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ABSTRACT
In this paper we consider implementations of embedded 3D graph-
ics and provide evidence indicating that 3D benchmarks employed
for desktop computers are not suitable for mobile environments.
Consequently, we present GraalBench, a set of 3D graphics work-
loads representative for contemporary and emerging mobile de-
vices. In addition, we present detailed simulation results for a
typical rasterization pipeline. The results show that the proposed
benchmarks use only a part of the resources offered by current 3D
graphics libraries. For instance, while each benchmark uses the
texturing unit for more than 70% of the generated fragments, the
alpha unit is employed for less than 13% of the fragments. The
Fog unit was used for 84% of the fragments by one benchmark, but
the other benchmarks did not use it at all. Our experiments on the
proposed suite suggest that the texturing, depth and blending units
should be implemented in hardware, while, for instance, the dither-
ing unit may be omitted from a hardware implementation. Finally,
we discuss the architectural implications of the obtained results for
hardware implementations.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

General Terms
Performance, Measurement
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1. INTRODUCTION
In recent years, mobile computing devices have been used for a

broader spectrum of applications than mobile telephony or personal
digital assistance. Several companies expect that 3D graphics ap-
plications will become an important workload of wireless devices.
For example, according to [10], the number of users of interactive
3D graphics applications (in particular games) is expected to in-
crease drastically in the future: it is predicted that the global wire-
less games market will grow to 4 billion dollars in 2006. Because
current wireless devices do not have sufficient computational power
to support 3D graphics in real time and because present accelerators
consume too much power, several companies and universities have
started to develop a low-power 3D graphics accelerator. However,
to the best of our knowledge, there is no publicly available bench-
mark suite that can be used to guide the architectural exploration of
such devices.

This paper presents GraalBench, a 3D graphics benchmark suite
suitable for 3D graphics on low-power, mobile systems, in partic-
ular mobile phones. These benchmarks were collected to facili-
tate our studies on low-power 3D graphics accelerators in the Graal
(GRAphics AcceLerator) project [5]. It includes several games as
well as virtual reality applications such as 3D museum guides. Ap-
plications were selected on the basis of several criteria. For ex-
ample, CAD/CAM applications, such as contained in the Viewperf
package [18], were excluded because it is unlikely that they will be
offered on mobile devices. Other characteristics we considered are
resolution and polygon count.

A second goal of this paper is to provide a detailed quantitative
workload characterization of the collected benchmarks. For each
rasterization unit, we determine if it is used by the benchmark, and
collect several statistics such as the number of fragments that by-
pass the unit, fragments that are processed by the unit and pass the
test, and fragments that are processed but fail the test. Such statis-
tics can be used to guide the development of mobile 3D graphics
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architectures. For example, a unit that is rarely used might not be
supported by a low-power accelerator or it might be implemented
using less resources. Furthermore, if many fragments are discarded
before the final tests, the pixel pipeline of the last stages might be
narrower than the width of earlier stages.

This paper is organized as follows. Previous work on 3D graph-
ics benchmarking is described in Section 2. In this section we also
give reasons why current 3D graphics benchmarks are not appro-
priate for mobile environments. Section 3 first explains how the
benchmarks were obtained, describes our tracing environment, the
simulator we used to collect the statistics and, after that, describes
the components of the proposed benchmark suite and presents some
general characteristics of the workloads. Section 4 provides a work-
load characterization of the benchmarks and discusses architectural
implications. Conclusions and directions for future work are given
in Section 5.

2. RELATED WORK
To the best of our knowledge, 3D graphics benchmarks specifi-

cally targeted at low-power architectures have not been proposed.
Furthermore, existing benchmarks cannot be considered to be suited
for embedded 3D graphics architectures. For example, consider
SPEC’s Viewperf [18], a well-known benchmark suite used to eval-
uate 3D graphics accelerator cards employed in desktop computers.
These benchmarks are unsuitable for low-power graphics because
of the following:

• The Viewperf benchmarks are designed for high-resolution
output devices, but the displays of current wireless systems
have a limited resolution. Specifically, by default the View-
perf package is running at resolutions above SVGA (800 ×
600 pixels), while common display resolutions for mobile
phones are QCIF (176 × 144) and QVGA (320 × 240).

• The Viewperf benchmarks use a large number of polygons in
order to obtain high picture quality (most benchmarks have
more than 20,000 triangles per frame [11]). Translated to
a mobile platform, most rendered polygons will be smaller
than one pixel so their contribution to the generated images
will be small or even invisible. Specifically, the polygon
count of the Viewperf benchmarks DRV, DX, ProCDRS, and
MedMCAD is too high for mobile devices.

• Some benchmarks of Viewperf are CAD/CAM applications
and use wire-frame rendering modes. It is unlikely that such
applications will be offered on mobile platforms.

Except Viewperf, there are no publicly-available, portable 3D graph-
ics benchmark suites. Although there are several benchmarking
suites [3, 4] based on the DirectX API, they are not suitable for our
study since DirectX implementations are available only on Win-
dows systems.

There have been several studies related to 3D graphics workload
characterization (e.g., [11, 6]). Most related to our investigation is
the study of Mitra and Chiueh [11], since they also considered dy-
namic, polygonal 3D graphics workloads. Dynamic means that the
workloads consist of several consecutive image frames rather than
individual images, which allows to study techniques that exploit the
coherence between consecutive frames. Polygonal means that the
basic primitives are polygons, which are supported by all existing
3D chips. The main differences between that study and our work-
load characterization are that Mitra and Chiueh considered high-
end applications (Viewperf, among others) and measured different
statistics.

Recently, a number of mobile 3D graphics accelerators [1, 16]
have been presented. In both works particular benchmarks were
employed to evaluate the accelerators. However, little information
is provided about the benchmarks and they have not been made
publicly available.

Another reason for the limited availability of mobile 3D graph-
ics benchmarks is that until recently there was no generally ac-
cepted API for 3D graphics on mobile phones. Recently, due to
high interest in embedded 3D graphics, APIs suitable for mobile
3D graphics such as OpenGL ES [8], Java mobile 3D Graphics
API (JSR-184) [7], and Mobile GL [20] have appeared. Currently,
however, there are no 3D benchmarks written using these APIs. So,
we have used OpenGL applications. Furthermore, our benchmarks
use only a part of the OpenGL functionality which is also supported
by OpenGL ES.

3. THE GraalBench BENCHMARK SET
In this section we describe the environment we used to create the

benchmarks, the components of our benchmark set and also some
general characteristics of the workloads.

3.1 Tracing Environment
Due to their interactive nature, 3D games are generally not re-

peatable. In order to obtain a set of repeatable workloads, we traced
existing applications logging all OpenGL calls. Our tracing envi-
ronment consists of two components: a tracer and a trace player.
Our tracer is based on GLtrace from Hawksoft [15]. It intercepts
and logs OpenGL calls made by a running application, and then
calls the OpenGL function invoked by the application. No source
code is required provided the application links dynamically with
the OpenGL library, meaning that the executable only holds links
to the required functions which are bounded to the corresponding
functions at run-time. Statically linked applications, in which case
the required libraries are encapsulated in the executable image, can-
not be traced using this mechanism when the source code is not
available.

We improved GLtrace in two ways. First, GLtrace does not log
completely reproducible OpenGL calls (for example, textures are
not logged). We modified the GLtrace library so that all OpenGL
calls are completely reproducible. Second, the trace produced by
GLtrace is a text trace, which is rather slow. We improved its per-
formance by adding a binary logging mode that significantly re-
duces the tracing overhead.

In addition, we developed a trace player that plays the obtained
traces. It can play recorded frames as fast as the OpenGL imple-
mentation allows. It does not skip any frame so the workload gen-
erated is always the same. The workload statistics were collected
using our own OpenGL simulator based on Mesa [14], which is a
public-domain implementation of OpenGL.

3.2 The Benchmarks
The proposed benchmark suite consists of the following compo-

nents:

Q3L and Q3H Quake III [9] or Q3, for short, is a popular interac-
tive 3D game belonging to the shooter games category. A
screenshot of this game is depicted in Figure 1(a). Even
though it can be considered outdated for contemporary PC-
class graphics accelerators, it is an appropriate and demand-
ing application for low-power devices. Q3 has a flexible de-
sign and permits many settings to be changed such as image
size and depth, texture quality, geometry detail, types of tex-
ture filtering, etc. We used two profiles for this workload in
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(a) Q3 (b) Tux (c) AW

(d) ANL (e) GRA (f) DIN

Figure 1: Screenshots of the GraalBench workloads

order to determine the implications of different image sizes
and object complexity. The first profile, which will be re-
ferred to as Q3H, uses a relatively high image resolution and
objects detail. The second profile, Q3L, employs a low reso-
lution and objects detail. Q3 makes extensive use of blending
operations in order to implement multiple texture passes.

Tux Racer (Tux) [19] This is a freely available game that runs on
Linux. The goal of this game is to drive a penguin down
a mountain terrain as quickly as possible, while collecting
herring. The image quality is higher than that of Q3. Tux
makes extensive use of automatic texture coordinate genera-
tion functions. A screenshot can be seen in Figure 1(b).

AWadvs-04 (AW) [18] This test is part of the Viewperf 6.1.2 pack-
age. In this test a fully textured human model is viewed from
different angles and distances. As remarked before, the other
test in the Viewperf package are not suitable for low-power
accelerators, because they represent high-end applications or
are from an application domain not likely to be offered on
mobile platforms. A screenshot of AW is depicted in Fig-
ure 1(c).

ANL, GRA, and DIN These three VRML scenes were chosen based
on their diversity and complexity. ANL is a virtual model of
Austrian National Library and consists of 10292 polygons,
GRA is a model of Graz University of Technology, Austria
and consists of 8859 polygons, and Dino (DIN) is a model
of a dinosaur consisting of 4300 polygons. In order to obtain
a workload similar to one that might be generated by a typi-
cal user, we created “fly-by” scenes. Initially, we used VR-

Web [13] to navigate through the scenes, but we found that
the VRMLView [12] navigator produces less texture traffic
because it uses the glBindTexture mechanism. Screen-
shots of ANL, GRA, and DIN are depicted in Figure 1(d),
(e), and (f), respectively.

GraalBench is the result of extensive searching on the World
Wide Web. The applications were selected on the basis of several
criteria. First, since the display resolution of contemporary mo-
bile phones is at most 320 × 240, we excluded applications with
substantially higher resolution. Specifically, we used a maximum
resolution of 640 × 480. Second, the applications should be rel-
evant for a mobile phone, i.e., it should be likely that it will be
offered on a mobile phone. CAD/CAM applications were excluded
for this reason. Third, the level of details of the applications should
not be too high, because otherwise, most rendered polygons will be
smaller than one pixel on the display of a mobile phone. Fourth,
and finally, the benchmarks should have different characteristics.
For example, several links to 3D games have recently been pro-
vided on Mesa’s website (www.mesa3d.org). However, these
games such as Doom, Heretic, and Quake II belong to the same
category as Quake III and Tux Racer, and therefore do not repre-
sent benchmarks with substantially different characteristics. We,
therefore, decided not to include them.

Applications using the latest technologies (Vertex and Pixel Sha-
ders) available on desktop 3D graphics accelerators were also not
included since these technologies are not supported by the embed-
ded 3D graphics APIs mentioned in Section 2. We expect that more
3D graphics applications for low-power mobile devices will appear
when accelerators for these platforms will be introduced.
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3.3 General Characteristics
Table 1 present some general statistics of the workloads. The

characteristics and statistics presented in this table are:

Image resolution Currently, low-power accelerator should be able
to handle scenes with a typical resolution of 320×240 pixels.
Since in the near future the typical resolution is expected to
increase we decided to use a resolution of 640 × 480. The
Q3L benchmark uses a lower resolution (320×240) in order
to study the impact of changing the resolution.

Frames The total number of frames in each test.

Avg. triangles The average number of triangles sent to the raster-
izer per frame.

Avg. processed triangles The average number of triangles per frame
that remained after backface culling, i.e., the triangles that
remained after eliminating the triangles that are invisible be-
cause they are facing backwards from the observer’s view-
point.

Avg. area The average number, per frame, of fragments/pixels af-
ter scan conversion.

Texture size The total size of all textures per workload. This quan-
tity gives an indication of the amount of texture memory re-
quired.

Maximum triangles The maximum number of triangles that were
sent for one frame. Because most 3D graphics accelera-
tors implement only rasterization, this statistic is an approxi-
mation of the bandwidth required for geometry information,
since triangles need to be transferred from the CPU to the
accelerator via a system bus. We assume that triangles are
represented individually. Sharing vertices between adjacent
triangles allows to reduce the bus bandwidth required. This
quantity also determines the throughput required in order to
achieve real-time frame rates. We remark that the maximum
number rather than the average number of triangles per frame
determines the required bandwidth and throughput.

Maximum processed triangles per frame The maximum number
of triangles that remained after backface culling over all frames.

Maximum area per frame The maximum number of fragments
after scan conversion, over all frames.

Several observations can be drawn from Table 1. First, it can be
observed from the columns labeled “Received triangles” that the
scenes generated by Tux and Dino have a relatively low complex-
ity, that Q3, ANL, and Graz consist of medium complexity scenes,
and that AW produces the most complex scenes by far. Second,
backface culling is effective in eliminating invisible triangles. It
eliminates approximately 30% of all triangles in the Q3 bench-
marks, 24% in Graz, and more than half (55%) of all triangles in
AW. Backface culling is not enabled in the ANL and Dino work-
loads. If we consider the largest number of triangles remaining
after backface culling (14236 for ANL) and assume that each trian-
gle is represented individually and requires 28 bytes (xyz coordi-
nates, 4 bytes each, rgb for color and alpha for transparency, 1 byte
each, and uvw texture coordinates, 4 bytes each) for each of its ver-
tices, the required bus bandwidth is approximately 1.2MB/frame
or 35.9MB/s to render 30 frames per second. Finally, we remark
that the largest amount of texture memory is required by the Q3
and Tux benchmarks, and that the other benchmarks require a rela-
tively small amount of texture memory.

Table 2: Stress variation and stress strength on various stages
of the 3D graphics pipeline

Bench. T&L Rasterization
Var. Str. Var. Str.

Q3L med med med med
Q3H med med med high
Tux var low low med
AW low high high low
ANL high med med med
GRA high med med low
DIN low med med low

4. WORKLOAD CHARACTERIZATION
This section provides the detailed analysis of results we obtained

by running the proposed benchmark set. For each unit of a typi-
cal rasterization pipeline we present the relevant characteristics fol-
lowed by the architectural implications.

4.1 Detailed Workload Statistics
One important aspect for 3D graphics benchmarking is to de-

termine possible bottlenecks in a 3D graphics environment since
the 3D graphics environment has a pipeline structure and different
parts of the pipeline can be implemented on separate computing
resources such as general purpose processors or graphics accelera-
tors. Balancing the load on the resources is an important decision.
Bottlenecks in the transform & lighting (T&L) part of the pipeline
can be generated by applications that have a large number of primi-
tives, i.e. substantial geometry computation load, where each prim-
itive has a small size, i.e. reduced impact on the rasterization part
of the pipeline, while bottlenecks in the rasterization part are usu-
ally generated by fill intensiveapplications that are using a small
number of primitives where each primitive covers a substantial part
of the scene. An easy way to determine if an application is for
instance rasterization intensive is to remove the rasterization part
from the graphics pipeline and determine the speed up.

The components of the GraalBench were also chosen to stress
various parts of the pipeline. For instance the AW and DIN compo-
nents generate an almost constant number of primitives while the
generated area varies substantially across frames, thus in these sce-
narios the T&L part of the pipeline has a virtually constant load
while the rasterization part has a variable load. This behavior, de-
picted in Figure 4 (c,d,g,h), can emphasize the role of the rasteri-
zation part of the pipeline. The number of triangles received gives
an indication of the triangles that have to be transformed and lit,
while the number of triangles processed gives an indication of the
triangles that were sent to the rasterization stage after clipping and
culling. Other components, e.g. Tux, generate a variable number
of triangles while the generated area is almost constant, thus they
can be used to profile bottlenecks in the T&L part of the graphics
pipeline.

Another important aspect beside the variation of the workload
for a certain pipeline stage is also the stress strength of the var-
ious workload. For convenience, in Table 2 is also presented a
rough view of the stress variation and stress strength along the 3D
graphics pipeline. The stress variation represents how much varies
a workload from one frame to another, while the stress strength
represents the load generated by each workload.

On the proposed benchmarks we determined that, for a soft-
ware implementation, the most computationally intensive part of
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Table 1: General statistics of the benchmarks

Bench. Resolution Frames
Textures

(MB)

Received
Triangles

Avg. Max.

Processed
Triangles

Avg. Max.

Area
Avg. Max.

Q3L 320 × 240 1,379 12.84 4.5k 9.7k 3.25k 6.8k 422k 1,327k
Q3H 640 × 480 1,379 12.84 4.6k 9.8k 3.36k 6.97k 1,678k 5,284k
Tux 640 × 480 1,363 11.71 3k 4.8k 1.8k 2.97k 760k 1,224k
AW 640 × 480 603 3.25 23k 25.7k 10.55k 13.94k 63k 307k
ANL 640 × 480 600 1.8 4.45k 14.2k 4.45k 14.2k 776k 1,242k
GRA 640 × 480 599 2.1 4.9k 10.8k 3.6k 6.9k 245k 325k
DIN 640 × 480 600 1.7 4.15k 4.3k 4.15k 4.3k 153k 259k
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Figure 2: Graphics pipeline for rasterization.

the graphics pipeline is the rasterization part. This is the reason
why only the rasterizer stage was additionally studied. The units
for which we further gathered results are depicted in Figure 2 and
described in the following:

Triangle Setup, EdgeWalk, and Span Interpolation.These
units convert primitives to fragments. We used the same algorithm
as employed in the Mesa library rasterizer. We remark that the
number of processed triangles in Table 3 is smaller than the num-
ber of processed triangles in Table 1 because some triangles were
small and discarded using supplementary tests, such as a small tri-
angle filter. The average number of processed triangles is the lowest
for Tux, medium for Q3 and VRML components, and substantially
higher for AW considering that the number of triangles for the AW
and VRML components were generated in approximatively half as
many frames as the number of frames in Q3 and Tux. The num-
bers of generated spans and fragments also give an indication of
the processing power required at the EdgeWalk and Span Interpo-
lation units. The AW benchmark generates on average only 4 spans
per triangle and approximately 2 fragments per span. These results
show that the benchmark that could create a pipeline bottleneck in
these units is the AW benchmark since it has small triangles (small
impact on the rest of the pipeline) and it has the largest number of
triangles (that are processed at the Triangle Setup).

Clear Unit. The clear unit is used to fill the Depth buffer and/or
the Color buffer with a default value. As can be seen in Table 4,
the Q3 benchmark uses only depth buffer clearing, except for one
initial color buffer clear. Q3 exploits the observation that all pixels
from a scene are going to be filled at least once so there is no need
to clear the color buffer. The other benchmarks have an equal num-

ber of depth and color buffer clears. Although the clear function
is called a relatively small number of times, the number of cleared
pixels can be as high as 20% of the pixels generated by the raster-
izer. This implies that this unit should be optimized for long write
burst to the graphics memory.

Texture Unit.When enabled, this unit combines the color of the
incoming fragment with a texture sample color. Depending on the
texturing filter chosen, the texture color is obtained by a direct look-
up in a texture map or by a linear interpolation between several
colors (up to 8 colors in the case of trilinear interpolation).

The results obtained for the texture unit are depicted in Figure 3.
The Q3 and VV benchmarks used the texture unit for all fragments,
while the Tux and AW benchmarks used texturing for 75% and 90%
of the fragments respectively.

This unit is the most computationally intensive unit of a raster-
izer and can easily become a pipeline bottleneck, thus it should be
highly optimized for speed. Beside requiring high computational
power, this unit also requires a large number of accesses to the tex-
ture memory . However, due to high spatial locality, even by adding
a small texture cache, the traffic from the off-chip texture memory
to the texture unit can be substantially reduced[2].

Fog Unit. The Fog unit is to used modify the fragment color in
order to simulate atmospheric effects such as haze, mist, or smoke.
Only the Tux benchmark uses the fog unit and it was enabled for
84% of the fragments. From the three types of fog (linear, expo-
nential, and squared exponential) only linear was used. The results
suggest that for these low-end applications the fog unit is seldomly
used and that it might be implemented using slower components or
that this unit can be implemented off the critical path.

5



Table 3: Triangle Setup, Edge Walk, and Span Interpolation units statistics
Q3L Q3H Tux AW ANL GRA DIN

Triangles processed 4,147k 4,430k 2,425k 5,537k 2,528k 1,992k 2,487k
Generated spans 58,837k 117,253k 27,928k 20,288k 66,806k 14,419k 23,901k

Generated fragments
(frags.)

581,887k 2,306,487k 1,037,222k 38,044k 466,344k 146,604k 91,824k

Table 4: Clear unit statistics
Q3L Q3H Tux AW ANL GRA DIN

Clear depth calls 5,470 5,470 1,363 603 601 600 602
Clear color calls 1 1 1,363 604 601 600 602

Clear depth pixels 105,821k 423,284k 418,714k 185,242k 184,320k 184,013k 189,934k
Clear color pixels 76,800 307,200 418,714k 185,549k 184,320k 184,013k 189,934k

Scissor Unit.This unit is used to discard fragments that are
outside of a specified rectangular area. Only Q3 employed scissor-
ing. All incoming fragments were processed and passed the test,
so even in this case the test is redundant since no fragments were
rejected. Normally, the scissor unit is used to restrict the draw-
ing process to a certain rectangular region of the image space. In
Q3 this unit, besides being always enabled for the whole size of
the image space (to clip primitives outside it), in some cases it is
also used to clear the depth component of a specific region of the
image so that certain objects (interface objects) will always be in
front of other objects (normal scene). Even though it might be used
intensively by some applications, this unit performs simple compu-
tations, such as comparisons, and performs no memory accesses so
it does not require substantial computational power.

Alpha Unit. This unit discards fragments based on their alpha
color component. This unit was used only in Q3 and Tux. Fur-
thermore, Q3 used the alpha unit only for a very small number
of fragments (0.03%). The only comparison function used was
“Greater or Equal”. However, this is not a significant property
since the other comparison functions (modes) do not require a sub-
stantial amount of extra hardware to be implemented. The number
of passed fragments could not be determined since the texturing
unit of our graphics simulator is not yet complete, and the alpha test
depends on the alpha component that can be modified by the tex-
ture processing unit. However, this unit is used significantly only
for the Tux benchmark so this is the only benchmark that could
have produced different results. Furthermore, the propagated error
for the results we obtained can be at most 7.8% since 92.2% of the
fragments generated by Tux bypassed this unit. We, therefore, as-
sumed that all fragments passed the alpha test. This corresponds
to the worst case. Since this unit is seldomly used, it could be
implemented using a more conservative strategy toward allocated
resources.

Depth Unit. This unit discards a fragment based on a compari-
son between its depth value and the depth value stored in the depth
buffer in the fragment’s corresponding position. This unit was used
intensively by all benchmarks as can be seen in Table 4.1. While the
Tux, Aw, and VRML benchmarks write almost all fragments that
passed the depth test to the depth buffer, the Q3 benchmark writes
to the depth buffer only 36% of the fragments that passed the test.
This is expected since Q3 uses multiple steps to apply textures to
primitives and so it does not need to write to the depth buffer at each

step. This unit should definitely be implemented in an aggressive
manner with respect to throughput (processing power) and latency,
since for instance the depth buffer read/write operations used at this
unit are quite expensive.

Blending Unit. This unit combines the color of the incoming
fragment with the color stored at the corresponding position in the
framebuffer. As depicted in Figure 3, this unit is used only by the
Q3 and Tux benchmarks. The AW and VRML benchmarks do not
use this unit since they use only single textured primitives and all
blending operations are performed at the texturing stage. Q3, on the
other hand, uses a variety of blending modes, while Tux employs
only a very common blending mode (source = incoming pixel al-
pha and dest= 1 - incoming pixel alpha). An explanation why Tux
manages to use only this mode is that Tux uses the alpha test in-
stead of multiple blending modes. Alpha tests are supposed to be
less computationally intensive than blending operations since there
is only one comparison per fragment, while the blending unit per-
forms up to 8 multiplications and 4 additions per fragment. Based
on its usage and computational power required, the implementation
of this unit should be tuned toward performance.

Unused Units.The LogicOp, Stencil and Color Sum units are
not used by any benchmark. The dithering unit is used only by the
AW benchmark (for all fragments that passed the blending stage).
Since these units are expected to be hardly used their implementa-
tion could be tuned toward low-power efficiency.

4.2 Architectural Implications Based on Unit
Usage

In this section the usage of each unit for the selected benchmarks
is presented. The statistics are gathered separately for each bench-
mark. Figure 3 breaks down the number of fragments received by
each unit into fragments that bypassed the unit, fragments that were
processed by the unit and passed the test, and fragments that failed
the test. All values are normalized to the number of fragments gen-
erated by the Span Interpolation unit.

From Figure 3 it can be seen that the Q3 benchmark is quite scal-
able and the results obtained for the low resolution profile (Q3L)
are similar with the results obtained for the high resolution profile
(Q3H). The Q3 benchmark can be characterized as an application
that uses textures for most of its primitives. The Tux component is
also using textures for more than 70% of its primitives, and it also
uses the fog unit. The AW component does not use the scissor test
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Table 5: Depth unit statistics
Q3L Q3H Tux AW ANL GRA DIN

Incoming frags. 581,887k 2,306,487k 1,037,222k 38,044k 466,344k 146,604k 91,824k
Processed frags. 578,345k 2,292,357k 512,618k 38,044k 466,344k 146,604k 91,824k

Passed frags. 461,045k 1,822,735k 473,738k 35,037k 281,684k 137,109k 73,268k
Frags. written to
the depth buffer

166,624k 666,633k 462,520k 35,037k 281,684k 137,109k 73,268k
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Figure 3: Rasterization pipeline units usage

as the others are doing and also it has no pixels rejected at the depth
test. Another difference from the previous components is that AW
is also using the dithering mechanism in order to improve the im-
age quality on displays with a low color depth. Some architectural
implications based on the units usage are: Some of the units such
as Color sum, LogicOp and Stencil were not used, so they might
not be implemented in hardware. Some units such as Fog and Al-
pha were less used and they can be also be implemented outside
the critical path. The Depth and Blending units should be hard-
wired units and tuned toward performance. The texture unit should
be definitely focused upon for a high performance implementation
since, due to the processing power required, it can easily become a
bottleneck for the graphics pipeline.

5. CONCLUSIONS AND FUTURE WORK
Although high-end 3D graphics benchmarks have been available

for some time, there are no benchmark suites dedicated to embed-
ded 3D graphics accelerators. In this paper we have described a
set of relevant applications for embedded 3D graphics accelerators
performance evaluation. Also one of the objectives of this paper
was to determine what features of 3D graphics implementations
are used in relevant 3D graphics applications. We have also iden-
tified a number of units from the 3D graphics pipeline which are
intensively used such as the texture and the depth units, while for
instance, stencil, fog, and dithering units being rarely used.

The OpenGL applications that were used to create the bench-
marks and the GLtrace tracer are accessible via the first author’s
website (http://ce.et.tudelft.nl/˜tkg/). The bench-
marks (i.e. the traces) cannot be made public currently, because
they are of no use without the trace player and the trace player is

confidential at the moment. However, the Quake III (demo version)
and the AWadvs-04 components do not require the use of the trace
player in order to generate repeatable workloads. We hope to be
able to make the benchmark suite publicly available in the future.

As future work, we intend to extend the number of components
for this benchmark suite, and we also intend to extend the statistics
to include results from embedded graphics architectures that are
using a tile-based rendering mechanism.
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Figure 4: Triangle and area statistics for the GraalBench components
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