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Abstract

This paper presents an electrical analysis of Address de-
coder Delay Faults ‘AFDs’ caused by resistive inter-gate
opens in RAMs. It introduces a systematic method to ex-
plore the space of possible tests to detect these faults. The
method is based on generating appropriate sensitizing ad-
dress transitions and the corresponding sensitizing opera-
tion sequences.

1. Introduction

In [1] Nigh reports that new technology generations will
exhibit an increasing sensitivity to, and occurrence of, sub-
tle defect types; many of which will cause additional circuit
delays, while the increasing clock speeds will make designs
more sensitive to these circuit delays. The increasing use
of copper wiring will shift the predominant failure mode
from shorts and bridges to opens [2]. Needham [3] reports
that opens were the most likely cause of field returns of In-
tel microprocessors. Klaus [4] reports that tests for opens
in DRAM address decoders reduced the DPM level by as
much as 670. In conclusion, faults caused by opens, result-
ing in delays, are becoming a dominant failure mode!

Much has been published on functional fault models and
tests for faults in the memory cell array [5, 6, 7, 8]. How-
ever, faults in the address decoders and address decoder
paths, denoted as Address decoder Faults ’AFs’ have only
gotten limited attention. Several authors have shown the
importance of this class of faults [4, 6, 9, 10, 11, 12]. Most
authors have solved the problem of detecting Delay Faults
in the Address decoders, denoted as ‘AFDs’, by using a test
called Moving Inversion ‘MOVI’ [4, 6, 11]. [10] even uses
the time consuming GalPat test [5]. [9] has solved the prob-
lem by adding a decoder specific set of patterns to an exist-
ing march test.

This paper presents an analysis, at the electrical level, of
AFs caused by resistive opens within the address decoder
decoding paths. The paper is organized as follows. Section
2 describes the traditional AFs, together with their detec-

tion conditions. Section 3 describes the causes of address
decoder delay faults, classifies them and gives a simulation
example. In Section 4 the detection conditions for AFD due
to intra-gate opens are presented. Section 5 derives the tests.
Last, Section 6 ends with the conclusions.

2. Traditional address decoder faults (AFs)

Traditional address decoder faults have been considered
for a long time the only class of AFs [5]. They are described
below, together with their detection condition. However,
first, the notation for march tests will be given.

2.1 Notation of march tests

A march test is a sequence of march elements. A march
element consists of a sequence of operations applied to ev-
ery cell (n is the number of cells in the memory), in either
one of two Address Orders ’AOs’: Increasing (⇑) AO, from
cell 0 to cell n− 1, or a Decreasing (⇓) AO, from cell n− 1
to cell 0. When the AO is irrelevant the symbol ’�’ is used.

2.2 Traditional AFs and their detection condition

The following types of AFs have traditionally been the
faults considered to occur in address decoders:

• AFna: An address does not access its cell.
• AFmc: An address uniquely accesses multiple cells;

i.e., this is the only address accessing those cells.
• AFma: A cell is uniquely accessed by multiple

addresses; i.e., these addresses only access that cell.
• AFoc: An address additionally accesses other cells.

Any march test will detect AFna through AFoc iff it sat-
isfies Condition AF, for h ≥ 1 [5]. It consists of the fol-
lowing two march elements (Note: the suffix ‘u’ denotes up
for the ⇑ AO, the suffix ‘d’ denotes down for the ⇓ AO; ‘...’
means any number of r (read) or w (write) operations, x
means NOT x, and [, rx]h ([, rx]h) means h (from hammer)
rx (rx) operations; h ≥ 0.):

AFh-u: ⇑(rx, ..., wx[, rx]h); x ∈ {0, 1}
AFh-d: ⇓(rx, ..., wx[, rx]h); x ∈ {0, 1}
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3. Delays in address decoder paths

Opens are the major cause of delays in the address de-
coder paths; they can cause Address decoder Delay Faults
‘AFDs’. Figure 1 shows a sequence of memory accesses,
sequentially accessing memory locations with a good Word
Line ‘WLg’, a potentially faulty WL ‘WLf ’, and last, an-
other ‘WLg’. In case of an AFD, the activation and/or the
deactivation of WLf will be delayed, causing an Activation
Delay ‘ActD’ fault and/or a Deactivation Delay ‘DeactD’
fault. Below, the types of resistive opens in the address de-
coder paths are classified, the consequences of inter-gate
opens are analyzed, and a simulation example is presented.

(ActD)
Deactivation delay

(DeactD)
Activation delay 

WLg

WLf

Voltage

Time

Time

Figure 1. Activation and deactivation delays

3.1 Classification of resistive opens

Figure 2 depicts a part of a CMOS address decoder. The
address bits of the three-bit address buffer a2, a1, a0 are
routed via the signals a2, a2, a1, a1, a0, and a0. The de-
coding of the word lines (WL0 − WL7), also referred to
as rows, is done using 3-input CMOS NAND gates and 2-
input NOR gates, together with a buffer circuit. The address
of WLx is Ax; it specifies the values of the N = 3 address
lines ‘a2, a1, a0’, where each of the address lines ‘ax’ may
have the true value (denoted as ‘ax’) or the complementary
value ‘ax’.

WL0 is selected if {a2, a1, a0} = {1, 1, 1}, indicating
that A0 = 000 of {a2, a1, a0}. Column decoders have a
similar structure, and therefore will not be discussed here.

In the decoder of Figure 2 defects can cause opens at the
following locations:

• Between logic gates (inter-gate opens). Figure 2
shows three inter-gate opens (defects Rdef1, Rdef2
and Rdef3). Rdef1 is located in the line from a1 to
the NAND gate decoding WL0.

• Inside logic gates (intra-gate opens). E.g., an open in
the drain of the pull-up transistor (for input a1) in the
NAND gate (not shown in Figure 2).

Klaus [4] states that the probability of inter-gate opens,
caused by spot defects in the long global wiring, is at least
one order of magnitude larger than that of intra-gate opens;
the latter are caused by local spot defects in the short wiring
within the decoder gates. Therefore we will focus on inter-
gate opens.
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Figure 2. Typical CMOS address decoder

3.2 Inter-gate opens

For sufficiently high values of Rdef1, see Figure 2, the
corresponding input of the NAND gate will behave as an
open connection. Depending on the initial voltage of the
floating node and the leakage current in the NAND gate of
WL0, the input will be pulled low, which means that WL0
will never be selected, causing the AFna of Section 2. Al-
ternatively, the input will be pulled high, which means that
WL0 will be selected, whenever {a2, a0} = {1, 1}, inde-
pendent of a1; causing AFoc of Section 2.

When Rdef1 is intermediate, it will cause an ActD and a
DeactD fault, see Figure 1, on the signal a1 of the CMOS
NAND gate of WL0, as explained below.

Activation delay: (0 → 1 change of WL0). The ActD
is caused by a 0 → 1 transition of a1; see Figure 2. This
can be represented by the address transition x1y → 000
of {a2, a1, a0}; x, y ∈ {0, 1}. This is an address tran-
sition from WL2 → WL0, from WL3 → WL0, from
WL6 → WL0, or from WL7 → WL0. Due to the ActD
the memory cycle involving WL0 may only be performed
partially, which may lead to an incorrect operation.

Deactivation delay: (WL0 changes from 1 → 0). The
DeactD is caused by a 1 → 0 transition of a1; see Figure
2. This occurs upon an address transition 000 → 010 of
{a2, a1, a0}. This is the address transition WL0 → WL2.
The consequence of DeactD will be that WL0 will still be
active, while the next address, accessing WLg = WL2,
is activated, such that the operation on WL0 may not be
completed properly and/or the operation on WLg may not
be started properly; see Figure 1.

3.3 A simulation example for ADFs

Simulations have been performed for Infineon 0.18µm
eDRAM technology, showing the existence of AFDs for
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Impact of open resistance on the column select (CS)
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Figure 3. Impact of Rdef on DRAM CS timing

row decoder as well as for column decoders. Due to lack
of space, only one example will be given here. The Rdef
is injected in the very last stage of the column decoder, im-
pacting the timing of the Column Select ‘CS’ signal.

• Opens in the column address decoder: Figure 3 shows
five CS waveforms: Rdef = 0Ω, 100KΩ, 300KΩ, 700KΩ,
and Rdef = 1000KΩ. The result of the defect is that both
the ActD and DeactD (i.e., the falling edge) are gradually
delayed, and the highest CS voltage reachable gradually de-
creases.

• Consequences of Rdef: For large values of Rdef , a
read operation produces a fixed value; for intermediate val-
ues of Rdef the read operation produces a value which de-
pends on a combination of the stored voltage in the cell and
the coupling between the output buffer and other signals.
The simulation results also have shown that write opera-
tions are less sensitive to Rdef than read operations.

4. Detection conditions for inter-gate AFDs

In case of an AF (see Section 2), it is assumed that the
AF is detectable using read and write memory operations,
applied using a particular address order ‘AO’. However, the
sensitization of AFDs is more complex and has two require-
ments:

(a) Sensitizing address transitions, and
(b) Sensitizing operation sequences.
Sensitizing address transition(s) can be generated by

an address pair or an address triplet. A Sensitizing Ad-
dress Pair ’SAP’ consists of a sequence of two addresses
{Ag, Af} or {Af, Ag} of Figure 1, which have to be ap-
plied in sequence because AFDs are sensitized by address
transitions. (Note: Ag is the address of WLg and Af is
the address of WLf ). When the two SAPs {Ag, Af} and
{Af, Ag} are applied in sequence, the Sensitizing Address
Triplet ’SAT’ {Ag, Af,Ag} can be applied instead. This is
more efficient because only three addresses have to be ap-
plied for a SAT, rather than four addresses when the two
SAPs are applied.

Sensitizing Operation Sequence: To each address of a

SAP or a SAT at least one operation has to be applied, re-
sulting in a Sensitizing Operation Sequence ’SOS’ consist-
ing respectively of 2 operations for a SAP, and 3 operations
for a SAT, since a least one operation has to be applied to
each address of a SAP (SAT).

4.1 Sensitizing address transitions

The addresses of the SAPs/SATs, required for sensitizing
AFDs, are generated using an Addressing Method ’AM’. An
AM describes the method used for generating the sequence
of addresses. A well-known AM is the Binary AM ’Bin’;
for N = 3, it consists of the address sequences ⇑Bin=
{0, 1, 2, 3, 4, 5, 6, 7} and ⇓Bin= {7, 6, 5, 4, 3, 2, 1, 0}. For
the different types of AFDs (i.e., ActD and DeactD), differ-
ent AMs are required, as described below.

4.1.1 Addressing methods for ActD

Section 3.2 has shown that for inter-gate opens the ActD
fault due to Rdef1, in the path of a1 of WL0, has to
be sensitized with the address transition x1y → 000
of {a2, a1, a0}; this can be represented by the SAP
{x1y, 000}, with x, y ∈ {0, 1}. The only requirement the
SAPs have to satisfy for the detection of ActD is that an
x → x transition has to be made for the line containing
Rdef; other lines also may, or may not, make a transition.
Because Rdef can be present in any input of any gate, the
set of SAPs has to contain x → x transitions for each input
of each gate. The Address Complement AM satisfies these
requirements.

The Address Complement ‘AC’ AM generates all re-
quired SAPs: those requiring an x → x transition by us-
ing the ⇑ AO (denoted as ⇑AC), and those requiring an
x → x transition by using the ⇓ AO (denoted as ⇓AC).
For N = 3, the AC AM generates the following address se-
quences: ⇑AC= {000, 111, 001, 110, 010, 101, 011, 100},
and the inverse sequence ⇓AC= {100, 011, 101, 010, 110,
001, 111, 000}; each address is followed by its one’s com-
plement (in bold-face). Note that the ‘⇓’ address sequence
starts with address ‘100’ because it has to be the exact in-
verse of the ⇑AC address sequence.

The AC AM satisfies the SAP requirements for ActD
faults because, e.g., in the ‘⇑AC’ AO, a2 makes a 0 → 1
transition in the SAP {000, 111}; i.e., for the gate which
requires {000} on {a2, a1, a0} in order to be enabled. The
next SAP {001, 110} does this for the gate which requires
{001} in order to be enabled, and so on.

The number of addresses which have to be written for
the AC AM is: NAC(N) = 2 ∗ 2N = 2n, where N is the
number of address lines and n is the number of addresses;
the factor of ‘2’ is because the ⇑AC and the ⇓AC AOs are
required.
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4.1.2 Addressing methods for DeactD

Section 3.2 has shown that for the DeActD fault due to
Rdef1, in the path of a1 of WL0, has to be sensitized with
the address transition 000 → 010 of {a2, a1, a0}; this can
be represented by the SAP {000, 010}. This is a SAP with
H = 1, where H stands for the Hamming distance between
the two addresses Ax and Ay of the SAP {Ax,Ay}. H
is defined as the number of bit positions in which the ad-
dresses Ax and Ay of an address-pair differ.

In general, for sensitizing any DeactD fault caused by
an open in the path of any NAND-gate of an N -bit address
decoder, all SAPs with H = 1 have to be generated. Only
AMs which generate SAPs or SATs with H = 1 (i.e., the
AMs 2i and H1 described below) can detect DeactD.

The 2i addressing method

The 2i addressing method consists of two AOs (denoted
as ⇑i and ⇓i), generating all required SAPs; see Table 1.
The SAPs for the ⇑i AO consist of the address pairs {even-
address, odd-address}, for example the address pairs {0,1},
{2,3}, {4,5}, and {6,7}. For the ⇓i AO the SAPs con-
sist of the address pairs {odd-address, even-addres}. The
addresses are generated using a binary counting sequence,
with increments/decrements of j = 2i; where 0 ≤ i ≤
N − 1. The ⇑i sequence, for j = 20 = 1 (denoted by
the ‘⇑0’ symbol) is shown in the second column by the ad-
dress sequence ‘0,1,2,3, ..., 6,7’; it represents all 3-bit SAPs
with H = 1 due to 0 → 1 transitions in bit i = 0. The
⇓0 sequence is represented by the address sequence ‘7,6,5,
..., 2,1,0’ of the same column; it represents all SAPs with
H = 1 due to 1 → 0 transitions in bit i = 0. This means
that both the ⇑i and ⇓i address sequences have to be used.
The number of addresses to be generated for the 2i AM
is: N2i(N) = N (for address line 0 through N − 1)*2N (the
number of addresses in an ⇑i or an ⇓i sequence) ∗2(because
the ⇑i the ⇓i sequence have to be applied) = 2nN .

The SAPs of the 2i AM satisfy the requirements for de-
tecting DeactD fault because, e.g., in the ‘⇑0’ address se-
quence a0 makes a 0 → 1 transition in SAP {000,001};
i.e., for the gate which requires {000} on {a2, a1, a0} in or-
der to be enabled. The next SAP {010,011} does this for
the gate which requires {010} on {a2, a1, a0} in order to be
enabled; etc.

H1 addressing method

This addressing method generates the minimal set of SATs
with H = 1; where H stands for the Hamming distance
between each address pair {Ax,Ay} and {Ay, Ax} of the
SAT {Ax,Ay,Ax}.

The H1 addressing method is based on the concept of
constant weight codes [13]; also referred to as m-out-of-n

Table 1. The 2i addressing
i; j = 2i 0; 1 1; 2 2; 4
⇑i xy0 → xy1 x0y → x1y 0xy → 1xy

⇓i xy1 → xy0 x1y → x0y 1xy → 0xy

Addresses 0 = 000 0 = 000 0 = 000
generated 1 = 001 2 = 010 4 = 100
with 2 = 010 4 = 100 1 = 001
increment 3 = 011 6 = 110 5 = 101
of j, 4 = 100 1 = 001 2 = 010
using end- 5 = 101 3 = 011 6 = 110
around 6 = 110 5 = 101 3 = 011
carry 7 = 111 7 = 111 7 = 111

codes. They have the property that each n-bit Code-Word
’CW’ contains exactly m 1’s; i.e., has a weight of W = m.
In this application, the CWs are N -bit addresses; the maxi-
mum number of different CWs is: CN

W = N !
W !∗(N−W )! . The

idea is to use CWs with an even weight; i.e., W = 0, W =
2, etc. Then for a given CW, N different SATs are gener-
ated by complementing, and thereafter re-complementing,
successively one bit of the CW; this guarantees that the
three addresses of each SAT have a Hamming distance of
H = 1. These N complementing/re-complementing oper-
ations have to be performed for all CWs. For example, for
the 3-bit code-word ’000’, the following SATs are gener-
ated: {000,001,000}, {000,010,000} and {000,100,000}.
These three SATs can be combined into the SuperSAT:
{000,001,000,010,000,100,000}; where the third address of
each SAT is also the first address of the next SAT.

Table 2 gives an example of the H1 addressing method
for N = 3, using SATs as well as SuperSATs. For each
CW three SATs are generated, because N = 3. The ’—’
denotes that SuperSATs are used; i.e., the last address of
the previous SAT is also the first address of the SAT which
starts with ’—’. The SATs, or SuperSATs, are generated for
all CWs with even weights (i.e., W = 2i), which is the set
of CWs with W = 0, W = 2, ..., until W = 2 ∗ 	N/2
.
The total number of CWs, NCW , is the sum of the sets of
CWs; i.e., NCW =

∑�N/2�
i=0 CN

2i . For example, for N = 3
(see Table 2), NCW =4.

The number of addresses to be generated for the H1 AM,
for the case that SATs are used, is: NH1(N) = 3 ∗ N (for
each Code-Word) ∗NCW = 3 ∗ N ∗ (

∑�N/2�
i=0 CN

2i ). The
number of addresses to be generated for the H1 AM using
SuperSATs is: NH1S (N)= 3(for the first word) + 2 ∗ (N −
1)(for additional words) =(2N + 1) ∗ (

∑�N/2�
i=0 CN

2i ) The
use of SuperSATs reduces therefore the number of required
addresses by a factor of: 2N+1

3N . For N = 3 NCW = 4, and
therefore, NH1(3) = 36, and NH1S

(3) = 28.

4.2 Sensitizing Operation Sequence

To each address of a SAP or a SAT at least one operation
has to be applied, resulting in a Sensitizing Operation Pairs
for a SAP, and Sensitizing Operation Triplets for a SAT;
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Table 2. H1 addressing method for N = 3
# W Code-word SAT SuperSAT

1 0 000 {000,001,000} {000,001,000}
2 0 000 {000,010,000} {—,010,000}
3 0 000 {000,100,000} {—,100,000}
4 2 011 {011,010,011} {011,010,011}
5 2 011 {011,001,011} {—,001,011}
6 2 011 {011,111,011} {—,111,011}
7 2 110 {110,111,110} {110,111,110}
8 2 110 {110,100,110} {—,100,110}
9 2 110 {110,010,110} {—,010,110}
10 2 101 {101,100,101} {101,100,101}
11 2 101 {101,111,101} {—,111,101}
12 2 101 {101,001,101} {—,001,101}
Note: ’—’ denotes use of last address of previous SAT

they are discussed next.

4.2.1 Sensitizing Operation Pairs ‘SOPs’

The required SOP for the SAP {Ag, Af} ({Af, Ag}) con-
sists of two operations ‘Oxg, Oyf ’ (Oyf , Oxg), see Figure
1: one operation applied to Ag (Af) and the other to Af
(Ag). ‘Oxg’ denotes the operation ‘O’ (O∈{r, w}), with
written or expected data x (x∈{0, 1}). The subscript g (f )
denotes that the operation is applied to Ag (Af ). Below,
a set of requirements for the two operations of a SOP are
given, such that they sensitize ActD and DeactD faults.

• ActD: Oxg ,Oxf ; x∈{0, 1}, O∈{r, w}.
The operation on Af has to be performed with the
complement of the data value applied to Ag in order
for the fault to be detectable. Because of the ActD,
Oxf may fail; see Figure 1.

• DeactD: Oxf , Oxg; x∈{0, 1}, O∈{r, w}.
Because of the DeactD Oxf and/or Oxg may fail.

Note: x should take on the value x = 0 as well as the
value x = 1, because of the likely asymmetric sensitivities
to the 0 and 1 state; this is an engineering requirement!

Depending on the selected operations O∈{r, w}, four Read-
Write-Sequences ‘RWSs’ are possible; see the top block in
Table 3. Note that the RWS of a SOP applied to {Ag, Af}
({Af, Ag}) consists of the following two operations: the
last operation applied to Ag (Af), and the first operation
applied to Af (Ag). For example, ‘�AM (rx, ..., wx, rx)’
performs the Read-after-Read ‘RaR’ RWS of operations us-
ing a certain addressing method AM. The ‘wx’ operation is
required in order to change the state to x such that the ‘rx’
operation can follow as the last operation of the March Ele-
ment ‘ME’.

4.2.2 Sensitizing Operation Triplets ’SOTs’

The required SOT for the SAT ’{Ag, Af, Ag}’ (see Figure
1) consists of three operations: Oxg, Oxf , Oxg; x∈{0, 1},

Table 3. Read-Write-Sequences (SOP/SOT)
RWS March element ‘ME’

RaW �AM (rx, ..., wx)
RaR �AM (rx, ..., wx, rx)
WaW �AM (wx, rx, ..., wx)
WaR �AM (wx, ..., wx, rx)

RaRaR � (wx);�f (wxf ,�AM
g (rxg, rxf , rxg), wxf )

RaRaW �f (wxf ,�AM
g (wxg , rxf , rxg), wxf )

RaWaR � (wx);�f (�AM
g (rxg, wxf , rxg), wxf )

WaRaR � (wx);�f (wxf ,�AM
g (rxg, rxf , wxg), wxf )

RaWaW �f (�AM
g (wxg , wxf , rxg), wxf )

WaRaW �f (wxf ,�AM
g (wxg , rxf , wxg), wxf )

WaWaR � (wx);�f (�AM
g (rxg, wxf , wxg), wxf )

O∈{r, w}. (Note: x should take on the value x = 0 as well
as the value x = 1, for the same reasons as for SOPs.)

Depending on the selected operations in O ∈ {r, w},
eight RWSs for SOTs are possible (see the bottom block
in Table 3): RaRaR, RaRaW, RaWaR, WaRaR, RaWaW,
WaRaW, WaWaR and WaWaW. The RWS WaWaW will
not be considered from here on, because at least one ’r’
operation has to be present in order to detect the AFD;
this violates the WaWaW requirement. The RWSs for
SOTs use addresses triplets ’Ag,Af, Ag’ in order to al-
low for SATs; the first and the third address are identi-
cal. In the bottom block of Table 3, the nested ME ’�AM

g

(Oxg, Oxf , Oxg)’ is performed for each address ’Af ’. The
nested ME for the WaRaR RWS has the following form:
’�AM

g (rxg, rxf , wxg)’; first a ’rxg’ is applied to ’Ag’,
next a ’rxf ’ is applied, and last a ’wxg’.

All RWSs ending with an ’R’ (i.e., that means that the
nested ME starts with a ’rxg’ operation and has the form
’XaYaR’ with X,Y ∈ {R,W}) require initialization of ’Ag’;
this is accomplished by the ME ’�(wx)’. Initialization of
’Af ’ is required for the RWSs of the form ’XaRaY’. This
requires two extra operations: one to write the value ‘x’ and
one to write back the original value ’x’. This is performed
only once for each ’Af ’ address by the ME ’�f (wxf ,�AM

g

(Oxg, rxf , Oxg), wxf )’. The RWSs of the form ’XaWaY’
require the extra ’wxf ’ operation to write back the original
value ’x’ in ’Af ’.

5. Tests for inter-gate AFD

Based on the AM of Section 4.1 and the SOPs/SOTs of
Section 4.2, tests for detecting AFDs due to inter-gate opens
can be constructed. The results are given in Table 4; entry
#1 through #4 list the tests based AC AM, entry #5 through
8 the tests based on 2i AM, and the entry #9 through #15
list the tests based on H1 AM. The left column shows the
test #, the second column lists the test property (this is the
RWS together with the AM), the column ‘Time’ lists the
test time, in terms of the required number of operations; the
last column gives the test.

Proceedings of the Ninth IEEE European Test Symposium (ETS’04) 
0-7695-2119-3/04 $ 20.00 IEEE 



Table 4. Tests for address decoder delay faults due to inter-gate opens
# Prop. Time Test description
1 RaW-AC 9n {� (w0);⇑AC(r0, w1);⇑AC(r1, w0);⇓AC (r0, w1);⇓AC (r1, w0)}
2 RaR-AC 13n {� (w0);⇑AC(r0, w1, r1);⇑AC(r1, w0, r0);⇓AC (r0, w1, r1);⇓AC (r1, w0, r0)}
3 WaW-AC 12n {⇑AC(w0, r0, w1);⇑AC(w1, r1, w0);⇓AC (w0, r0, w1);⇓AC (w1, r1, w0)}
4 WaR-AC 12n {⇑AC(w0, w1, r1);⇑AC(w1, w0, r0);⇓AC (w0, w1, r1);⇓AC (w1, w0, r0)}
5 RaW-2i n + 8nN {� (w0); iN−1

0 [⇑i(r0, w1);⇑i(r1, w0);⇓i (r0, w1);⇓i (r1, w0)]}
6 RaR-2i n + 12nN {� (w0); iN−1

0 [⇑i(r0, w1, r1);⇑i(r1, w0, r0);⇓i (r0, w1, r1);⇓i (r1, w0, r0)]}
7 WaW-2i 12nN {iN−1

0 [⇑i(w0, r0, w1);⇑i(w1, r1, w0);⇓i (w0, r0, w1);⇓i (w1, r1, w0)]}
8 WaR-2i 12nN {iN−1

0 [⇑i(w0, w1, r1);⇑i(w1, w0, r0);⇓i (w0, w1, r1);⇓i (w1, w0, r0)]}
9A RaRaR-H1 n + 4nN {�H1 (w0c

g , w1f ; r0g , r1f , r0g);�H1 (w1c
g, w0f ; r1g, r0f , r1g)}

10 RaRaW-H1 4nN {�H1 (w1f ; w0g, r1f , r0g);�H1 (w0f ; w1g, r0f , r1g)}
11A RaWaR-H1 n + 3nN {�H1 (w0c

g ; r0g, w1f , r0g);�H1 (w1c
g ; r1g, w0f , w1g)}

12A WaRaR-H1 n + 4nN {�H1 (w0c
g , w1f ; r0g , r1f , w0g);�H1 (w1c

g, w0f ; r1g , r0f , w1g)}
13 RaWaW-H1 3nN {�H1 (w0g , w1f , r0g);�H1 (w1g, w0f , r1g)}
14 WaRaW-H1 4nN {�H1 (w1f ; w0g, r1f , w0g);�H1 (w0f ; w1g , r0f , w1g)}
15A WaWaR-H1 n + 3nN {�H1 (w0c

g ; r0g, w1f , w0g);�H1 (w1c
g; r1g , w0f , w1g)}

16 RaR-MOVI 13nN {iN−1
0 [⇓i (w0);⇑i (r0, w1, r1);⇑i (r1, w0, r0);⇓i (r0, w1, r1);⇓i (r1, w0, r0)]}

17 RaR-PMOVI 13n {⇓ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0)}
A: The superscript ’c’ in ’wxc

g’ denotes that the operation is only applied to the first SAT of each CW ’Code Word’
Note: The ’;’ separates the initializing operations from the operations required by the RWS

Inspecting the AC AM and the 2i AM reveals that SAPs
are generated and therefore SOPs are required; while in-
specting the H1 AM reveals that SATs are generated instead
of SAPs; therefore SOTs are required. Consequently, tests
based on the AC and the 2i AM use SAPs and SOPs, and
tests based on H1 AM use SATs and SOTs.

Four tests based on the AC AM and four based on the
2i AM for AFDs can be distinguished, because of the four
possible RWSs; see tests #1 through #8 in Table 4. The
2i AM based tests use the notation ‘iN−1

0 [⇑i ....]’. This
means that the part between the square brackets has to be
repeated for i = 0 through i = N − 1; such that addresses
are incremented/decremented with 2i.

It is important to note here that the well-known MOVI
tests [5, 7] are also based on 2i AM. MOVI tests, included
in Table 4 (i.e., test #16 and #17). MOVI (test #16), repeats
MEs of the Partial MOVI (test #17), using 2i addressing.
MOVI is a variant of the RaR-2i test; the initializing ME
‘�(w0)’ is replaced with the ME ‘⇓ (w0)’ and is repeated
for each value of i. MOVI was designed as a low-cost ver-
sion of GalPat [5], and because of that it is used frequently
in the industry.

Seven tests based on the H1 AM can be distinguished;
see tests #9 through #15 in Table 4. They have been derived
from the test structures of the bottom block in Table 3, by
repeating those for the data values x = 0 and x = 1, and by
adapting the initializing operations to the appropriate AMs.
The latter is important, because the H1 AM has the property
that it does not access all 2N words; hence, the initializing
operations do not have to be applied to all words. These
operations therefore have been included in the ME which
contains the operations of the RWS.

6. Conclusions

In this paper the Address decoder Delay Faults ‘AFDs’,
due to inter-gate opens, have been analyzed. The AFDs
have been divided onto Activation Delay (ActD) and De-
activation Delay (DeactD). Thereafter a systematic method
has been used to develop several tests targeting AFDs. The
method is based on generating Addressing Methods ‘AMs’,
together with the required Read-Write-Sequences ‘RWSs’.
Tests for ActD faults require Address Complement AM,
while tests for DeacD faults require the 2i AM or the more
time efficient H1 AM.
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