<

LOW COST AND LATENCY EMBEDDED 3D GRAPHICS RECIPROCATION

Dan Crisu, Stamatis Vassiliadis, Sorin Cotofana

Computer Engineering Laboratory, EEMCS
Delft University of Technology, Delft, The Netherlands
E-mail: {dan, sorin, stamatis } @ce.et.tudelft.nl

ABSTRACT

The paper presents low cost and latency reciprocation for
fixed-point datapath of embedded 3D graphics accelerators.
The algorithm exploits the limitations of the human visual
system that allows a reasonable amount of error to be in-
troduced in the computation process without inducing no-
ticeable image artifacts. In the example given in the paper,
excerpted from the antialiasing datapath of an embedded
QVGA graphics hardware accelerator, for a 14-bit operand,
the reciprocal implementation requires an inexpensive oper-
and prescaler, one 1k lookup table with 10-bit entries, and
a 5-bit adder, for a maximum relative error of the result of
only 1.5% over the entire range of the operand. Hardware
synthesis in a typical 0.18um process technology has indi-
cated that the hardware implementation requires only 1600
standard cells to achieve a latency of 2.5ns.

1. INTRODUCTION

For embedded graphics hardware it can be shown [1, 2] that
reducing the internal precision for certain operations and ap-
plying a number of computational approximations on com-
monly encountered and difficult arithmetic operators, like
division, can be beneficial for area and power consumption
reduction at the same performance level without compro-
mising the image quality.

This paper presents a low-cost, low-latency reciproca-
tion hardware algorithm suitable to be implemented in the
fixed-point datapath of low-power, low-cost embedded 3D
graphics accelerators. Assuming a 14-bit operand and the
antialiasing datapath of an embedded QVGA graphics hard-
ware accelerator, it is shown that:

e the reciprocal implementation requires for a maxi-
mum relative error of the result of only 1.5% over the
entire range of the operand an inexpensive operand
prescaler, one 1k lookup table with 10-bit entries and
a 5-bit adder.

Furthermore it is shown that:

e when it is synthesized in a typical 0.18pm process
technology, the hardware implementation requires on-
ly 1600 standard cells to achieve a latency of 2.5ns.

0-7803-8251-X/04/$17.00 ©2004 IEEE

II- 905

Petri Liuha

NOKIA Research Center
Tampere, Finland
E-mail: petri.livha@nokia.com

The rest of the paper is organized as follows. The re-
ciprocal hardware algorithm we propose for embedded 3D
graphics is presented in Section 2. The impact on the qual-
ity of the rendered images using the proposed algorithm and
hardware synthesis results are presented in Section 3. Fi-
nally, Section 4 draws the conclusions.

2. BACKGROUND AND RECIPROCAL
ALGORITHM

There are various algorithms for hardware rasterization im-
plementation. One common method of triangle rasterization
is based on the algebraic representation of triangle’s edges
with edge functions [3]. The sign of the edge function de-
termines the half-plane of the current rasterization position
(xnr,yar) in respect to the edge vector. The rasterization
with edge functions is presented in a self explanatory man-
ner in Figure 1. Additionally, if the edge function is prop-
erly normalized, its evaluation yields also the distance from
the edge vector to the pixel position (z s, yas) that can be
used in antialiasing. Such a scheme was presented in the
Exact Area Sampling Algorithm (EASA) [4] based on [3].
The normalized edge function formulation of EASA is as
follows:

E(z,
d, (M) = \A(x\wilyﬁvﬁ

— Aq Az
=@y —2a) mptay — W~ va) Ay
=@y —za) - dex(a) = (ynr —ya) - dey(a)
ey
From the formulation it can be seen that a reciprocal is re-
quired by de, («) and de, (c) parameter computation.

To rasterize a triangle, in the triangle setup stage the ex-
act values for the edge functions, z, colors, and texture coor-
dinates are computed for a conveniently chosen pixel (,y)
on the screen as well as their interpolation steps (gradients)
along the x and y axes. In the triangle setup stage reciprocal
computations are required. The expressions for the gradient
setup used in the depth (z value) linear interpolation during
the rasterization of the triangle with the vertices A, B, C'

ISCAS 2004

(X,+ AX,y,+AY)
"Left" side A Yar by

a)

Fig. 1. Triangle representation using edge functions: a) The
edge is defined by a vector starting at the point A with the
slope Ay/Ax, b) The interior of the triangle corresponds to
rasterization positions where the three edge functions have
the same sign.

are:

6z _ (AycaDzap—Azca-Ayas)

S Eap(zc,yc))
dz (Azga-Azap—Azca-Azap)

5y Eap(zc,yc)

where Eap(xc,yc) represents the expression F(zc, yc)
of Equation (1) for the oriented edge AB. The reciprocal of
the Eap(zc,yc) expression is also required by the texture
coordinates setup [5].

In the remaining, we will focus on reciprocal computa-
tion thus transforming the division in a multiplication of the
numerator with the reciprocal of the denominator [6]. In-
stead of providing datapath bit-exact arithmetic at a high ex-
pense regarding cost, latency, and power-consumption, we
reduce the cost of the reciprocal by exploiting the limita-
tions of the human visual system which allows a reason-
able amount of error to be introduced in the computation
process without introducing noticeable artifacts. The only
question that remains to be answered is how large the er-
ror has to be in order to be tolerable. Our experiments on a
QVGA display have suggested that a relative error of maxi-
mum 5% does not introduce visible artifacts in the generated
image [5]. Therefore, the goal is to perform the reciprocal
computation with less than 5% relative error. The relative
error €,.;(1/X) of the reciprocal computation is defined as:

1

1
1 X)approz = X
o (E) _ (X)ppfx 3)

X

where (1/X)appros represents the reciprocal computed in
hardware and (1/X) represents the true value of the recip-
rocal of a given value X.

To illustrate the different design trade-offs in the design
of the reciprocal we will work on the example given by
Equation (1). The screen coordinates x and y for a QVGA
display (with a resolution of 320 x 240) will be represented
as unsigned fixed-point numbers in the format 9.4 (meaning
9 integer bits and 4 fractional bits). The fractional part of the
coordinates is necessary to eliminate drop-outs and overlaps
in the rasterized image [7]. This means that the quantity
|Az| 4+ |Ay| will be represented as an unsigned fixed-point

60 T

TRN ——
RND - - - -
40 1

)[%]

Erel (

I I I
0 2000 4000 6000 8000 10000 12000 14000 16000

xx 2%

Fig. 2. Preliminary reciprocal relative error.

Reciprocal (%)

Tndex(X) Mantissa | Exponent | Enury used
0000000000.0000 (1) xxocxxx x No
0000000000.0001 (1).000000 4 Yes
0000000000.0010 (1).000000 3 Yes
6000000000.0011 (1).010101 T2 Yes
TI11111111.1110 (1).000000 —10 Yes
T111111111.1111 (1).000000 10 Yes

Table 1. Preliminary lookup table content.

number in format 10.4. Moreover, very small triangles will
be culled in the software driver if |Az| + |Ay| < 27 im-
posing that the reciprocal should be less than or equal to 2.
Also, |Az|+]Ay| < (219 —27%) establishing the minimum
value of the reciprocal to approximative 2710,

To summarize, the objective is to compute the reciprocal
of an unsigned non-zero fixed-point number X represented
in a 10.4 format with a maximum relative error of only 5%.

If we attempt to directly implement the reciprocal with
a lookup table of 16k (X is represented with 14 bits) fixed-
point 15-bit entries (5 bits for the integer part and 10 bits for
the fractional part) using truncation or rounding produces
errors (see Figure 2) larger than 5%. Consequently the re-
quirement is not met. By introducing a floating-point format
with a 1.6 mantissa format (1 bit for the integer part and 6
bits for the fractional part) and a 5-bit exponent in two’s
complement notation the relative error can be reduced to
1.5% (see Table 1 for the lookup table content and Figure 3

)]

X

srel (

s I I I I I I I I
0 2000 4000 6000 8000 10000 12000 14000 16000

xx 2%

Fig. 3. Preliminary reciprocal relative error.

II - 906

} 4 msb X

Y 14

Y

Prescale m €{0,1,2,3,4}

» Left Shift "m" bits & Drop 4 1lsb

Control

Logic
10

v
1
3

1k-Entry Lookup Table

Exponent

Subtracter
Mantissa

Final Exponent

Fig. 4. Block diagram of the reciprocal hardware.

[X[13:10] [[Required Left Shift Positions () |
0000 4
0001 3
001x 2
0lxx 1
Tacxx 0

Table 2. Denominator (X) prescaling control logic.

for the relative error of the reciprocal). The width for man-
tissa was chosen to prevent loss of precision in subsequent
computations in the datapath. While the computational goal
regarding precision is met, the lookup table with 16k 11-bit
entries is excessive in terms of area. We observe that due
to its nonlinearity, the reciprocal computation can be im-
plemented using only a lookup table of 1k entries by com-
puting the reciprocal of small numbers with the accuracy
given by the lookup table, and for large numbers introduc-
ing an insignificant additional error by ignoring some or all
of their 4 bits of the fractional part. The scheme is depicted

T T T
Lookup Table Inverted Exponent
Prescaling Exponent "m" -~~~

ol
O \

Exponent

0 2000 4000 6000 8000 10000 12000 14000 16000

xx 24

Fig. 5. Exponents behavior over the denominator range.

) 1
Reciprocal | L
o (1)
Index(X) Mantissa | —Exponent Entry used
0000000000 (1) . XXXXXX X No
0000000001 (1).000000 0 Yes
0000000010 (1).000000 +1 Yes
0000000011 (1).010101 +2 Yes
1111111110 (1).000000 F10 Yes
1111111111 (1).000000 -+10 Yes

Table 3. Final lookup table content.

srel (

) I I I I I I I I
0 2000 4000 6000 8000 10000 12000 14000 16000

x % 2*

Fig. 6. Final reciprocal relative error.

in Figure 4. The lookup table for reciprocal is presented in
Table 3 and stores values only for the reciprocal of positive
integers that can be represented on 10 bits. Given that all the
exponents are now non-positive numbers an extra bit per en-
try can be saved by inverting and storing them as unsigned
numbers. To avoid losing precision, the original 14-bit de-
nominator has to be prescaled by left shifts up to 4 bit po-
sitions whenever the most 4 significant bits contain leading
zeros. The rule for computing the required number of shifts
from the 4 most significant bits of the denominator is pre-
sented in Table 2. After shifting or even when no shifting
is performed, the least four significant bits of the denomi-
nator are thrown away and the the surviving 10 bits in the
result are used as an index in the lookup table to fetch the
reciprocal. This is the role of the prescaling control logic
and shifter depicted in Figure 4. The number of shifts per-
formed are recorded and sent to a small two’s complement
subtracter, also sketched in Figure 4, which compensates
the inverted exponent fetched from the lookup table forming
the true exponent of the reciprocal. By taking into account
the behavior of the exponents presented in Figure 5, a 5-bit
width subtracter is required. The relative error of the recip-
rocal computation using this method over the entire range
of possible 14-bit values of the denominator is depicted in
Figure 6. Comparing Figures 6 and 3, it can be seen that
the final relative error (Figure 6) is almost the same with the
preliminary relative error (Figure 3) with the notable dif-
ference that the final version uses a 1k 10-bit entry lookup
table instead of a 16k 11-bit entry lookup table. Thus, the

II- 907

N N

Fig. 7. A blowup on the image generated by “aapoly”
OpenGL application — Left image: reciprocal computation
using direct lookup implementation; Right image: recipro-
cal computation according to our method.

last method offers a low-cost hardware algorithm for recip-
rocation suitable to embedded 3D graphics.

3. RESULTS

To assess the effectiveness of the proposed method over di-
rect lookup fixed-point implementation we perform the fol-
lowing. The hardware model of the two versions was em-
ployed in the datapath of our OpenGL 1.2 compliant 3D
graphics hardware accelerator SystemC model for an ARM
based SOC platform. Referring to the internal organization,
the graphics accelerator adopts a tile-based rasterization ap-
proach. The tile size chosen for this particular implemen-
tation was set at 32 x 16 pixels which implies that all the
internal buffers (color buffer, depth buffer, stencil buffer)
composing the tile frame buffer have this size. The display
size resolution was set at 320 x 240 pixels (a quarter VGA),
meaning that the display can be conceptually divided into
10 x 15 tiles. The graphics accelerator has only one pixel
processing pipeline. The fixed-point formats utilized at the
interface with the internal datapath are all unsigned. The
screen coordinates (X, Y) are represented on 9.4 bits (9 in-
teger, 4 fractional), the color components (R,G,B,A) on 0.8
bits, the depth component (Z) on 0.24 bits, and the stencil
component on 8.0 bits.

The “aapoly” OpenGL application from [8] was exe-
cuted on our virtual SOC platform. The resultant image is
presented in Figure 7. It can be seen that the reciprocal em-
ploying direct fixed-point table lookup leads to noticeable
artifacts in the image, whereas the reciprocal we propose
does not introduce artifacts in the image. The results of the
hardware synthesis on the reciprocal SystemC RTL model
using the algorithm we propose are presented in Table 4.

4. CONCLUSIONS

In this paper we presented a hardware design of a recipro-
cation suitable for 3D embedded graphics engines. We have
shown that for the antialiasing datapath of an embedded

IC Technology Std. Cell Library
UMC Logicl8-1.8V/3.3V-1P6M | VST eSi-Route/11
Latency Std. Cell No. Total Cell Area
2.5ns 1535 37587um”

Table 4. Reciprocal hardware synthesis results.

QVGA graphics hardware accelerator, for a 14-bit operand,
the reciprocal implementation requires an inexpensive oper-
and prescaler, one 1k lookup table with 10-bit entries, and
a 5-bit adder, for a maximum relative error of the result of
only 1.5% over the entire range of the operand. Hardware
synthesis in a typical 0.18um process technology has indi-
cated that the hardware implementation requires only 1600
standard cells to achieve a latency of 2.5ns.

5. REFERENCES

[1] T. Akenine-Moller and J. Strom, “Graphics for the
Masses: A Hardware Rasterization Architecture for
Mobile Phones,” ACM Transactions on Graphics, vol.
22, pp. 801-808, July 2003.

[2] M. Kameyama et al., “3D Graphics LSI Core for
Mobile Phone Z3D,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graph-
ics hardware, July 2003, pp. 60—-67.

[3] J. Pineda, “A Parallel Algorithm for Polygon Rasteri-
zation,” in Computer Graphics (ACM SIGGRAPH 88
Conference Proceedings), 1988, vol. 22(4), pp. 17-20.

[4] A. Schilling, “A New Simple and Efficient Antialiasing
with Subpixel Masks,” in Computer Graphics (ACM
SIGGRAPH 91 Conference Proceedings), 1991, vol.
25(4), pp. 133-141.

[5] D. Crisu, S. Cotofana, and S. Vassiliadis, “A Proposal
of a Tile-Based OpenGL compliant Rasterization En-
gine,” Tech. Rep. (2002-02), Computer Engineering
Laboratory, EEMCS, Delft University of Technology,
June 2002.

[6] M. D. Ercegovac and T. Lang, Division and Square
Root:Digit-Recurrence Algorithms and Implementa-
tions, Kluwer Academic Publishers, 1994.

[7] O. Lathrop, D. Kirk, and D. Voorhies, ‘“Accurate
Rendering by Subpixel Addressing,” IEEE Computer
Graphics and Applications, vol. 10, no. 5, pp. 45-53,
September/October 1990.

[8] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL
Programming Guide, Third Edition, The Official Guide
to Learning OpenGL, Version 1.2, Addison-Wesley,
1999.

II- 908

I 2

