
given next, with the covered BTs.

BT Covered BTs

March C−: Mats+, Mats++, Hammer
March SS: WalkRow
March G: Mats+, Mats++, Hammer

3.3. Intel Test Results

This section gives the test results based on the ex-
periment done on Intel embedded caches with a size
of 512 Kbytes. All listed SCs in Table 2 have been
implemented. From the large number of chips tested,
1343 chips fail all the tests; while 204 chips fail only
some tests. We will only concentrate on the 204 chips
since they are the most interesting.

Table 4 gives the union and the intersections of the
14 BTs for a high VDD and high speed testing; a sim-
ilar representation is used as in Table 3. Based on the
test result data base and Table 4, one can conclude the
following:

1. Total number of faulty chips detected: 204.
2. The best BTs in terms of FC are: March G

with FC = 185, March SS and March RAW with
FC = 184, and March C− with FC = 183.

3. There are 11 unique faults, detected by 3 tests; these
are listed next.

Table 4. The union and the intersection of BTs (Intel).

No. BT name FC UFs 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Scan 168 1 168 181 181 186 185 178 186 188 188 181 177 190 173 181

2 MATS+ 175 0 162 175 179 184 183 185 184 186 186 186 180 189 179 181

3 MATS++ 177 0 164 173 177 183 183 185 184 186 186 184 178 188 177 181

4 March C− 183 0 165 174 177 183 185 187 185 186 187 186 183 192 183 183

5 PMOVI 181 0 164 173 175 179 181 187 185 186 184 185 183 190 183 181

6 March SR 170 0 160 160 162 166 164 170 187 189 188 184 181 192 178 184

7 March SS 184 0 166 175 177 182 180 167 184 187 186 186 184 193 184 184

8 March G 185 0 165 174 176 182 180 166 182 185 188 188 176 195 186 186

9 March RAW 184 0 164 173 175 180 181 166 182 181 184 186 186 193 186 184

10 Hammer 171 1 158 160 164 168 167 157 169 168 169 171 179 192 178 183

11 GalColumn 164 0 155 159 163 164 162 153 164 163 162 156 164 188 164 181

12 GalRow 176 9 154 162 165 167 167 154 167 166 167 155 152 176 188 178

13 WalkColumn 173 0 155 156 160 160 158 152 160 159 158 153 160 148 160 181

14 WalkRow 181 0 155 162 164 168 168 154 168 167 168 156 151 166 147 168

BT FC # UFs

Scan 168 1
Hammer 171 1
GalRow 176 9

4. The best union pair in terms of the FC is GalRow
and March G with FC = 195, followed with GalRow
and March RAW with FC = 193.

5. There are 6 BTs covering supersets fails of other
BTs; these are given next, together with the covered
BTs.

BT Covered BTs

MATS++ WalkColumn
March C− Mats++, GalColumn,

WalkColumn, WalkRow
PMOVI WalkRow
March SS Mats+, Mats++, GalColumn,

WalkColumn, WalkRow
March RAW PMOVI, WalkRow
GalColumn WalkColumn

It is clear from Tables 3 and 4 that March RAW,
designed to target a few of the many possible dynamic
faults, generally scores very good as comparison with
other BTs. Further, the UFs detected by some empirical
tests can not be explained with the well known fault
models. Such faults need a detailed analysis in order to
be understood and modeled. Some analysis examples
of UFs will be given in Section 4; they will show that



Memory Fault Modeling Trends: A Case Study 251

the detected UFs are dynamic faults, which indicates
their importance for the new memory technologies.

4. Importance of Dynamic Faults

This section analyzes some of detected UFs, and shows
that those faults are dynamic faults. It further introduces
a systematic way to model the faults. This will be done
for ST experiment based UFs as well as for Intel based
UFs.

4.1. ST Experiment Based Unique Faults

It has been shown in Section 3.2 that there are three tests
which detect UFs; these faults can not be explained
using the well-known fault models. This means that
additional fault models and/or fault classes exist. By
analyzing each test detecting UFs, new fault models
will be introduced. Failure analysis can also be used for
better understanding of the underlying defect causing
such UF behavior. A new test(s) with a shorter test
length, targeting the detected UFs, may thereafter be
constructed and used for further test purposes.

The detected UFs have been analyzed during DPM
screening. The results of the analysis done for March
SR and March SS will be presented next; see Table 5.
The march elements that were responsible for the detec-
tion of UFs, as reported by the simulator/tools during
the DPM screening, are given in bold.

The analysis done for March SR points out that one
UF, say UF1 is detected by ⇑ (r0, w1, r1, w0) and
one UF, say UF2, by ⇓(r1, w0, r0, w1). The UF1 is
not detected by ⇑(r0, w1) (of March C−), neither by
⇑(r0, w1, r1) (of PMOVI) or any other test. The DPM
screening analysis reveals that the sensitization and de-
tection of UF1 require the application of last operation
of ⇑(r0, w1, r1, w0) (i.e., w0) to the aggressor cell
(a-cell) followed immediately with the first operation

Table 5. Analysis of UFs (ST).

BT UFs Description

March SR 2 {⇓ (w0); ⇑ (r0, w1, r1, w0); ⇑ (r0, r0);

⇑ (w1); ⇓ (r1, w0, r0, w1); ⇓ (r1, r1)}
March SS 1 {� (w0); ⇑ (r0, r0, w0, r0, w1);

⇑ (r1, r1, w1, r1, w0); ⇓ (r0, r0, w0, r0, w1);

⇓ (r1, r1, w1, r1, w0); � (r0)}

of ⇑(r0, w1, r1, w0) (i.e., r0) applied to the victim
cell (v-cell). The a-cell and the v-cell are accessed
successively; i.e., the address of the v-cell is the ad-
dress of the a-cell plus 1. In a similar way, the analysis
showed that the sensitization and detection of UF2, by
⇓(r1, w0, r0, w1), require the application of a w1 op-
eration to the a-cell followed immediately with a r1
operation applied to the v-cell, where the address of
the v-cell is the address of the a-cell minus 1. If the op-
erations are not applied sequentially to the a-cell and
the v-cell, the faults will be not detected, as is the case
for example for March C−. It is clear that the detected
UFs require the application of a a read to the v-cell
immediately after a write to the a-cell where the v-cell
and the a-cell have adjacent addresses.

A similar conclusion has been drawn based on the
analysis done for March SS. The analysis done for
March SS reveals that the sensitization and detection of
the UF require the application of the last operation of
⇑(r0, r0, w0, r0, w1) (i.e., w1) to the a-cell followed
immediately with two successive read 0 operations ap-
plied to the v-cell; where the v-cell and the a-cell have
adjacent addresses. The fault is only observable at the
output of the memory by the second read 0 operation,
although the cell may be flipped during the first read 0
operation.

The above discussed UFs are called dynamic faults
[3, 10], as we have discussed in Section 2; they are
faults sensitized by performing more than one opera-
tion sequentially (e.g., read immediately after write).
Traditional tests written to cover static faults (i.e.,
faults sensitized by performing at the most one op-
eration) do not necessarily detect dynamic faults. Es-
tablishing a complete set of possible dynamic faults
together with their appropriate tests still remain to be
done.

Next, a systematic way will be given in order to
mathematically describe the above discussed UFs. To
describe the detected UFs by March SR, the fault
primitive notation will be used; see Section 2. Thus
a dynamic fault can be denoted as: 〈S/F/R〉 =
〈Sa ; Sv/F/R〉, where:

Sa ; Sv describe sensitizing operation sequences ap-
plied respectively to the a-cell and to the-cell, which
sensitize a fault F in the v-cell. Thus for UF1 observed
with March SR, Sa is a w0 operation (applied to a
cell containing 1) and Sv is a read 0 operation (i.e.,
Sa ; Sv = 1w0; 0r0), while for UF2 Sa is a w1 opera-
tion (applied to a cell containing 0) and Sv is a read 1
operation (i.e., Sa ; Sv = 0w1; 1r1).



252 Hamdioui et al.

F describes the value of the faulty cell (i.e., the v-
cell); F ∈ {0, 1}, R describes the logical value which
appears at the output of the memory if the sensitizing
operation applied to the v-cell is a read operation: R ∈
{0, 1, −}.

Thus UF1 can be denoted as 〈1w0; 0r0/F/1〉, and
UF2 as 〈0w1; 1r1/F/0〉. Note that in both notations the
value of R differs from the expected value as described
by Sv; for instance in 〈1w0; 0r0/F/1〉, the expected
read value is 0 (since Sv = 0r0), but the obtained value
at the output is R = 1; therefore the fault is detected.

In 〈1w0; 0r0/F/1〉, F can have two values: (a)
F = 0; that means the the v-cell keeps its state, or (b)
F = 1, that means that the cell flips to 1. A similar ex-
planation can be given for 〈0w1; 1r1/F/0〉. Therefore
there are four possible fault primitives describing the
dynamic faults detected with March SR: 〈1w0; 0r0/

0/1〉, 〈1w0; 0r0/1/1〉, 〈0w1; 1r1/1/0〉, and 〈0w1;
1r1/0/0〉.

In a similar way, the detected UF by March SS can be
also denoted as 〈0w1; 0r0/1/0〉. Note that the cell will
flip when the read 0 operation is applied immediately
after the write 1 operation. However, the returned data
output by the read operation is correct; that is due to the
fact the the flipping of the cell occurs slowly. Detection
of the fault requires a second read 0 operation as March
SS does.

4.2. Intel Experiment Based Unique Faults

Section 3.3 showed that there are three tests which de-
tect UFs. As an example, an analysis of GalRow de-
tecting 9 UFs will be done. GalRow is given again in
Table 6. The UFs are detected by ‘row(r0, r1b)’ (or
by ‘row(r1, r0b)’), which are given in bold font. The
r1b and the r0b are the read data observed during the
test. Thus the detection of the 9 UFs occurs during r1b

(or r0b).
Let’s now consider the WalkRow which is also given

in Table 6. The fault detection for this test occurs dur-
ing ‘row(r0), r1b’ or during ‘row(r1), r1b’ (given in

Table 6. Analysis of UFs (Intel).

BT UFs Description

GalRow 9 {⇑(w0); ⇑(w1b, row(r0, r1b), w0b);

⇑(w1); ⇑(w0b, row(r1, r0b), w1b)}
WalkRow 0 {⇑(w0); ⇑(w1b, row(r0), r1b, w0b);

⇑(w1); ⇑(w0b, row(r1), r1b, w0b)}

bold font). If we compare the operations responsible
for the fault detection for GalRow and for WalkRow,
we can see that they are similar; the only difference is
that by GalRow a read operation is performed to the
victim cell (v-cell; i.e., base cell), immediately after a
read operation performed to the aggressor cell (a-cell)
belonging to the row of the victim cell. However for
WalkRow, a read operation is applied to the v-cell after
performing read operations to all the cells belonging to
the row of the v-cell. Thus applying a read operation
to the v-cell immediately after a read operation the the
a-cell will sensitize (and detect) the fault, but not if the
read to the v-cell is not applied immediately after a read
to the a-cell. In other words, the detected UFs require
the application of a a read to the v-cell immediately
after a read tothe a-cell where the v-cell and the a-cell
belong to the same row. These detected faults are called
dynamic faults [3, 10] as discussed in Section 2.

By using the fault primitive notation, the detected
UFs by GalRow can be described as 〈0r0; 1r1/F/0〉
and 〈1r1; 0r0/F/1〉, where F ∈ {0, 1}. That means that
there are four fault primitives describing the detected
UFs: 〈0r0; 1r1/1/0〉, 〈0r0; 1r1/0/0〉, 〈1r1; 0r0/0/1〉
and 〈1r1; 0r0/1/1〉.

The analysis done for some UFs show clearly that
dynamic faults, which have been ignored in the past,
become a very important fault class for the new memory
technologies. A complete analysis of this class, in order
to establish the complete fault space, remains still to
be done. An experimental/ industrial analysis, using
defect injection, SPICE simulation and IFA, in order to
establish their probability remain still to be performed;
as well as the design of the appropriate test (diagnosis)
algorithms targeting such faults.

5. Dynamic Fault Framework

Now that the importance of dynamic faults has been
validated experimentally, the general framework has
to be determined; with the framework, the space of dy-
namic faults can be studied and analyzed. This section
gives such framework for dynamic faults that still need
to be worked out in detail. The framework assume the
following two properties:

1. A sensitizing operation with two sequential opera-
tions; it has been shown based on defect injection
and SPICE simulation, that the probability of dy-
namic faults decreases as the number of operations
increases [4]; which means that dynamic faults with



Memory Fault Modeling Trends: A Case Study 253

two operations are the most important ones to con-
centrate on in the first stage.

2. Faults involving of a single of two cells (i.e., cou-
pling faults). Such faults have been shown to be the
vast majority of observed faults in practice for static
faults [2, 3, 7, 9, 13] and therefore it expected to be
also dominant for dynamic faults.

Based on the above, the (two-operations) dynamic
faults can be divided into two subclasses: singe-cell
and two cell faults.

5.1. Single-Cell Dynamic Faults

Single-cell dynamic faults consist of fault primitives
(FPs) sensitized by applying more than one operation
to a single cell sequentially. If will restrict our analysis
to 2- operation dynamic faults (due to the previous men-
tioned reasons), and by using the FP notation 〈S/F/R〉,
all possible faults can be determined since the space of
S, F , and R are numerated. As an example consider
S. It can be easy shown that there are 18 possible Ss
as given below; x, y, z ∈ {0, 1} and ‘r ’ denotes a read
operation and ‘w’ denotes a write operation.

• 8 Ss have the form ‘xwywz’; e.g., ‘0w1r1’ denotes a
write 1 operation applied to a cell whose initial state
is 0; the write is followed immediately with a read 1
operation.

• 2 Ss have the form ‘xr xr x’; e.g., ‘0r0r0’ denotes
two successive read 0 operations applied to a cell
whose initial state is 0.

• 4 Ss have the form ‘xr xwy’; e.g., ‘0r0w1’ denotes
a read 0 followed immediately with write 1 applied
to a cell whose initial state is 0.

• 4 Ss have the form ‘xwyry’; e.g., ‘1w1r1 denotes a
write 1 followed immediately with read 1 applied to
a cell whose initial state is 1.

5.2. Two-Cell Dynamic Faults

Two-cell dynamic faults consist of FPs sensitized by
applying more than one operation sequentially to two
cells: the aggressor (a-cell) and the v-cell. The a-cell
is the cell to which the sensitizing operation (or state)
should be applied in order to sensitize the fault, while
the v-cell is the cell where the fault appears. In a sim-
ilar way as it has been done for single cell faults, and
using the FP notation 〈S/F/R〉, one can determine all
possible faults. Depending on how many operations are

applied to the a-cell and to the v-cell, and on the or-
der in which they are applied, four types of S can be
distinguished:

1. Saa : the two sequential operations are applied to the
a-cell; while the v-cell is required to be in a certain
state.

2. Svv: the two sequential operations are applied to the
v-cell; while the a-cell is required to be in a certain
state.

3. Sav: the first operation is applied to the a-cell, fol-
lowed immediately with a second one to the v-cell.

4. Sva : the first operation is applied to the v-cell, fol-
lowed immediately with a second one to the a-cell.

All possible single-cell and two-cell dynamic FPs
should be thus determined and compiled into func-
tional faults model. The latter will be used to design
appropriate test algorithms. These are on going work
and will be the subject of upcoming papers.

6. Conclusion

This paper summarizes and analyzes the results of ap-
plying up to 17 base tests, each with up to 8 stress com-
binations, to advanced STMicroelectronics and Intel
SRAMs in order to show the importance of dynamic
faults of the recent and future memory technologies.
The analysis done for detected unique faults, which
can not be explained with the well known fault models,
shows the existence of new dynamic faults. This indi-
cates the importance of this fault class for new SRAM
memory technologies. The dynamic faults observed in
STMicroelectronics chips are different from those ob-
served in Intel chips; this reinforces the point that a
highly optimized patterns set is only applicable to a par-
ticular architecture/technology. The results also show
that some tests, designed specifically to target the tra-
ditional static faults, also detect some dynamic faults.

The class of dynamic fault has been ignored in the
past; it now becomes important and has to be taken into
consideration for current and future memory products.
This sets a direction for a further research on items like:

1. Establishing the fault space and the fault models for
dynamic faults.

2. Validation based on defect injection/ SPICE simu-
lation.

3. Inductive Fault Analysis in order to determine the
importance of each introduced fault model and to



254 Hamdioui et al.

better understand the underlying defects causing
such dynamic faults.

4. Design of short and high quality tests targeting and
diagnosing the considered dynamic faults.

5. Industrial validation.

In fact the definition of dynamic faults presented in
this paper is based on the number of successive oper-
ations required in order to sensitize a certain fault. In
general the algorithms stresses (e.g., data background,
addressing directions) as well as the non-algorithms
stresses (e.g., timing, voltages, temperature), which
have a great impact of the fault coverage, may change
the nature of a fault; e.g., from dynamic to static or
from three-operation to two-operation dynamic fault,
etc. This is because the stress combinations influence
the sequence and/or the type of memory operations,
and facilitate the detection of the faults by stressing
them.

References

1. M.S. Abadir and J.K. Reghbati, “Functional Testing of Semi-
conductor Random Access Memories,” ACM Computer Surveys,
vol. 15, no. 3, pp. 175–198, 1983.

2. R.D. Adams, “High Performance Memory Testing, Kluwer
Academic Publisher, ISBN: 1-4020-7255-4, 2003.

3. Z. Al-Ars and Ad J. van de Goor, “Static and Dynamic Behavior
of Memory Cell Array Opens and Shorts in Embedded DRAMs,”
Proc. of Design Automation and Test in Europe, 2001, pp. 496–
503.

4. Z. Al-Ars and A.J. van de Goor, “Approximating Infinite Dy-
namic Behavior for DRAM Cell Defects,” Proc. IEEE VLSI Test
Symp., 2002, pp. 401–406.

5. Allan et al., “2001 International Technology Roadmap for Semi-
conductors,” Computer, vol. 35, no. 1, pp. 42–53, 2002.

6. M.A. Breuer and A.D. Friedman, Diagnosis and Reliable De-
sign of Digital Systems, Woodland Hills, CA, USA: Computer
Science Press, 1976.

7. R. Dekker et al., “A Realistic Fault Model and Test Algorithms
for Static Random Access Memories,” IEEE Trans. on Comput-
ers, vol. C9, no. 6, pp. 567–572, 1990.

8. J.H. De Jonge and A.J. Smeulders, “Moving Inversions Test
Pattern is Thorough, Yet Speedy,” Comp. Design, 1976, pp. 169–
173.

9. S. Hamdioui and A.J. van de Goor, “Experimental Analysis of
Spot Defects in SRAMs: Realistic Fault Models and Tests,” Proc.
of Ninth Asian Test Symposium, 2000, pp. 131–138.

10. S. Hamdioui, Z. Al-Ars, and A.J. van de Goor, “Testing Static
and Dynamic Faults in Random Access Memories,” Proc. of
IEEE VLSI Test Symposium, 2002, pp. 395–400.

11. S. Hamdioui, A.J. van de Goor, and M. Rodgers, “ March SS:
A Test for All Static Simple RAM Faults,” Proc. IEEE Inter-
national Workshopon Memory Technology, Design, and Testing,
2002, pp. 95–100.

12. S. Hamdioui, Z. Al-ars, A.J. van de Goor, and M. Rodgers,
“Dynamic Faults in Random Access Memories: Concept, Fault
Models and Tests,” Journal of Electronic Testing, Theory and
Application, vol. 19, no. 2, pp. 195–205, 2003.

13. V.K. Kim and T. Chen, “On Comparing Functional Fault Cov-
erage and Defect Coverage for Memory Testing,” IEEE Trans.
on CAD, vol. 18, no. 11, pp. 1676–1683, 1999.

14. M. Marinescu, “Simple and Efficient Algorithms for Functional
RAM Testing,” in Proc. of International Test Conference, 1982,
pp. 236–239.

15. S. Naik et al., “Failure Analysis of High Density CMOS
SRAMs,” IEEE Design and Test of Computers, vol. 10, no. 1,
pp. 13–23, 1993.

16. R. Nair, “An Optimal Algorithm for Testing Stuck-at Faults Ran-
dom Access Memories,” IEEE Trans. on Comp., vol. C-28, no. 3,
pp. 258–261, 1979.

17. D.S. Suk and S.M. Reddy, “A March Test for Functional Faults
in Semiconductors Random-Access Memories,” IEEE Trans. on
Comp., vol. C-30, no. 12, pp. 982–985, 1981.

18. A.J. van de Goor, Testing Semiconductor Memories, Theory
and Practice, ComTex Publishing, Gouda, The Netherlands,
1998.

19. A.J. van de Goor and J. de Neef, “Industrial Evaluation of
DRAMs Tests,” Proc. of Design Automation and Test in Europe,
1999, pp. 623–630.

20. A.J. van de Goor and Z. Al-Ars, “Functional Fault Models:
A Formal Notation and Taxonomy,” Proc. of IEEE VLSI Test
Symposium, 2000, pp. 281–289.

Said Hamdioui received his MSEE degree with honors form Delft
University of Technology, in Delft, The Netherlands, in 1997. Ad-
ditionally, he received his PhD degree with honors from the same
university in 2001. Since then, he has been working at the same
University. He interned with Intel Corporation, USA, for about 2.5
year during and after his PhD, and was responsible for developing
new low cost and efficient test algorithms for advanced Intel singe-
port and multi-port cache designs. His research interests concern
fault modeling, failure analysis, fault simulation, memory testing,
test design, DFT, BIST, BISR, etc. Hamdioui has published numer-
ous papers in the area of testing. He is the winner of European Design
Automation Association (EDAA) Doctoral Dissertation Award for
2003, and he is an associate member of the IEEE.

Rob Wadsworth entered the semiconductor industry in 1978 as an
apprentice at Ferranti Electronics, England. He subsequently joined
Inmos Ltd, Wales, responsible for test development and validation of
their parallel processor product line, the Transputer. After Inmos was
acquired by ST Microelectronics, formerly SGS-Thomson, he trans-
ferred to the ST Central Reasearch and Development Department
located in Crolles, France. In this position he is responsible for de-
veloping innovative and efficient test techniques for the ST embedded
memory products; carrying out this work in Europe, North America
and Asia. His research interests include memory test through BIST,
BISC and memory fault simulation.

John Eleazar Q. delos Reyes received his MS-ECE (Electronics
and Communications Engg) degree from Saint Louis University,
in Baguio City, Philippines, in 1996. He joined Intel Philippines
shortly after and worked on Cache components as a Product Engr



Memory Fault Modeling Trends: A Case Study 255

for Pentium(R) II microprocessors. Since then, he continued to be a
Product Engineer focusing on Embedded Cache Testing of Micro-
processors where he relocated to Hillsboro, Oregon for Development
work.

Ad van de Goor received his MSEE degree from Delft Univer-
sity of Technology, in Delft, The Netherlands. Additionally, he re-
ceived the MSEE and PhD degrees from Carnegie-Mellon University,
Pennsylvania. He worked for the Digital Equipment Corporation in

Maynard, Massachusetts, as the chief architect of the PDP-11/45
computer, and for IBM in The Netherlands and in USA, being re-
sponsible for architecture of the embedded systems. Currently, he is
a professor of computer engineering at Delft University of Technol-
ogy. His main research interest is testing logic and memories. He has
written two books and more than 120 papers in the area of computer
architecture and testing. He is a member of the editorial board of the
Journal of ElectronicTesting: Theory and Applications, and an IEEE
fellow.


