
Efficient Hardware for Antialiasing Coverage Mask Generation

D. Crisu, S.D. Cotofana, S. Vassiliadis
Computer Engineering Laboratory

Delft University of Technology
Mekelweg 4, 2600 GA Delft, The Netherlands
E-mail: {dan, sorin, stamatis}@ce.et.tudelft.nl

P. Liuha
Nokia Research Center
Visiokatu-1, SF-33720

Tampere, Finland
E-mail: petri.liuha@nokia.com

Abstract

An efficient low-cost, low-power hardware implementa-
tion of a novel run-time pixel coverage mask generation al-
gorithm for embedded 3-D graphics antialiasing purposes
is presented. The proposed algorithm can be incorporated
in any antialiasing scheme with pre-filtering that is based
on algebraic representation of primitive’s edges. When
compared with the state of the art, the described algorithm
reduces several times the size of the required hardware im-
plementation due to the utilization of the quadrant symme-
try property allowing the storage of only the coverage mask
information for a few representative edges in one of the
quadrants of the plane, the rest of the information being de-
rived on the fly via computationally inexpensive operations.

1. Introduction

With the recent proliferation of increasing powerful mo-
bile platforms for computing and communications, the re-
quest for fast, graphics-reach, user-friendly interfaces and
entertainment environments opened new market opportu-
nities for 3-D real-time rendering graphics systems meant
to accelerate these features. The challenge posed by the
formidable cost constraints on products for the mobile con-
sumer market requires a new breed of graphics rendering
hardware with very low power consumption and implemen-
tation costs which precludes the utilization of the advanced
features and the high throughput achieved in high-end sys-
tems. However it is mandatory to implement at least, given
their reduced physical size raster displays and the prospects
of sluggish resolution improvement (less than 10% a year
according to [3]), antialiasing hardware to prevent the com-
mon problem of the jagged appearance of lines and polygo-
nal edges, among other aliasing artifacts.

In this paper, an efficient low-cost, low-power hardware
implementation of a novel run-time pixel coverage mask
generation algorithm for embedded 3-D graphics antialias-
ing purposes is presented. The algorithm is exploiting the

quadrant symmetry property allowing the storage of only
the coverage mask information for a few representative
edges in one of the quadrants of the plane, the rest of the
information being derived on the fly via computationally
inexpensive operations. The algorithm is presented assum-
ing 4 × 4 subpixel coverage masks and two’s complement
number arithmetic, however it has a higher degree of gen-
erality: it can be incorporated in any antialiasing scheme
with pre-filtering that is based on algebraic representation of
primitive’s edges, it is independent of the underlying num-
ber representation, and it can be adapted to other coverage
mask subpixel resolutions with the only prerequisite for the
masks to be square. Assuming a 0.18µm IC manufactur-
ing technology, hardware synthesis results of the coverage
mask generation circuitry are indicating that our algorithm
requires an area of 12270µm2 and has a latency of 2.49ns
instead of 270375µm2 and 4.2ns required by state of the art
solutions [8].

The rest of the paper is organized as follows. Back-
ground and preliminaries regarding antialiasing with pre-
filtering are discussed in Section 2. In Section 3, the
antialiasing coverage mask generation algorithm is intro-
duced and highlights of its hardware implementation are
discussed. Hardware synthesis results and rendered images
using accurate SystemC RTL modeling are presented in
Section 4. Finally, in Section 5, the conclusions are drawn.

2. Background and preliminaries

Antialiasing schemes can be classified in pre- and post-
filtering methods [4]. The algorithm we propose is em-
ployed in an antialiasing scheme based on pre-filtering.

Whithin this last category, one efficient approach for tri-
angle rasterization and triangle antialiasing is based on the
algebraic representation of triangle’s edges with edge func-
tions [5, 7] and normalized edge functions [8]. In hard-
ware implementations for antialiasing with normalized edge
functions, subpixel representations of the pixel coverage
coded in coverage masks (depicted in Figure 1(a)) are pre-

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

m
 0
m
 1
m
 2
m
 3

m
 4
m
 5
m
 6
m
 7

m
 8
m
9
m
10
m
11

m
12
m
13
m
14
m
15

m
 0

m
14
m
13
m
12
m
11
m
10
m
 9
m
 8
m
 7
m
 6
m
 5
m
 4
m
 3
m
 2
m
 1

m
15

Pixel16−bit Subpixel Mask
(or Coverage Mask)

a)

Edge 2
Coverage Mask

Final
Coverage Mask

Pixel

E
d
g
e

1

Edge 2

Edge
 3

c)

Edge 3
Coverage Mask

Edge 1
Coverage Mask

AND

Value = 6/16
Coverage

Mask
Coverage

d 16

d

Pixel

="1"

b)

Coverage
Mask
LUT

(Look Up Table)

Figure 1. The operating principle of the an-
tialiasing algorithm with normalized edge
functions.

computed for various distances to the pixel center and an-
gles of the edge and stored in a coverage mask lookup table
(LUT). During rasterization the normalized edge function
computed for the current rasterization position (xM , yM) is
interpreted as a distance and together with the edge slope
is used as a LUT address to fetch the coverage mask of the
current rasterization position for that edge (presented in Fig-
ure 1(b)). The table lookup is performed for all the three
edges and the three resultant coverage masks are logically
combined to produce a final coverage mask of the triangle
over the current rasterization position (xM , yM). Then the
coverage mask is either employed as in [1] or used to com-
pute a coverage value — the fraction of the pixel covered by
the triangle — from the number of lit subpixels out of the
total number of subpixels (see Figure 1(c)). Further the cov-
erage value is used to modulate the color (the transparency
or the alpha value) which is also computed by interpolation
for the current rasterization position (xM , yM).

The algorithm we propose can work in conjunction with
various normalized edge functions from which the distance
d from the pixel center and the angle α with the hori-
zontal can be inferred from parameters of the normalized
edge function, it is independent of the underlying num-
ber representation, and it can be adapted to other cov-
erage mask subpixel resolutions with the only prerequi-

dL1

(10)

dL1

(−1)

dL1

(0)

dL1

(sgn)

dL1
>+0.5

dL1
<−0.5

dL1
[−0.5, +0.5)

Figure 2. Efficient dL1 range detector.

site for the masks to be square. For illustrative purposes,
the hardware circuits presented in figures are employing
two’s complement arithmetic. For numerical bit-strings
we utilize the following notation: a{sgn,n,...,0,−1,...,−m}

or a(sgn)a(n)...a(0)a(−1)...a(−m) represents the fixed-point
number whose value is −a(sgn)2n+1 + a(n)2n + ... +
a(0) + a(−1)2−1 + ...a(−m)2−m. The bit ranges presented
in figures reflect the precision required in the antialias-
ing datapath of an embedded QVGA graphics accelerator.
Thus the numerical ranges for the antialiasing operands
used throughout in the paper will be d

{sgn,10,...,−24}
L1

,

de
{sgn,0,...,−20}
x , de

{sgn,0,...,−20}
x , ∆x{sgn,8,...,−4}, and

∆y{sgn,8,...,−4}. Also for illustrative purposes, the particu-
lar case of 4× 4-subpixel coverage masks and a normalized
edge function expressed by the L1-norm distance [8] is se-
lected. The L1 norm distance can be expressed in relation
with the pixel center M as:

dL1(M)= E(xM ,yM)
|∆x|+|∆y|

=(xM − xA) · ∆y
|∆x|+|∆y| − (yM − yA) · ∆x

|∆x|+|∆y|
=(xM − xA) · dex(α) − (yM − yA) · dey(α)

= sgn (dL1(M)) · d ·
√

∆x2+∆y2

|∆x|+|∆y|
= sgn (dL1(M)) · f(d, α)

(1)
The L1-norm distance dL1(M) and the parameters

dex(α) and dey(α) are functions of the Euclidean distance
d and the angle α presented in Figure 1(b). Actually any
edge vector in the 2D space at any Euclidean distance d
from the pixel center M and at any angle α can be identified
unambiguously using dL1(M), dex(α), and sgn (dey(α)).
Therefore, because the angle α is difficult to compute per
se, the index used to fetch the coverage masks from the cov-
erage mask LUT can be composed from dL1(M), dex(α),
and sgn (dey(α)). For practical interest, only the cover-
age masks for partially covered pixels have to be stored
in the coverage mask LUT imposing the range for the L1-
norm distance to be dL1(M) ∈ (−0.5,+0.5). Outside this
range, the pixel is totally covered or totally uncovered by
the triangle edge and the coverage mask can be assigned
implicitly to be with all subpixels set or unset depending
on the sign of L1-norm distance dL1(M). This scheme

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

b)a)

A

B

C

D

EFGH

Figure 3. The edge vectors stored in the cov-
erage masks LUT (the subpixels are repre-
sented as dotted squares).

can be easily implemented in hardware with trivial mul-
tiplexing circuitry using the two’s complement circuit we
propose in Figure 2. The ranges for the other parameters
that depend on the angle α of the edge vector alone are:
dex(α) ∈ [−1,+1], and sgn (dey(α)) ∈ {−1,+1}. To
keep the coverage masks LUT within reasonable size, the
edge vectors can be grouped in edge vector classes and
only several representative classes are stored in the cover-
age masks LUT. An edge vector class is defined as a set of
all the edge vectors with the same dex(α) and sgn (dey(α))
values, but with distinct dL1(M) values (the values lie in the
above ranges). Hence, an edge vector class contains all the
edge vectors with the same slope that partially cover a pixel.
In the particular case of the EASA antialiasing scheme [8],
only 32 edge vector classes from all the four quadrants of
plane were stored as presented in Figure 3(a). The 32 edge
vector classes were chosen by drawing all the possible edge
vectors that were passing through the subpixel centers of a
pixel (the edge vectors belonging to edge vector class B are
depicted in Figure 3(b)). Then the coverage mask that was
stored corresponding to the index given by a combination
of dL1(M), dex(α), and sgn (dey(α)) was computed by in-
suring that the number of subpixels lit in the coverage mask
was correct plus or minus 1/2 a subpixel, based on the exact
covered area of the pixel. However, additional redundancy
had to be incorporated in the LUT to ensure that for two
adjacent triangles, both front-facing or both back-facing, a
total coverage of more than 1 pixel was impossible and to
counteract in two’s complement number system the bias-
ing of a rounding scheme based on truncation towards −∞.
This increased the coverage masks LUT size to 8k words of
16 bits (8k coverage masks) [8].

3. Proposed coverage mask generation scheme

By maintaining the same system parameters described
in the previous section, we propose an algorithm that makes

Edge Vectors
Quadrant Four

Quadrant One
Edge Vectors

Quadrant Three
Edge Vectors

Quadrant Two
Edge Vectors

A

B

C

D

EFGH

Figure 4. The new method of edge vector
class clustering in the four quadrants of the
plane (for clarity the edge vectors were drawn
in four distinct pixels).

possible a reduction of coverage mask LUT size to no more
than 256 16-bit coverage masks, without downgrading the
antialiasing quality. Considering that a triangle’s oriented
edge can be represented as a vector from the source ver-
tex to the sink vertex, the 32 edge vector classes can be
clustered according to the quadrant they belong (for hor-
izontal/vertical edge vector classes a convention is made)
as presented in Figure 4. Our algorithm proceeds from the
consideration that the coverage masks required for the edge
vectors of each of the four quadrants correspond to each
other in a rotationally symmetric manner. That is, if an
edge vector, which belongs by its orientation to one quad-
rant and which requires a specific coverage mask, is rotated
in steps of 90◦, the resulting edge vectors in the other quad-
rants will require the same specific coverage mask rotated
in corresponding steps of 90◦. It is therefore proposed to
store only coverage masks for edge vectors belonging by
their orientation to a selected one of the quadrants, e.g.,
to the first quadrant. The coverage masks for edge vec-
tors belonging by their orientation to another quadrant are
obtained by a simple transformation of a coverage mask
fetched for a corresponding edge vector belonging to the se-
lected quadrant. Transposing the original edge vector into
the selected quadrant and transforming the fetched cover-
age mask to the quadrant of the original edge vector can be
achieved in hardware by computationally inexpensive oper-
ations such as simple mask bitwise negations (an inverter
per bit of coverage mask), mirrorings, and/or rotations with
90◦ (involving only the proper routing of signals represent-
ing the bits in the coverage mask).

The proposed algorithm for coverage mask generation
for an edge vector that presents a partial coverage over the
current rasterization position (as depicted in Figure 1(b)) is
presented in the followings. For a correctness proof of the

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

algorithm the reader is referred to [2].

Algorithm

1. Compute dex, dey for the edge vector and determine the ini-
tial quadrant for the edge vector (performed only once per
edge);

2. Compute dL1 for the current rasterization position that the
edge touches;

3. Quadrant Disambiguation — perform the next operations if
the initial quadrant for the edge vector is the following:

• Q1: deQ1
x = dex; dLUT index

L1 = dL1

• Q2: deQ1
x = −dey; dLUT index

L1 = dL1

• Q3: deQ1
x = −dex; dLUT index

L1 = −dL1

• Q4: deQ1
x = dey; dLUT index

L1 = −dL1

4. Edge Vector Class Disambiguation — Disambiguate the
value for deQ1

x using bisectors according to Table 1 thus pro-
ducing a 3-bit deLUT index

x value, if this disambiguation has
produced a wrap-around set the wrap flag, else unset wrap;

5. Use 3-bit deLUT index
x value and 5 most signifi cant bits of

dLUT index
L1 to compose the address and fetch the coverage

mask Mask from the coverage masks LUT;

6. Adjust if necessary the coverage mask Mask by producing
an intermediary coverage mask Adjusted Mask:

• if wrap was set then perform:
Adjusted Mask =� (Mask � 90◦)

• else perform:
Adjusted Mask = Mask

7. If the initial quadrant for the edge vector was the fol-
lowing then compute another intermediary coverage mask
Coverage Mask:

• Q1: Coverage Mask=Adjusted Mask

• Q2: Coverage Mask=Adjusted Mask � 90◦

• Q3: Coverage Mask=not (Adjusted Mask)

• Q4: Coverage Mask=not (Adjusted Mask � 90◦)

8. Compute the fi nal coverage mask for the edge vector by test-
ing the orientation of the triangle’s edges:

• if triangle’s edges are oriented clockwise
(dAB

L1 (xC , yC) > 0 or EAB (xC , yC) > 0)
perform:

Final Coverage Mask = Coverage Mask

• else
Final Coverage Mask = not (Coverage Mask)

�
In the description of the algorithm, the operator � 90◦

denotes a counter-clockwise rotation with 90◦ of the 4 × 4
grid of subpixels that is encoded as a 16-bit coverage mask,
the operator � signifies a vertical mirroring of the 4 × 4
grid of subpixels, and the operator not() signifies a bitwise
negation of the 16-bit coverage mask.

Due to the fact that the coverage mask LUT contains
only instances of the quadrant one edge vector classes the

x

x

x

x

x is zero

(1)
EDGE_QUADRANT

(0)
EDGE_QUADRANT

y

y

y

y

y is zero

(8)

(7)

(sgn)

(−4)

QUADRANT_VALID

(sgn)

(8)

(−3)

(−4)

Figure 5. Edge vector quadrant computation.

c)

x

y a)

Quadrant One

b)

M

A

Quadrant Two

A

M

Quadrant One

d)

Quadrant Two

Figure 6. Q2 edge vector coverage mask gen-
eration.

indexing scheme became simpler when compared with pre-
vious implementations [8]: the index has to be composed
taking into account only the transformed dLUT index

L1
(M)

and deQ1
x (α). Now the range for deQ1

x (α) ∈ [0,+1) (the
vertical edge vector class found at the intersection between
quadrant one and two belongs according to the convention
made to quadrant two) and the quadrant one edge vector
classes can be distinguished from each other by the deQ1

x (α)
value only.

The algorithmic steps that are particular to the proposed
algorithm are explained in the following and their implica-
tions for the hardware implementation are also discussed.
The steps 1, 2, 5 are almost identical with the steps that
would be necessary in previous algorithms [8] with the ex-
ception that now the look up process is performed on a
much smaller table with decreased access latency.

The quadrant determination of the initial edge vector
specified by step 1 can be implemented using the circuit
presented in Figure 5. The 2-bit quadrant code assignment

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

c)

x

y a)

A

M

A

M

Quadrant Three Quadrant One

b)

Quadrant One

d)

Quadrant Three

Figure 7. Q3 edge vector coverage mask gen-
eration.

dL1

(−24)

dL1

(−23)

dL1

(−7)

dL1

(−6)

dL1

(sgn)

dL1
INVERT_

A
D
D
E
R dL1

dL1

(−5)

dL1

(−1)

5

"0"

5

4 LUT_INDEX

Figure 8. dL1 selective sign complementation
and truncate-to-zero circuit diagram.

is “00” for quadrant one (Q1), “01” for quadrant two (Q2),
“10” for quadrant three (Q3), and “11” for quadrant four
(Q4). An additional error signal is provided to flag degen-
erate edge vectors (∆x = ∆y = 0) and in effect to disable
the rasterization of such degenerate triangles. As this circuit
is already employed by the point-sampling triangle rasteri-
zation datapath to impose tie-rules for pixel rasterization on
triangle shared edges, it will not be considered in the fol-
lowings as part of the antialiasing datapath.

The quadrant disambiguation (step 3) and the coverage
mask transformation to the originary quadrant (step 7) are
meaningful only if they are explained in synergy. The idea
behind is to transform the arbitrary quadrant edge vector
into an equivalent Q1 edge vector in order to use for cover-
age mask retrieval only a reduced coverage mask LUT for
Q1 edge vectors. After the coverage mask is fetched from
the LUT, inverse transformations have to be operated on the

dex _dey
(−20)

dex _dey
(−19)

dex _dey
(−10)

dex _dey
(−9)

dex _dey
(sgn)

x _deyINVERT_de

A
D
D
E
R

dex
Q18

7

8

dex _dey
(−1)

dex _dey
(−8)

"0"

Figure 9. dex or dey selective sign comple-
mentation and truncate-to-zero circuit dia-
gram.

coverage mask in order to obtain the correct coverage mask
for the initial, arbitrary quadrant edge vector. The equiv-
alent underlying geometrical transformations to the above-
mentioned formulas required to generate Q2 and Q3 cover-
age masks are depicted in Figure 6, respectively Figure 7.
When the edge belongs to Q4 the operations required are
fused computations Q4→Q2→Q1→Q2→Q4. The trans-
formations for forward transition Q4→Q2 and backward
transition Q2→Q4 are similar to Q3→Q1 and Q1→Q3
respectively. This forward/backward transformations en-
sure by construction that two adjacent triangles, both front-
facing or both back-facing, always complement each other,
and a total coverage of more than 4× 4 subpixels is impos-
sible meaning that the algorithm is water-tight. In the fol-
lowing, efficient circuits to implement step 3 are presented.
There are two problems to be tackled with when using two’s
complement number representation. The first one is the re-
quirement for wide-operand addition to implement the sign
complementation unary operator (for our required precision
26-bit addition for dL1 and 22-bit addition for dex). The
second one and the only mean to warrant water-tightness,
given the asymmetrical behavior of positive and negative
numbers under truncation (required for steps 4, 5), is to
employ a truncate-to-zero rounding scheme. This is accom-
plished by ignoring the least significant bits on the right side
and adding the sign bit to the least significant bit of the re-
maining bits, however this only occurs if at least one of the
ignored bits is nonzero. This involves a chain of two addi-
tions, one of them being expensive. To simplify things and
reduce it to two narrow-operand additions, it can be shown
that a sign complementation followed by a truncate-to-zero
rounding is equivalent to a truncate-to-zero rounding first
followed by the sign complementation of the resultant re-

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

E

B

C

D

A

FGH
bsc

t_B
C

bsct_A
B

bs
ct
_D
E

bs
ct
_E
F

bs
ct
_C
D

bs
ct
_F
G

b
s
c
t
_
G
H

b
s
c
t
_
H
V

Figure 10. Edge vector class disambiguation
employing bisectors.

duced number of bits. Furthermore, it is possible to fuse
these two additions in only one narrow-operand addition us-
ing the circuits presented in Figure 8 and Figure 9 making
use of little additional logic and a signal that indicates if
the sign complementation is required. This circuits elimi-
nate the need for additional redundancy to be built in the
coverage masks LUT as in [8], lowering the LUT foot-print
further.

The role of the edge vector class disambiguation (step 4)
is to map the parameters of the quadrant one edge vector re-
sulted from the previous step (quadrant disambiguation —
step 3) into parameters of the closest matching representa-
tive edge vector whose coverage mask is resident in LUT.
The quadrant one edge vector that results after the quadrant
disambiguation process (step 2) has to be classified in one
of the eight quadrant one edge vector classes whose cover-
age masks are stored in LUT. Conceptually, the disambigua-
tion process of the edge vector class is reduced to the prob-
lem of finding the boundaries between neighboring quad-
rant one edge vector classes with correspondence in the cov-
erage masks LUT. This was solved by finding the deQ1

x (α)
value of the bisectors between two adjacent quadrant one
edge vector classes with correspondence in LUT. Referring
to Figure 10, it means that if the deQ1

x (α) value of an incom-
ing edge vector is, for example, between the deQ1

x (α) values
of the bisector bsct AB and bsct BC, then its deQ1

x (α)
value becomes that of the edge vector class B. Since only
eight edge vector classes (A, B, C, D, E, F, G, H) are rep-
resented in the coverage mask LUT, it means that only 3
bits are needed to encode this value in the coverage mask
LUT index. This 3-bit code is produced directly as a result
of the edge vector class disambiguation with bisectors. In
the coverage mask LUT being stored 256 coverage masks,
5 bits remain available (as in a previous implementation[8])
in the index to encode 32 L1-norm distances dL1(M) (cov-
erage masks for 32 values of distances from the pixel center

d)

x

y

a)

Quadrant One Quadrant One

b) c)
A

M
M

A

Quadrant One

bsct_HV

Quadrant One

e)

Quadrant One

Figure 11. Coverage mask adjustment.

M to a particular edge slope can be stored). The rules for
the edge vector class disambiguation with bisectors are pre-
sented in Table 1, column 1 and 2. It is needed to emphasize
that the deQ1

x (α) values associated with the bisectors repre-
sent constants to the algorithm which will be programmed
in hardware and no computational effort is spent at raster-
ization time to compute them. The 3-bit code required to
encode the disambiguated deQ1

x (α) in the coverage mask
LUT index is presented in Table 1, column 3. Referring
to Figure 10, an exceptional case that have to be handled
in a specific way appears for the disambiguation of any
quadrant one edge vector class whose slope lies between
bsct HV and the vertical. Normally, it will have to be dis-
ambiguated to the vertical edge vector class but according
to the assignment presented in Figure 4, this class belongs
to the quadrant two. Instead, those exceptional edge vectors
are disambiguated by wrapping around to the A edge vector
class (last row in Table 1) and asserting a condition signal
wrap (Table 1, column 4). The coverage mask is fetched
from the coverage mask LUT, but before applying step 7,
the correction described in step 6 has to be performed if the
condition signal is asserted. The equivalent underlying geo-
metrical transformations for the coverage mask adjustment
process are presented in Figure 11. The edge disambigua-
tion rules presented in Table 1 can be implemented in two
ways: sharing the gates for implementing the carry chains
necessary for each required comparison or specifying the
edge diambiguation rules in a logic table format with an en-
try for every possible deQ1

x (α) value. Both approaches can
be synthesized efficiently leading to a fast logic circuit, for
example considering 8-bit disambiguation constants the re-
sultant circuit complexity is slightly less than a 16-bit adder.

Step 8 is required in order for the coverage mask lookup
scheme to work with triangles with edges oriented clock-
wise or counter-clockwise, as required for OpenGL or
Microsoft’s DirectX-Direct3D compliance. The coverage
masks in the coverage mask LUT are computed only for

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Table 1. Edge vector class disambiguation rules.

Range deQ1
x (α) Disambiguated deLUT index

x wrap
deQ1

x (α) (binary) (binary)
[
0, debsct AB

x

)
deA

x 000 0[
debsct AB

x , debsct BC
x

)
deB

x 001 0[
debsct BC

x , debsct CD
x

)
deC

x 010 0[
debsct CD

x , debsct DE
x

)
deD

x 011 0[
debsct DE

x , debsct EF
x

)
deE

x 100 0[
debsct EF

x , debsct FG
x

)
deF

x 101 0[
debsct FG

x , debsct GH
x

)
deG

x 110 0[
debsct GH

x , debsct HV
x

)
deH

x 111 0[
debsct HV

x , +1
)

deA
x 000 1

(1)
EDGE_QUADRANT

dL1

{sgn, −1, ... , −24}

de y
{sgn, −1, ..., 20}

dex
{sgn, −1, ..., 20}

dINVERT_ L1

INVERT_dex _de y

dex
Q1

Disambiguation
Vector Class

Edge

dL1

dex

90() 90

0

1

X

M
U

16

16
0

1

X

M
U

16

16

EDGE_QUADRANT
(1)

EDGE_QUADRANT
(0)

(0)
EDGE_QUADRANT

Coverage
Mask
LUT

Q1
dL1

dex _dey

dex _de y

{sgn,−1,...,20}

25

21

3

8

5

LUT_INDEX

LUT_INDEX

21

21

wrap

1

0

X

M
U

16

Mask Mask
Adjusted

16

(1 = clockwise, 0 = counter−clockwise)

Coverage Mask

16
(15)

(0)

FINAL_COVERAGE_MASK

16

EDGE_ORIENTATION

Selective

Invert
Sign

and
TRN to ZERO

Selective

TRN to ZERO

Invert
Sign

and

Figure 12. Coverage mask generation circuit diagram for one edge vector.

clockwise orientation of triangle’s edge vectors. For tri-
angles with edges oriented counter-clockwise the coverage
mask obtained through the operations described so far has
to be bitwise negated to deliver the final coverage mask.
The orientation of the triangle’s edges can be detected by
computing in Equation (1) the sign of the edge function
EAB (xC , yC), or equivalently, the normalized edge func-
tion dAB

L1
(xC , yC) (in any cyclic permutation of triangle’s

vertices A, B, C). Those computations are not specific to the
antialiasing datapath, they being required mandatory for the
triangle interpolation setup, i.e., δz/δx, δz/δy etc.

A diagram of the entire coverage mask generation circuit
for one edge vector is presented in Figure 12. The diagram
corresponds to Figure 1(b). To summarize, the proposed al-
gorithm leads to efficient hardware implementations having
a lower structural cost and requiring only computationally
inexpensive operations.

4. Hardware implementation and simulation
results

A whole OpenGL-compliant 3D graphics rasterizer, in-
cluding the proposed pixel coverage mask generation hard-

ware algorithm (256 16-bit coverage masks), was modeled
at RT-level in SystemC language [6]. Referring to the inter-
nal organization, the rasterizer adopts a tile-based rasteriza-
tion approach. The tile size chosen for this particular imple-
mentation was set at 32×16 pixels which implies that all the
internal buffers (color buffer, depth buffer, stencil buffer)
composing the tile frame buffer have this size. The display
size resolution was set at 320× 240 pixels (QVGA), mean-
ing that the display can be conceptually divided into 10×15
tiles. The rasterizer has only one pixel processing pipeline.
The screen coordinates (X, Y) are represented on 9.4 bits
(9 integer, 4 fractional), the color components (R,G,B,A)
on 0.8 bits, the depth component (Z) on 0.24 bits, and the
stencil component on 8.0 bits.

The “aapoly” OpenGL application from [9] was exe-
cuted on the virtual graphics hardware rasterizer. The gen-
erated image is presented in Figure 13. The antialiasing
image quality can be seen in the detailed regions featuring
pixel center and primitive geometry overlaid markings. The
results of the hardware synthesis using Synopsys tools in
a commercial 0.18µm IC manufacturing technology of the
coverage mask generation circuit for one edge vector are

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Figure 13. Antialiasing employing the pro-
posed coverage mask generation hardware
algorithm and implementation.

IC Technology Std. Cell Library
UMC Logic18-1.8V/3.3V-1P6M VST eSi-Route/11

ED Latency ED Std. Cell No. ED Cell Area
0.5ns 42 833µm2

Total Latency Total Std. Cell No. Total Cell Area
2.49ns 557 12270µm2

Table 2. Hardware synthesis results for the
coverage mask generation circuit for one
edge vector.

presented in Table 2. Results are also provided for the edge
vector class disambiguation circuit with bisectors. The ef-
ficiency of the proposed implementation is difficult to be
quantified in respect to past solutions that produced cover-
age masks using normalized edge functions given that they
do not provide details about their hardware implementation.
In an attempt to provide a fair comparison, we implemented
the solution described in [8] and the results were an imple-
mentation with 8432 standard cells, an area of 270375µm2,
and a latency of 4.2ns. This result indicates that our imple-
mentation is much more efficient, in addition we managed
to use the area recovered to implement the rest of the an-
tialiasing hardware datapath specified by Equation (1).

5. Conclusions

An efficient low-cost, low-power hardware implementa-
tion of a novel run-time pixel coverage mask generation al-
gorithm for embedded 3-D graphics antialiasing purposes

has been presented. The algorithm is exploiting the quad-
rant symmetry property allowing the storage of only the
coverage mask information for a few representative edges
in one of the quadrants of the plane, the rest of the infor-
mation being derived on the fly via computationally inex-
pensive operations. The algorithm was presented assum-
ing 4 × 4 subpixel coverage masks and two’s complement
number arithmetic, however it has a higher degree of gen-
erality: it can be incorporated in any antialiasing scheme
with pre-filtering that is based on algebraic representation of
primitive’s edges, it is independent of the underlying num-
ber representation, and it can be adapted to other coverage
mask subpixel resolutions with the only prerequisite for the
masks to be square. Assuming a 0.18µm IC manufactur-
ing technology, hardware synthesis results of the coverage
mask generation circuitry indicated that our algorithm re-
quires an area of 12270µm2 and has a latency of 2.49ns
instead of 270375µm2 and 4.2ns required by state of the art
solutions [8].

References

[1] L. Carpenter. The A-Buffer, an Antialiased Hidden Surface
Removal Method. ACM SIGGRAPH ’84 Conference Pro-
ceedings, 18:103–108, 1984.

[2] D. Crisu, S. Cotofana, and S. Vassiliadis. A Proposal of a Tile-
Based OpenGL-Compliant Rasterization Engine. Technical
report, Computer Engineering Laboratory, Delft University of
Technology, Deliverable no. (2002)–02, 2002.

[3] M. Deering and D. Naegle. The SAGE Graphics Architecture.
In Proceedings of ACM SIGGRAPH 2002, pages 683–692,
2002.

[4] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer
Graphics: Principles and Practice, Second Edition in C.
Addison-Wesley, 1996.

[5] H. Fuchs, J. Goldfeather, J. Hultquist, S. Spach, J. Austin,
F. Brooks, J. Eyles, and J. Poulton. Fast Spheres, Shadows,
Textures, Transparencies, and Image Enhancements in Pixel-
Planes. Computer Graphics (ACM SIGGRAPH ’85 Confer-
ence Proceedings), 19(3):111–120, 1985.

[6] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic Publishers, 2002.

[7] J. Pineda. A Parallel Algorithm for Polygon Rasterization.
Computer Graphics (ACM SIGGRAPH ’88 Conference Pro-
ceedings), 22(4):17–20, 1988.

[8] A. Schilling. A New Simple and Effi cient Antialiasing with
Subpixel Masks. Computer Graphics (ACM SIGGRAPH ’91
Conference Proceedings), 25(4):133–141, 1991.

[9] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Pro-
gramming Guide, Third Edition, The Offi cial Guide to Learn-
ing OpenGL, Version 1.2. Addison-Wesley, 1999.

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

	footer1:

