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Abstract—This paper presents a TriMedia processor extended
with three reconfigurable designs for entropy decoding (ED),
inverse quantization (IQ), and two-dimensional (2-D) inverse
discrete cosine transform (IDCT), and assesses the performance
gain that is provided by such extensions when performing
MPEG2-compliant pel reconstruction. We first describe an
extension of the TriMedia architecture, which consists of a
multiple-context field programmable gate array (FPGA)-based
reconfigurable functional unit (RFU), a configuration unit
managing the reconfiguration of the RFU, and their associated
instructions. Then, we address the computation of the ED, IQ, and
2-D IDCT tasks, and propose to provide reconfigurable hardware
support for a variable-length decoder that can decode two symbols
per call (VLD-2), an inverse quantizer that can dequantize four
coefficients per call (IQ-4), and an 1-D IDCT (1-D IDCT). The
most important aspects concerning the implementation of the
FPGA-mapped VLD-2, IQ-4, and 1-D IDCT units, as well as the
organization of the software routines calling these FPGA-mapped
computing units are outlined. Experimental results indicate that
by configuring each of the VLD-2, IQ-4, and 1-D IDCT units on a
different FPGA context, and by activating the contexts as needed,
the FPGA-augmented TriMedia can perform MPEG2-compliant
pel reconstruction with an average speed-up of 1.4 over the
standard TriMedia.

Index Terms—Field programmable gate arrays (FPGAs),
MPEG2 decoding, reconfigurable computing, very long instruc-
tion word (VLIW) processors.

I. INTRODUCTION

PEL reconstruction constitutes a computationally-intensive
stage of video compression standards, e.g., MPEG [1]. Tra-

ditionally, it has been implemented in application-specific inte-
grated circuits (ASIC) or in hardwired assists for application-
specific instruction processors (ASIP). Due to the lack of flex-
ibility of these fixed-function devices, a different full-custom
implementation is needed for each particular task. On the other
side, a programmable computing platform allows functions to

Manuscript received July 3, 2002; revised November 18, 2003. This work
was supported by the Doctoral Fellowship RWC-061-PS-99047-ps, Philips Re-
search Laboratories, Eindhoven, The Netherlands.

M. Sima is with the Department of Electrical and Computer Engi-
neering, University of Victoria, Victoria, BC V8W 3P6, Canada (e-mail:
msima@ece.uvic.ca).
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be implemented in software rather than in custom hardware.
This dramatically reduces the development cost and time-to-
market versus the traditional fixed-function design approach,
and ensures that a single device can be applied in a range of dif-
ferent products and adapt to quickly evolving standards in the
media domain.

In this paper, we propose a reconfigurable pel reconstruction
design for a field-programmable custom computing machine
composed of the 64-bit instance of TriMedia [2] augmented with
a reconfigurable array. That is, we disclose a compound con-
sisting of user-defined computing units, which are mapped on
the reconfigurable hardware, and software routines, which in-
clude calls to these computing units.

We first consider the TriMedia processor extended with a
multiple-context field-programmable gate array (FPGA)-based
reconfigurable functional unit (RFU), and a configuration unit
managing the reconfiguration of the RFU. Then we address pel
reconstruction, and propose a reconfigurable design for each of
its most important constituents: entropy decoding, inverse quan-
tization (IQ), and inverse discrete cosine transform (IDCT). In
particular, we provide reconfigurable hardware support for a
variable-length decoder that can decode two symbols per call
(VLD-2), an inverse quantizer that can dequantize four coeffi-
cients per call (IQ-4), and one–dimensional (1-D) IDCT. In our
decision, we took into account the bottlenecks encountered in
a (highly optimized) pure-software implementation, TriMedia
organization constraints, as well as the logic capacity of a hypo-
thetical multiple-context FPGA having the architecture of the
raw hardware identical to that of an ACEX EP1K100 device
from Altera. Finally, we combine these reconfigurable designs
into a larger one, and establish the gain in performance when
performing MPEG2-compliant pel reconstruction.

Experimental results carried out on a TriMedia cycle-accurate
simulator indicate that by configuring each of the VLD-2, IQ-4,
and 1-D IDCT facilities on a different FPGA context, and by
activating the contexts as needed, the augmented TriMedia can
compute MPEG2-compliant pel reconstruction with a speed-up
of 1.4 over the standard TriMedia. Given the fact that the ex-
perimental TriMedia instance is a 5-issue slot VLIW processor
with a 64-bit datapath and a very rich multimedia-oriented in-
struction set [2], such an improvement within its target media
processing domain [3], [4] indicates that TriMedia FPGA hy-
brid is a promising approach.

The paper is organized as follows. Background information
regarding the MPEG standard and the architecture of the FPGA
core is provided in Section II. Section III outlines the TriMedia
architectural extension that incorporates support for the recon-
figurable hardware. Several issues on the programming model
of FPGA-augmented TriMedia are presented in Section IV.
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Fig. 1. The conceptual diagram of the pel reconstruction module—adapted from [5].

The VLD-2, IQ-4, and 1-D IDCT user-defined operations,
as well as their FPGA-based implementations are discussed
in Section V. The pel reconstruction execution scenario on
both standard and extended TriMedia along with experimental
results are presented in Section VI. Section VII completes the
paper with some conclusions and closing remarks.

II. BACKGROUND

To make the presentation self-consistent, we would like to re-
view the principal stages of the pel reconstruction task. We also
outline the architecture of the FPGA that we use as an experi-
mental reconfigurable core.

A. Pel Reconstruction

A video coder is typically composed of a lossy source coder,
which performs filtering, transformation, and/or quantization,
and a lossless entropy coder, which removes the statistical de-
pendencies remained after source coding [6]. In MPEG [5], [7],
the couple DCT Quantization is used as a lossy coding tech-
nique. The DCT algorithm processes the video data in blocks
of 8 8 pixels, decomposing each block into a weighted sum
of amplitudes (the DCT coefficients) of 64 spatial frequencies.
Since the human eye cannot readily perceive high frequency
activity, a quantization step is carried out to force as many
DCT coefficients as possible to zero within the boundaries of a
prescribed video quality. Then, a zig-zag operation transforms
the matrix into a vector which contains large series of zeros.
This vector is further compressed by an entropy coder which
consists of a run-length coder (RLC) and a variable-length
coder (VLC). The RLC represents consecutive zeros by their
run length, and generates run-level pairs. The run value indi-
cates the number of zeros that a (nonzero) DCT coefficient is
preceeded. The level value represents the value of the DCT
coefficient. When all the remaining coefficients in a vector are
zero, they are all coded by the special symbol end-of-block. The
variable-length coder maps the run-level/end-of-block symbols
to variable length codewords according to the VLC Tables B12,
B13, B14, and B15 defined by the MPEG2 standard [1].

From the syntax point of view, an MPEG video sequence
is structured hierarchically on layers, each layer providing a
wrapper around the encompassed layer. A video sequence in-
cludes a series of Groups of Pictures (GOPs). A GOP is divided

into a series of pictures (frames), which begins with an Intra-
coded picture (I-picture) followed by an arrangement of For-
ward Predictive-coded pictures (P-pictures), and Bidirectionally
Predicted pictures (B-pictures). A picture is further subdivided
into slices. A slice is composed of a series of macroblocks, and
a macroblock is composed of 6 or fewer blocks (4 for luminance
and 2 for chrominance1 ) and possibly motion vectors.

In this paper, we will focus on the video decoding, i.e., oper-
ation inverse to video coding. Four major stages can be distin-
guished in MPEG decoding: entropy decoding (which is com-
posed of variable-length decoding, inverse zig-zag, and run-
length decoding), IQ, IDCT, and motion compensation. Since
motion compensation is a memory-dominant task, the required
arithmetic being a simple addition per pixel, it is likely not to
be subject for acceleration by means of reconfigurable logic.
Thus, all the above mentioned stages but motion compensation
are considered during the subsequent experiment. The joined
task of these stages is generally referred to as Pel Reconstruc-
tion [5], which is outlined subsequently.

The pel reconstruction process is depicted in Fig. 1. First,
the headers at video sequence layer down to macroblock layer
are decoded and various symbols are extracted: decoding
parameters, e.g., macroblock_address_increment, quan-
tizer_scale_code, intra_dc_precision, and motion values. The
motion values are used by the motion compensation process
which is not considered here. However, since these values are
decoded during header parsing, the overhead associated with
the decoding of the motion values will be taken into consider-
ation in the subsequent experiment. After header parsing, the
MPEG string still contains composite symbols (run-level pairs
and end_of_block), which are decoded by the variable-length
decoder (VLD). Then, the run-length decoder (RLD) recreates
the 8 8 matrices that include DCT quantized coefficients.
Next, using a quantization table and a quantizer_scale, an IQ
is performed on each DCT coefficients. Finally, after the dc
prediction unit reconstructs the dc coefficient in intracoded
macroblocks, an IDCT is carried out.

In connection with Fig. 1 and the subsequent experiment, we
would like to mention that the variable-length decoder, inverse
quantizer, and IDCT will benefit from reconfigurable hardware
support. Next, we will outline the architecture of the FPGA that
we use as an experimental reconfigurable core.

1Luminance is the monochrome representation of the signal, while chromi-
nance provides the color information for the video.
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B. The Experimental FPGA Architecture

Field-programmable gate arrays (FPGA) [8] are devices that
can be configured in the field by the end user. In essence, an
FPGA is composed of two constituents: raw hardware and con-
figuration memory. The information stored into the configura-
tion memory defines the function performed by the raw hard-
ware. Generally speaking, a multiple-context FPGA [9] has its
configuration memory replicated in order to contain several con-
figurations for the raw hardware, which are referred to as con-
texts, from which only one is active at a time. That is, a cache
of contexts is available on-chip. Such a cache allows a context
switch to occur on the order of nanoseconds [10]. However,
loading a new configuration from off-chip is still limited by the
low off-chip transfer latency, which is on the order of 50 ns/byte
for Altera’s FPGAs [11].

For experimental purpose, we assume that at most four con-
texts can be simultaneously stored on the FPGA chip. Our as-
sumption does not violate the general accepted figures regarding
multiple-context FPGAs—see for example [10], [12]. Since a
multiple-context FPGA is not commercially available for the
time being, we also assume a hypothetical FPGA having the
architecture of the raw hardware and context reconfiguration
scheme identical to those of a (single-context) ACEX 1K de-
vice from Altera [13]. Our choice could allow future single-chip
integration, since both ACEX 1K and TriMedia families are
manufactured in the same TSMC technological process. Briefly,
an ACEX 1K device contains an array of 4-input look-up ta-
bles (LUT), a number of embedded array blocks (EAB), each
EAB being a RAM block with 8 inputs and 16 outputs, and a
rich interconnection network. The reconfiguration of such de-
vice can be performed according to the common Passive Par-
allel Asynchronous scheme, in which a master unit drives data to
the FPGA serially, one word at a time [13]. There are no partial
reconfiguration capabilities for the considered device; thus, a
global reconfiguration of a context is required even for changing
1 bit of its configuration data. Since we envision that circuits
without many commonalities are to be configured on the pro-
grammable array, this limitation is not a serious restriction.

Subsequently, we also assume that a context can be config-
ured only when it is not active. Thus, the active context can
continue its operation while the idle contexts are being recon-
figured. As mentioned, the FPGA context switching occurs on
the order of nanoseconds. Trimberger et al. [10] announce that a
context switching can be completed in 30 ns for a 20 20 array
of Logic Blocks. For an ACEX EP1K100 device that includes
about 4,992 LUT’s and 12 EAB’s, that is, for an FPGA which is
more than 15 times larger, we make a conservative assumption
and consider that the context switching penality is on the order
of 500 ns. The rationale behind the assumption that the recon-
figuration time increases with the FPGA size is related to power
consumption, which can become a concern with large FPGAs as
identified by Trimberger et al. [10].

Section III introduces the architectural extension for the Tri-
Media-CPU64, which is the particular 64-bit TriMedia instance
we use as an experimental platform.

III. TRIMEDIA ARCHITECTURAL EXTENSION

TriMedia-CPU64 is a processor model, whose architecture
features a rich instruction set optimized for media processing

Fig. 2. The 64-bit TriMedia organization—adapted from [2].

[3], [4]. Specifically, it is a 5 issue-slot VLIW engine, launching
a long instruction every clock cycle [2]. It has a uniform 64-bit
wordsize through all functional units, the register file, load/store
units, internal and external buses. Each of the five operations in a
single instruction can in principle read in two register arguments
and write back one register result. In addition, each operation
can be guarded with the least-significant bit of a fourth register
to allow for conditional execution without branch penalty. With
the exception of floating point divide and square root unit, all
functional units have a recovery of 1, while their latency2 ranges
from 1 to 4. The TriMedia core is assumed to support mul-
tiple-slot operations, or super-operations [14]. Such a super-op-
eration occupies two or more adjacent slots in the VLIW instruc-
tion, and maps to a wider functional unit. This way, operations
with more than two arguments and one result are possible. The
architecture also supports subword (SIMD-style) parallelism on
byte, half-word, or word entities. The current organization of the
TriMedia-CPU64 is presented in Fig. 2.

In this paper, we propose to augment the TriMedia-CPU64
processor with a RFU consisting of a multiple-context FPGA
core and its associated controller, and a configuration unit (CU)
managing the reconfiguration of the FPGA. Both RFU and CU
are embedded into TriMedia as any other hardwired functional
unit, i.e., they receive instructions from the instruction decoder,
read their input arguments from and write the computed values
back to the register file, as shown in Fig. 3. This way, only
minimal modifications of the basic architecture and compila-
tion toolchain are required.

In order to use the RFU, the user is provided a kernel of
new instructions: , , and

. This kernel constitutes the extension of the TriMedia
instruction set architecture we propose. Loading context
information into the FPGA configuration memory is performed
by the CU under the command of a instruction,
while the instruction swaps the active
configuration with an on-chip idle one. instructions
launch the operations performed by the RFU-mapped com-
puting units [15]. With these instructions, the user is given the
freedom to define and use any computing unit subject to FPGA
size and TriMedia organization.

2Latency is the number of clock cycles between the issue of an operation and
availability of its results, while recovery is defined as the minimum number of
clock cycles between the issue of successive operations.
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Fig. 3. TriMedia-CPU64 VLIW core extension.

Uploading configuration information to the CU is performed
under the command of a double-slot instruction issued on Slot
pair 1 2:

where is the fourth (immediate) argument specifying
the context to be reconfigured, while the registers Rs1, Rs2, and
Rs3 contain 192 bits of configuration information. If the instruc-
tion completes successfully, then the register Rd contains 0, oth-
erwise it contains an error code. For example, if an attempt to
reconfigure the active context is made, the instruction has no ef-
fect on the configuration and returns 1.

Subject to FPGA architecture, the configuration information
being uploaded by instructions can be interpreted
in different ways before it is sent to the RFU. Thus, different
configuration patterns can be supported. For example, assuming
an FPGA has partial reconfiguration capabilities (e.g., XC6200
family from Xilinx [16]), or incorporates means to reconfigure
only the cells which are different from the current configura-
tion (e.g., AT6000 family from Atmel [17]), complex reconfig-
uration patterns can be generated by a microprogrammable CU
[18]. This case, the instructions may also upload
a reconfigurable microprogram to the CU, giving the user a large
flexibility to reconfigure the FPGA.

However, for a global-reconfigurable FPGA with a serial con-
text reconfiguration scheme, which in fact we assume in our
subsequent experiment, the CU can be as simple as a parallel-to-
serial converter. As mentioned in Section II-B, the average la-
tency for loading new FPGA configuration information from
off-chip is about 50 ns/byte, that is 10 cycles/byte. Since the

instruction places 192 bits 24 bytes on the
CU at a time, it has a latency of 240 cycles. For an EP1K100
FPGA, which has a configuration file of 1 337 000 bit [13],
6,964 instructions or 6,964 240 1 671 360
cycles are needed to completely reconfigure a context.

For FPGA context switching, a single-slot instruction issued
either on Slot 1 or Slot 2 is provided:

where is an immediate argument specifying the con-
text that is being activated. If the context is already active, the
instruction has no effect. An attempt to activate a context prior

to its complete reconfiguration has also no effect on the active
context, and is signaled by loading an error code into Rd. If
the activation completes successfully, Rd contains 0. Given the
fact that the FPGA context switching penality is 500 ns (Sec-
tion II-B), the instruction has a latency of
100 TriMedia@200 MHz cycles.

Conceptually speaking, computing units of user-definable
computing pattern3 , latency, recovery, and slot-assignment4

can be configured on RFU. Thus, the RFU can act as five
independent single-slot functional units each of them executing
a different custom operation, a mixture of single- and mul-
tiple-slot functional units, or even a five-slot functional unit. In
all these situations, the RFU may receive instructions
issued on any of the five TriMedia slots, and use all 10 read and
5 write ports of the register file per call.

In connection to the FPGA-augmented TriMedia implemen-
tation, we would like to note that the flexibility in defining slot-
width and slot-assignments for RFU-mapped operations deter-
mines the implementation cost. For example, assuming the max-
imum freedom degree in defining slot-assignments for RFU op-
erations, a separate RFU controller has to be placed on each
issue slot. In addition, the TriMedia instruction decoder has to
be able to decode instructions on each of the five issue
slots. Moreover, since only single- and double-slot operations
are currently supported by the compiler and scheduler for the
time being, the toolchain has to be modified to support 3-, 4-,
and 5-issue slot operations.

Although the maximum flexibility in defining RFU-based op-
erations may be of theoretical value, it is not of practical rele-
vance in the context of our current investigations. As one can
notice in Sections IV–VI, all RFU operations for the consid-
ered media-processing domain can be implemented with single-
and double-slot operations. For this reason, in this paper we
consider only a particular instance of FPGA-augmented Tri-
Media, in which only a single-slot instruction on Slot 1 and a
double-slot instruction on Slot pair 1 2 can be issued to RFU.

For each of the single-slot, and double-slot RFU instruc-
tions, a separate operation code is allocated: ,
and , respectively. In both cases, the standard
TriMedia-CPU64 instruction format is preserved: the opcode is
a 9-bit field, and each and every source or destination registers
is specified by a 7-bit field. Up to two inputs and one output,

3i.e., the operation slot-width and the number of input and output registers.
4i.e., the issuing slot(s) that the computing facility is sensitive to.
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Fig. 4. Hardwired double-slot operation instruction format.

Fig. 5. RFU double-slot instruction format.

and four inputs and two outputs can be specified by the single-,
and double-slot instructions, respectively:

The instructions are generic, since their semantics
can be redefined. By reconfiguring the raw hardware, followed
by issuing an instruction, any new user-defined
operation subject to FPGA size and TriMedia organization can
be executed, while only a single entry in the opcode space
is needed to encode the instruction. Since all the
fields in the instruction format except for the
opcode field encode the input and output registers, there are
no provisions for additional encoding. Thus, only a single
operation per context can be encoded within . That
is, if a different single-slot operation is to be launched, then
a reconfiguration of the raw hardware must be carried out
beforehand by / instructions. However, as we
describe subsequently, more operations per context can be
encoded within a multiple-slot instruction. This may
reduce the number of reconfigurations when a large FPGA is
available.

In the standard TriMedia-CPU64, only one of the opcode
fields in a multiple-slot instruction defines the operation, all the
others being set s (Fig. 4). By using these unused fields as
an argument for the RFU OPCODE (Fig. 5), a large number of
RFU operations can be encoded per context, while only a single
entry for the instruction needs to be allocated in the
opcode space. Assuming a double-slot operation, for example,
the 9-bit additional opcode (which is subsequently referred to
as an or simple ) can specify
512 different operations.

We would like to mention that the two parts of the double-slot
operation are decoded separately, and only when the first part
specifies an opcode, the second opcode is inter-
preted as an , and thus decoded locally at
the RFU by the RFU controller. This way, an RFU super-oper-
ation does not create pressure on the instruction decoder, neatly
fits in the existing instruction format, fits the existing connec-
tivity structure to the register file, and hence requires very little
hardware overhead.

The RFU controller itself can be a simple decoder for the
field, a finite-state machine having the

as argument, or even a microcoded engine for which the
points to the address of a micro-routine [18]. In the

later case, the microcode within the RFU controller becomes
part of the RFU configuration, and, therefore, subject to recon-
figuration by means of and
instructions.

Fig. 6. Syntax and annotation code for a user-defined IDCT operation.

In connection to the instructions, we would like
to emphasize that their semantics, number of operands, la-
tency, and recovery are all explicitly user-definable, while the
slot-width is defined implicitly by the particular
or opcode. Thus, it is the responsibility of the
programmer to augment the machine description file with
appropriate information [19]. Assuming a user-defined
operation, a way to specify such information is to annotate the
source code, as presented in Fig. 6. At the machine implemen-
tation level, these parameters are set by means of Selectors,
which become part of the RFU configuration, as presented in
Fig. 3. A different
set can be defined for each . With such mechanism,
an instruction is truly generic, and the programmer is
able to adjust its behavior as needed.

To give an indication of the programming complexity on
FPGA-augmented TriMedia, we next outline the strategy to
implement a reconfigurable design.

IV. FPGA-AUGMENTED TRIMEDIA-CPU64
PROGRAMMING MODEL

To efficiently use the new reconfigurable processing facili-
ties, the user needs a programming model. At C-level, we pro-
pose to call the RFU-based functions by defining new, so called,
custom operations. Since custom operations are already widely
used by the standard TriMedia, granting the C-level programmer
a direct access to hardware operations [19], only minimal modi-
fications of the standard compilation toolchain are required. As
in the standard declaration of any custom operation, the type
and number of operands, latency, and recovery have to be spec-
ified for each new RFU-based operation. However, the specifi-
cation process has to be carried out by the programmer rather
than by the manufacturer. In addition, the programmer has also
to specify the for multiple-slot operations. A way
to specify these parameters is by using pragmas. A sample of a
C-level code calling RFU is presented subsequently.

In this example, Rx_input, Ry_input, Rz_output, and
Rw_output specify each a vector of four 16-bit signed integers.
Thus, the IDCT operation reads in eight 16-bit signed integers
and computes eight 16-bit signed integers. The standard Tri-
Media compiler does not recognize the pragma; therefore, the
IDCT call is compiled into a function call, and the portability
of the C-level code is ensured. Considering the FPGA-aug-
mented TriMedia, the compiler does recognize the
pragma, and generates a machine-level instruction having the

as opcode, and as . As specified
by the width and pattern fields, this instruction designates
a double-slot operation having two register inputs and two
register outputs. Based on the latency and recovery fields, the
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operation is scheduled on slot pair 1+2
as any other hardwired operation having a latency of 16 and a
recovery of 2.

An Example of a C-Level Code Calling the
RFU
#include
#include “ ”
vec64sh Rx_input, Ry_input, Rz_output,
Rw_output;
int main (void)
…
#pragma RFU_OP ( ,

, , ,
)

IDCT (& Rz_output, & Rw_output, Rx_input,
Ry_input);
…

TriMedia is oriented to media-processing domain, in which
large sets of data are manipulated in a repetitive fashion, basi-
cally around loops. Since complex long-latency operations are
envisioned to be configured on the RFU, the instruction-level
parallelism (ILP) within a single loop iteration containing RFU
calls is expected to diminish. In order to expose to the com-
piler the ILP that is still available across the loop boundary, two
strategies can be employed: 1) loop unrolling and/or grafting,
and the more efficient 2) software pipelining (which can be re-
garded as infinite loop unrolling). While the first strategy trade-
offs code size (and, thus, the overhead associated to the addi-
tional instruction cache misses) for ILP [20], the second strategy
significantly increases ILP while maintaining about the same
code size. However, software pipelining has to tradeoff the over-
head associated to firing-up and flushing the software pipeline
for real time response [21]. Since an event (e.g., a pending in-
terrupt) is handled only when an interruptible jump is decoded,
the programmer is able to control the number of uninterrupted
executions of the software pipeline loop by forcing a jump to
be interruptible or noninterruptible. As shown in the subse-
quent code, this control can be managed by declaring the loop
as atomic. The TriMedia compiler will recognize the pragma
TCS_atomic, and generate noninterruptible jumps for all the
jumps in the IDCT_function, with the exception of the return.

As a final remark, we would like to mention that the current
TriMedia scheduler uses the decision tree as a scheduling unit
[22]. Thus, all operations return their computed values in the
same decision tree that they are launched, even though the Tri-
Media architecture does not forbid the contrary. Since gener-
ating software pipeline loops essentially requires to return the
computed values beyond the decision tree boundary, decision
tree-based scheduling is the major limiting factor in generating
tight software pipelined loops containing long-latency opera-
tions. However, the loop containing RFU operations may be
very simple and symmetrical (see, for, example [23]); thus, pro-
gramming in assembly is indeed feasible despite of the fact that

the host is a complex VLIW processor. Conversely, one should
use C-level loop unrolling where programming directly in as-
sembly proves to be too complex for generating tight loops.

Section V addresses the computation of three important con-
stituents of the pel reconstruction task: entropy decoding, IQ,
and 8 8 IDCT. For each constituent, a reconfigurable design
is proposed, and its performance is evaluated with respect to the
pure software counterpart.

An Example of a Deep Software Pipeline
Calling Long-Latency RFU-Based Operation
#include
#include“ ”
vec64sh Rx_input, Ry_input, Rz_output,
Rw_output;
#pragma TCS_atomic
IDCT_function (vec64sh Rx_input, vec64sh
Ry_input, vec64sh Rz_ouput, vec64sh
Rw_output)
for
…
#pragma RFU_OP ( ,

, , ,
)
IDCT (& Rz_output, & Rw_output,
Rx_input, Ry_input);
…
/ the looping jump is translated into a
’noninterruptible jump’ /
/ the ’return’ is translated into an ’in-
terruptible jump’ /
int main (void)
…
IDCT_function (Rx_input, Ry_input,
Rz_output, Rw_output);
…

V. RECONFIGURABLE DESIGNS

An FPGA-mapped operation having a latency or recovery of
1 requires an FPGA clock frequency equal to TriMedia clock
frequency. Nowadays, the upper limit of the clock frequency in
TriMedia family is around 300 MHz, while the maximum clock
frequency for ACEX 1K FPGA family is 180 MHz. Therefore,
a hypothetical implementation having a latency and/or recovery
of 1 is not a realistic scenario, and a latency and recovery of
2 or more are mandatory for the time being. Subsequently, we
assume that the minimum latency and minimum recovery for
all FPGA-mapped circuitries are equal to 2 cycles, which trans-
lates into an FPGA cycle time to TriMedia cycle time ratio of 2
or more. Our assumption does not violate the general accepted
performance ratio figures for FPGA-mapped logic versus hard-
wired logic—see for example [12]. Thus, considering a Tri-
Media running at 200 MHz, the FPGA-mapped circuitry will
work with a clock frequency of 100 MHz or less.
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A. Entropy Decoder

As mentioned in Section II, entropy decoding consists of
variable-length decoding (VLD) followed up by run-length
decoding (RLD). The input string containing variable-length
codewords is sent to VLD, which outputs run-level pairs.
Conceptually, the RLD outputs the number of zeros specified
by the run value and then passes the level through. In a
programmable processor-based platform, a common strategy
to optimize this process is to fill in an empty vector with level
values at positions defined by run values [24], [25].

The entropy decoder implementation on standard TriMedia
is an improved version of [24]. The VLD is performed by
looking-up into the VLC table that is resident into the main
memory. Each lookup decodes a chunk of bits and determines
whether a valid code has been encountered or not. In case of
a valid decode, i.e., hit, a run-level pair is generated, or an
end-of-block flag is set. If a miss is detected, that is, more bits
are needed for a valid decode, an offset into the VLC table and
a chunk-size for the subsequent-level lookup are generated.
The process of signaling an incomplete decode and generating
a new offset may be repeated up to three times. To employ loop
pipelining, the RLD is folded into VLD loop. Thus, RLD for
the previously extracted run-level pair is performed in parallel
with VLD of a new symbol. The inverse zig-zag function is
also folded into VLD loop; therefore, it does not generate
computational overhead. Experimental results show that a
coefficient can be entropy decoded in 16.9 cycles on average
[25]. The cumulated size of all VLC tables is 10 kB.

Due to data dependency, both VLD and RLD are sequential
tasks. Thus, entropy decoding is an intricate function on Tri-
Media, since a VLIW architecture must benefit from instruc-
tion level parallelism in order to be efficient. For this reason,
this function is an ideal candidate to benefit from reconfigurable
hardware support. Since RLD is basically a memory operation,
we propose to configure on FPGA only a VLD unit. For the
variable-length decoder is a system with feedback, a new
iteration can be initiated only after the previous one completes.
Consequently, a recovery lower than the latency gives no advan-
tages. As a result, such implementation should not be sought.

VLD Implementation on FPGA: The basic idea of VLD in
FPGA is to store the VLC tables into EAB’s. Since an EAB
is a lookup table of 8 inputs while the largest codeword length
is 17 bits, the VLC tables should be partitioned such that the
number of bits to be decoded for each and every codeword in
a partition is 8 or less. The selection of the valid partition is
done by circuitry mapped into the FPGA logic cells. A VLD
unit decoding a single symbol per call (VLD-1) is described in
[26]. Due to data dependencies, a VLD-2 unit that can decode
two symbols per call is more difficult to design.

As depicted in Fig. 7, the basic idea of the VLD-2 imple-
mentation is to decode run, level, and code-length of the cur-
rent symbol, and to determine only the code-length for the next
symbol by means of advance computation techniques. The com-
putation of the run-level pair of the next symbol is postponed to
the subsequent VLD-2 call. In parallel, the run-level pair of the
previous codeword is decoded. Thus, with the exception of a
firing-up call which decodes only a single symbol, truly two-

Fig. 7. The conceptual VLD-2 implementation on FPGA.

symbol decoding is achieved for all subsequent VLD-2 calls
[27].

All 12 EAB’s and 51% of the logic cells of an EP1K100 de-
vice have been used to implement the MPEG2-compliant vari-
able-length decoder. By simulation with Altera tools, we found
that the VLD-2 latency is equal to 8 TriMedia@200 MHz cy-
cles.

Entropy Decoding on Extended TriMedia: Two operations
are needed to control the VLD-2 unit: one for reset, and the other
to launch the proper VLD-2 operation, as follows:

The Ry and Ryy registers contain the incoming bit string which
has been aligned with standard TriMedia shifting operations to
point to the previous and current symbols, respectively. The run,
level, code-length for both codewords, as well as control infor-
mation are stored into the Rz and Rw registers.

The entropy decoding routine calling the FPGA-mapped
VLD-2 is also organized as a software pipeline (the RLD
is folded into the loop). After compiling and scheduling the
entropy decoding routine, we determined that a single DCT
coefficient can be decoded in 9 cycles. For more details we
refer the reader to [27].

B. IQ Instruction and Computing Facility

After entropy decoding, the two-dimensional (2-D) array of
coefficients, , is inverse quantized to produce the re-
constructed DCT coefficients, . In MPEG2, IQ consists
of three stages: inverse quantization arithmetic, saturation, and
mismatch control [1]. The inverse quantization arithmetic pro-
duces coefficients. For dc coefficients in intracoded
blocks, (1) is used:

(1)

where the factor intra_dc_mult is derived from the data element
intra_dc_precision according to Table 7-4 of the ITU-T Recom-
mendation H.262 [1]. Basically, (1) specifies a scaling-up by a
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factor of 8, 4, 2, or 1. For all other coefficients, the following
equation should be used:

(2)

where for nonintrablocks, and
for intrablocks. The factor quantizer_scale, which is de-
rived from the data elements quantizer_scale_code and
quantizer_scale_type according to Table 7-6 of the ITU-T Rec-
ommendation H.262 [1], is encoded as a 7-bit fixed length code.
Each weighting coefficient, , , is
represented on an 8-bit unsigned integer, and extracted during
the parsing of the picture header. The operator “ ” represents
the integer division with truncation of the result toward zero.

The coefficients resulting from the inverse quantization arith-
metic are saturated to lie in the range . Fi-
nally, the mismatch control operation toggles the least signif-
icant bit of if the double sum is
even.

In standard TriMedia, the IQ implementation intensively uses
four-way SIMD operations. The 8 8 matrix is stored in 16
four-element vectors, each element being a 16-bit signed in-
teger. First, all 64 coefficients are inverse quantized with the
general (2), and then saturated. Then, the mismatch sum is com-
puted as if the block is nonintracoded. In parallel, the intra dc
coefficient is processed with (1), and then saturated. Finally, the
resulting dc coefficient, and, consequently, the mismatch sum
are updated if the block is intracoded. An entire 8 8 matrix can
be inverse quantized in 39 cycles for intra-, and 52 cycles for
nonintracoded blocks, respectively (load and store operations
are taken into account).

Since the IQ is mostly a symmetrical feed-forward task, the
entire IQ computation can benefit from reconfigurable support.
This case, the VLIW core has only to load new data from and
write the computed data back to main memory. The IQ imple-
mentation details are outlined subsequently.

IQ Implementation on FPGA: The number of pixels which
can simultaneously be inverse quantized on FPGA is subject to
the raw hardware logic capacity. On an ACEX EP1K100 FPGA,
we succeeded to map an IQ-4 unit that can process four coef-
ficients per call. As shown in Fig. 8, the IQ-4 unit is structured
as follows: the 7-stage pipeline implements the inverse quanti-
zation arithmetic and the subsequent saturation, while the finite
state machine implements the mismatch control operation.

The reduction modules corresponding to multiplications by
(8-bit unsigned integer) and (7-bit

unsigned integer) have been splitted-up to fit into an 100
MHz pipeline. The factors and
are generated inside FPGA from the MPEG data elements

, respectively and
. The finite state machine accumulates the mis-

match information during successive IQ-4 calls, and updates
the last DCT coefficient accordingly at the end of each 16th
call. Thus, to ensure the correct response, a block should be
completely processed before a new one is being considered.
Furthermore, the 64-bit word containing the dc component
should be processed firstly, and the 64-bit word containing

Fig. 8. The IQ Implementation on FPGA.

the highest spatial frequency component should be processed
lastly.

By writing and synthesizing VHDL code, we mapped an IQ-4
unit on an ACEX EP1K100 FPGA, and determined a latency of
18 and a recovery of 2 TriMedia@200 MHz cycles. It worth to
mention that 43% of the logic cells are occupied by IQ-4.

IQ on Extended TriMedia: Two operations are needed to
control the IQ-4 unit: one which resets the finite state machine,
and the other to launch the proper IQ-4 operation, as follows:

To inverse quantize an 8 8 block of coefficients, sixteen
operations are launched in a row. Before and after

the RFU calls, and operations fetch the input
operands from main memory into register file, and store the
results back into memory, respectively. Since the code is very
simple and symmetrical, generating a tight software-pipeline
loop by programming directly in assembly is indeed feasible.
With such implementation, a throughput close to 1/32 IQ/cycle
can be achieved.

C. IDCT Instruction and Computing Facility

The N-point 1-D IDCT is defined by [28]:

where are the inputs, are the outputs, and
for , otherwise is 1. For MPEG, a 2-D IDCT processes an
8 8 matrix [5]:

A standard way to compute the 2-D IDCT is the row-column
separation: the 1-D transform is first applied to each row and
then to each column of the 8 8 matrix. This strategy can be
combined with the (modified) Loeffler 1-D IDCT algorithm to
further reduce the computational complexity [29], [30].

In standard TriMedia, four 16-bit coefficients, which are
stored in a 64-bit word, are processed in parallel by a single
four-way SIMD operation. Eight 1-D IDCT’s are first com-
puted as two (4-way) SIMD 1-D IDCT’s using the modified
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Fig. 9. The partial product matrix and the selected reduction steps for
multiplication by the constant C = 0x3a82.

“Loeffler” algorithm. Then, the matrix transposition is per-
formed by the hardwired transpose unit. Finally, eight 1-D
IDCT’s (two SIMD 1-D IDCT’s) are computed. This way,
a 2-D IDCT including and operations can be
performed in 56 cycles [2].

Since the standard TriMedia provides a good support for
transposition and matrix storage, there is a little benefit to
configure the entire 2-D IDCT on FPGA. Consequently, only
an 1-D IDCT unit is configured on the RFU. Some FPGA im-
plementation details of 1-D IDCT are presented subsequently.

1-D IDCT Implementation on FPGA: All operations are im-
plemented using 16-bit fixed-point arithmetic [30]. For all mul-
tiplications, the multiplicand is a 16-bit signed number repre-
sented in 2’s complement notation, while the multiplier is a
15-bit or less positive constant [23]. To reduce the implementa-
tion costs, we used a multiplication-by-constant scheme, which
is optimized against the multiplier, as follows. First, we built a
partial product matrix, where only the rows corresponding to a
’1’ in the multiplier are filled in. Then, reduction schemes which
fit into 100 MHz pipeline stages are sought. For example, the
multiplication by the constant is performed in
two pipeline stages [23], as shown in Fig. 9.

After several optimization iterations, we succeeded to fit the
1-D IDCT into a 7-stage pipeline running at 100 MHz. As de-
scribed in [23], this figure translates to an 1-D IDCT operation
with a latency of 8 and recovery of 2 TriMedia cycles.

2-D IDCT on Extended TriMedia: By launching an 1-D
IDCT double-slot operation having two 64-bit inputs (Rx and
Ry) and two 64-bit outputs (Rz and Rw), an 8-point IDCT is
computed:

To calculate the 2-D IDCT, eight 1-D IDCT’s are firstly com-
puted. Then, the 8 8 matrix is transposed using the hardwired

operation. Finally, eight 1-D IDCT’s complete the
2-D IDCT. Before and after each 2-D IDCT, and
operations fetch the input operands from main memory into reg-
ister file, and store the results back into memory, respectively.

The 2-D IDCT is organized as a software pipeline loop in-
side which FPGA-based 1-D IDCT operations are launched. As
described in [23], the code is very simple; thus, programming
in assembly is indeed possible. With such implementation, a

throughput of IDCT/cycle has been achieved. For more
details we refer the reader to [23].

VI. EXPERIMENTAL RESULTS

In order to determine the performance gain provided by the
multiple-context FPGA, we consider the pel reconstruction as
benchmark. As mentioned, it consists of entropy decoding, IQ,
2-D IDCT, and some extra tasts (header parsing, decoding of
motion vectors, etc.). Our experiment includes two approaches:
pure software and FPGA-based. For the first approach, we
would like to remind that a DCT coefficient can be decoded in
16.9 cycles [25]. A pure software 2-D IDCT can be scheduled
in 56 cycles [2]. IQ takes 39 cycles per intrablock and 52 cycles
per nonintrablock.

In the FPGA-based approach, the VLD, IQ, and IDCT
functions benefit from reconfigurable hardware support. For
each of the mentioned function, the corresponding code is
replaced by a group of three instructions: ,

, and . Due to the large off-chip
reconfiguration penality, all the RFU contexts are configured at
application load-time, i.e., the instructions are all
scheduled on the top of the program code. During the program
execution, the VLD-2, IQ-4, and 1-D IDCT units are activated
by instructions as needed. As mentioned
in Section II, the context switching penality is 100 cycles.

The testing database consists of five MPEG-2 conformance
scenes. For all experiments, the incoming string is assumed to
be entirely resident into the main memory. This way, side effects
associated with string acquisition (such as asynchronous inter-
rupts or other operating system related tasks) do not have to be
counted. With this assumption, the relevant metric is the number
of the instruction cycles required to perform pel reconstruction.

In Section V, we outlined a reconfigurable entropy decoder
that decodes a DCT coefficient in 9 cycles, a reconfigurable in-
verse quantizer and a reconfigurable 2-D IDCT, each of them
having a throughput of one 8 8 block every 32 cycles. Al-
though each of these reconfigurable designs has been highly
optimized, the problem is not completed yet. There are different
ways to embed the reconfigurable ingredients into the pel recon-
struction task, and the programmer has to find the fastest com-
pound implementation. Basically, each implementation has to
be evaluated against the overhead of firing-up and flushing the
IQ and IDCT pipelines, the compulsory cache misses, and the
FPGA context-switching penalty. Processing large batches of
blocks translates into a low pipeline firing-up/flushing overhead
and low context-switching penalty but high cache-miss penalty.
A way to vary the batch size while the MPEG decoding syn-
chronization is ensured is to carry out the decoding process at
different levels: macroblock, slice, and picture/frame. Thus,
to assess the performance for different batch sizes, the pel re-
construction task has been analyzed according to three com-
puting scenarios, as depicted in Fig. 10. That is, the VLD is per-
formed till an entire macroblock/slice/picture is extracted, and
only then the IQ and IDCT are carried out for all blocks in a
macroblock/slice/picture, respectively.

First, pel reconstruction at macroblock level is analyzed. Ac-
cording to Table I, the average number of blocks per macroblock
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Fig. 10. Three possible computing scenarios of pel reconstruction.

TABLE I
MPEG-2 STATISTICS FOR SEVERAL CONFORMANCE BIT-STRINGS

TABLE II
TOTAL NUMBER OF BLOCKS, MACROBLOCKS, SLICES, AND PICTURES/FRAMES FOR SEVERAL MPEG-2 CONFORMANCE BIT-STRINGS

TABLE III
COMPULSORY/TRASHING CACHE MISS PENALTY, FPGA CONTEXT SWITCHING OVERHEAD, AND PIPELINE FIRE-UP + FLUSHING OVERHEAD FOR

DIFFERENT COMPUTING SCENARIOS

is small, being 3.1 for B-type pictures, 4.3 for P-type pictures,
and 6.0 for I-type pictures. Given the fact that the overhead
to fire-up the 2-D IDCT software pipeline is 20 cycles [23],

cycles are needed to compute 2-D IDCT for
an entire intracoded macroblock, which translates to an average
of cycles/block (11% performance degradation
versus the ideal 32 cycles/block). The performance degrades
even more for nonintracoded macroblocks. For the worst case
when the number of blocks is odd, the last 2-D IDCT will com-
plete in 45 cycles instead of 32, giving a total of

cycles for the average of 3 blocks in a B-coded mac-
roblock. This translates to 43 cycles/block (34% performance
degradation versus the ideal 32 cycles/block).

On the other side, processing a very large number of blocks in
order to minimize the pipeline firing-up and flushing overhead
implies that trashing cache misses are generated when data is
read from and written back to main memory. Assuming frame-
level pel reconstruction, the smallest average number of blocks
per frame is equal to 573 (Table I—popplen scene). Thus, a data

cache of 72 kB is needed to avoid trashing
cache misses after entropy decoding. Such a data cache is larger
than the current TriMedia cache (16 kB or 32 kB). Assuming a
penalty of 11 cycles per cache miss, an overhead of

per block is generated. Thus, all the
performance gain provided by the reconfigurable design is lost.

The FPGA context switching occurs three times per pel re-
construction iteration to successively activate VLD-2, IQ-4, and
1-D IDCT (each switch takes 100 cycles). Based on the total
number of macroblocks, slices, and pictures/frames in an MPEG
string (Table II), we can determine the FPGA context-switching
penalty for all three computing scenarios. For example, there
are 3 context switches per slice for slice-level decoding, which
translates to cycles for the tennis
scene. A complete list of penalties is presented in Table III.

Two data cache sizes have been considered: 16 kB and 32
kB. As it can be observed, the lowest total penalty is achieved
for decoding at slice level. This winning computing scenario,
which will be used for comparison with the pure-software solu-
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Fig. 11. The winning computing scenario of pel reconstruction.

tion, is presented in extenso in Fig. 11. For each slice, the vari-
able-length decoding of all macroblocks (headers and DCT co-
efficients extraction) is first performed. By software pipelining,
run-length decoding is carried out in parallel to recreate the
8 8 matrices. Then, all the blocks in the slice are inverse quan-
tized, and dc coefficient prediction for intracoded macroblocks
is carried out. Finally, a burst of 2-D IDCT’s is launched in order
to complete the reconstruction of the initial matrices of pels.

In connection with the cache miss penalty that is encoun-
tered at slice-level decoding, we would like to mention that the
number of trashing cache misses approaches to zero if a 32 kB
data cache is available. The remaining penalty, e.g., 1 395 020
cycles for the bat_327_334 scene, is mostly due to the compul-
sory cache misses that are encountered during entropy decoding.
Assuming a data cache of only 16 kB, a possible strategy to keep
the number of trashing cache misses at low level is to split the
slice-level processing into subparts. This way, the decoding will

be carried out at sub-slice level. Since this issue is somehow be-
yond the paper scope, we will not go into details.

The winning reconfigurable design is compared to the
pure-software solution. All three FPGA contexts are setup at
application load time. Since long MPEG strings of minutes
or hours (much longer that the conformance scenes) are to be
decoded in practice, the overhead for setting-up the FPGA
contexts (3 1 671 360 5 014 080 cycles, which corresponds
to 25 msec on a TriMedia@200 MHz) is not taken into con-
sideration. The experimental results are presented in Table IV.
The figures indicate the number of instruction cycles needed
to process the MPEG string and the overhead. For example,
401 492 cycles are needed to perform IQ for the popplen scene.
For the same scene, there is an overhead of 196 922 cycles
due to cache misses, which is taken into consideration for both
FPGA-based and pure-software solutions. For the FPGA-based
solution only, there is an additional overhead of 30 368 cycles
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TABLE IV
PEL RECONSTRUCTION EXPERIMENTAL RESULTS FOR THE WINNING COMPUTING SCENARIO

TABLE V
PEL RECONSTRUCTION RELATIVE IMPROVEMENT

due to FPGA context switching (27,000 cycles) and pipeline
firing-up and flushing (3,368 cycles).

A digest of the Table IV, which reports the relative improve-
ment of the FPGA-augmented TriMedia versus standard Tri-
Media with respect to the number of cycles, is presented in
Table V. For each function that benefit from FPGA support, i.e.,
entropy decoding, IQ, and IDCT, only the number of instruc-
tion cycles needed to perform strictly that particular function
are considered (which is similar to assume zero overhead). For
the entire pel reconstruction task, all the overhead assuming a 32
kB data cache is included. As it can be observed, the FPGA-aug-
mented TriMedia can perform MPEG2-compliant pel recon-
struction with the average improvement of 27% in terms of cy-
cles over the standard TriMedia.

The speed-up achieved on FPGA-augmented TriMedia is pre-
sented in Fig. 12. When VLD-2, IQ-4, and 1-D IDCT are each
configured on a different FPGA context, pel reconstruction can
be computed with the average speed-up of 1.4 . Assuming that
only a single-context FPGA is available, then only one of the
VLD-2, IQ-4, and 1-D IDCT functions can benefit from recon-
figurable hardware support. The speed-up decreases to 1.1
when either IQ-4 or 1-D IDCT is configured on the RFU, and
to 1.2 when only VLD-2 is configured on the RFU.

The significant speed-up of 1.4 obtained for a 5-issue slot
VLIW processor with a 64-bit datapath may generate the idea
of providing more hardwired functional units instead of the
reconfigurable array to achieve at least the same processing
speed. However, this approach seems not to be feasible. As we
mentioned, 4 out of 5 issue slots are filled in with operations
in the pure-software entropy decoder [25], and more that 4.5
out of 5 issue slots are occupied in the pure-software IQ and
2-D IDCT. Since more operations per cycle cannot be issued,
the processor cannot run faster whatever additional (fine-grain)
hardwired functional units are provided.

Fig. 12. FPGA-augmented TriMedia versus standard TriMedia speed-up.

The final remark addresses the area penalty induced by the
FPGA core. According to DeHon [12], an additional area of
500 000 per LUT is needed. For the ACEX EP1K100 de-
vice that includes about 5,000 LUT’s, this figure translates to a
total area of 20 in a 0.18 technology. Giving the fact
that TriMedia-CPU64 occupies about 35 in the same tech-
nology, the FPGA augmentation with an EP1K100 device leads
to a relative area increase of 43%. However, this increase is not a
major concern. Indeed, TriMedia is envisioned to be embedded
on the same die with a set of coprocessors, which also require
additional area. For example, in the Viper chip [31], the MPEG
video decoder and video coprocessor occupy together an area of
about 18 . Replacing such coprocessors (which cannot be
used for different tasks they have been designed for anyhow)
with a reconfigurable core will keep the total die area at the
same level. However, the physical realization of the FPGA-aug-
mented TriMedia is subject for further work.

VII. CONCLUSIONS

We have described an architectural extension for TriMedia-
CPU64, which encompasses a multiple-context FPGA-based
RFU, a hardwired Configuration Unit managing the reconfig-
uration of the RFU, and their associated instructions. On the
FPGA-augmented TriMedia-CPU64, we determined a speed-up
of 1.4 over a standard TriMedia-CPU64 for an MPEG2-com-
pliant pel reconstruction task, at the expense of three new in-
structions: , , , and
a 5,000-cell FPGA. Given the fact that the experimental Tri-
Media instance is a 5-issue slot VLIW processor with a 64-bit
datapath and a very rich multimedia-oriented instruction set,
such an improvement within its target media processing do-
main indicates that TriMedia FPGA hybrid is a promising
approach.
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