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Abstract— A large number of scientific apllications in-
volve the operation on, and manipulation of sparse matri-
ces. Irregular structure of these matrices, however, causes
hardware that otherwise behaves efficient on regular data
to severely suffer in performance when handling sparse ma-
trices. In order to tackle this problem, a scheme consisting
of a novel Hierarchical Sparse Matrix (HiSM) storage for-
mat and an associated architectural concept have been pre-
sented. In this paper we propose, describe, and evaluate a
hardware mechanism to facilitate transposition of a sparse
matrix stored in the HiSM format. The proposed hardware
is meant to be embedded in a vector processor as a functional
unit. The main part of the unit consists of an s x s word
in-processor memory, where s is the vector processor’s sec-
tion size. We determine the best parametrs for the proposed
mechanism and show that it provides for the HiSM-based
transposition a speedup in the range from 1.2 to 32.0 times
(average 17.6) with respect to the transposition based on the
most widely used Compressed Row Storage format.

Keywords— Vector processor, matrix transpose, sparse
matrix, functional unit

I. INTRODUCTION

In many scientific computing areas manipulation of
sparse matrices constitutes the core computation. How-
ever, the irregularity of the matrix sparsity pattern, i.e. the
distribution of the non-zeros within the matrix, make many
operations on sparse matrices execute inefficiently on tra-
ditional scalar and vector architectures. This problem has
been tackled by both software and hardware approaches.
For the cost reasons, most of the techniques are software-
based [1], [2], However, research focused on hardware ap-
proaches [3], [4], [5], [6] indicates that much greater im-
provements can be obtained. In [5] the authors report for
multiplication of a sparse matrix with a vector a speedup
of up to 5 times (depending on the sparsity pattern) using
the novel Hierarchical Sparse Matrix (HiSM) storage for-
mat and an associated vector architecture extension, with
respect to the Jagged Diagonal (JD) and Compressed Row
Storage (CRS) methods on a conventional vector proces-
sor. It has also been suggested in [5] that the use of HiSM
is likely to provide high speedups not only for the sparse
matrix-vector multiplication but also for other operations.

In this paper we address the problem of transposition

for sparse matrices, which is often inefficient on traditional
vector processors due to the irregular structure of the data.
This holds epsecially for transposition algorithms which
work on general types of sparse matrices, i.e., sparse ma-
trices which do not have an a priori known structure. The
contributions of this paper can be summarized as follows:
e We propose the novel Sparse matrix Transposition
Mechanism (STM), which facilitates transposition of gen-
eral sparse matrices stored in the HiSM format and can be
implemented as a functional unit for a vector processor.
o We calculate the optimal parametrs for the mechanism
and and study the performance improvements it provides
with respect to the sparse matrix transposition for the most
widely used CRS storage format implemented on a tra-
ditional vector architecture. We show that HiSM-based
transposition exhibit a speedup of 17.6, averaged over a
variety of different types of sparse matrices.

The remainder of the paper is organized as follows: In
the next Section we provide with some background in-
formation on transposition, vector processors and the hi-
erarchical sparse matrix storage format. In Section III
we describethe proposed mechanism. Subsequently, in
Section IV we evaluate the performance of the porposed
mechnism and finally, in Section V we draw some conclu-
sions.

II. BACKGROUND

The transposition of an M x N matrix A produces the
N x M matrix AT, such that a]; = aji. The operation
consists of the exchange of the rows and columns of the
matrix. Thus it is an operation that alters not the values of
the elements but only their positions. For a dense matrix,
the problem is trivial and can be solved by addressing a
row-wise stored matrix with a stride equal to the number of
rows of the matrix or vice versa. Sparse matrices however
are usually stored in a more complex way that involves the
storage of the non-zero values and their positional infor-
mation [1], [2]. This results in the need of using costly
sorting algorithms in order to perform the transposition.
With the proposed mechanism we attempt to streamline



this operation and make it suitable for a vector processor.

Vector processors, such as the one depicted in Fig-
ure 1 are based on architectures that support the execution
of vector instructions. On most current vector architec-
tures [7], the vectors are copied from the main memory
into vector registers within the processor before they are
operated upon. Vector registers are arrays of scalar regis-
ters that hold (parts of) the vectors to be processed. Due to
the fact that the vector register length can not be arbitrarily
large, when operating on large vectors they have to be di-
vided into smaller parts, a technique that is usually called
strip mining, each of which cannot be larger than the max-
imum amount of elements a vector register can hold, i.e.,
the architecturally defined section size of the VP. In a VP
the operations are carried out by (usually) pipelined Func-
tional Units (FU) that are able to fetch one or more new
element per cycle from each of the source vector regis-
ter(s) involved, operate on it/them, and return the result(s)
to the result (vector) register. Typical functional units em-
ployed in a vector processor are the ALUs and multipliers.
The proposed transposition mechanism for HiSM is to be
incorporated as a functional unit of a vector processor as
well.
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Fig. 1. Vector Architecture

Before proceeding with the description transposition
mechanism we will first give a brief description of the Hi-
erarchical Sparse Matrix storage format (HiSM), the for-
mat that we will assume for the remainder of our paper
described in [5]:

To obtain the HiSM an M x N sparse matrix A is parti-
tioned in [2£] x [2] square s x s sub-matrices where s is
the section size' of the targeted vector architecture. Each

IThe Section Size, also called maximum vector size, is the maximum
number of elements that can be processed by a vector architecture’s

of these s x s sub-matrices, which we will call s2-blocks,
is then stored separately in memory in the following way:
All the non-zero values as well as the positional informa-
tion combined are stored in a row-wise fashion in an array
(32—blockarray) in memory. In Figure 2 (bottom left) we
can observe how such a blockarray is formed containing
both the position and value data from the top left s2-block
of an 64 x 64 sparse matrix. For demonstration purposes
we have chosen here a small section size of s = 8. Note
that the positional data consists of only the column and row
position of the non-zero elements within the sub-matrix.
This means that when s < 256, which is typical for vec-
tor architectures, we only need to store 8 bits for each row
and column position. This is significantly less than other
sparse matrix storage format schemes where at least a 32-
bit entry has to be stored for each non-zero element. For
instance, in the Compressed Row Storage format we need
to store a 32-bit column position for each element and an
extra vector with length equal to the number of rows of the
matrix.

The s2-blockarrays can contain up to s? non-zero ele-
ments. These s2-blockarrays that describe the non-empty
s2-blocks form the lowest (zero) level of the hierarchical
structure of our format. As can be observed in Figure 2,
the non-empty s2-blocks form a similar sparsity pattern
as the non-zero values within an s2-block, Therefore, the
next level of the hierarchy, level-1, is formed in exactly
the same way as level-zero with the difference that the
values of non-zero elements are now pointers to the s2-
blockarrays in memory that describe non-empty s2-blocks.
This new array containing the pointers to the lower level is
stored in exactly the same fashion in memory (see Fig-
ure 2 (bottom right). Notice that at level-1 the pointers
are stored in a column-wise fashion. This can be chosen
freely and is not restricted by the format. Furthermore, as
depicted in Figure 2, for level-one an extra vector is stored
in memory. It has the same length as the s?-blockarray
and contains the lengths of the level-0 s2-blockarrays. For
each non-zero pointer p at level-1, the corresponding vec-
tor element holds the length (i.e., the number of nonze-
roes) of the level-0 blockarray pointed by p. This vector
is necessary to access the correct number of elements at
the level-0, since this number can vary. The next level,
level-2, if there is one (in the example of Figure 2 there is
none), is formed in the same way as level-1 with the point-
ers pointing at the s?-blockarrays of level-1. Further, as
in any hierarchical structure the higher levels are formed
in the same way and we proceed until we have covered
the entire matrix in max([log, M, [log, N|) levels. The

vector instruction [8].
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this is not the case, the matrix is padded by zeroes to form
an s? x s matrix.

We can summarize the description of the Hierarchical
sparse matrix storage format as follows:
e The entire matrix is divided hierarchically into blocks
of size s x s (called s2-blocks) with the lowest level con-
taining the actual value of the non-zero elements and the
higher levels containing pointers to the non-empty s2-
blocks of one level lower.
o The s2-blocks at all levels are represented as an array
called an s?-blockarray whose entries are non-zero val-
ues (for level-0) or pointers to non-empty lower level s>-
blockarrays (for all higher levels) along with their corre-
sponding positional information within the block. For lev-
els higher than level-0, next to each pointer to a non-empty
lower level blockarray the length of this array is stored.

III. THE TRANSPOSITION MECHANISM

As mentioned previously, the proposed Sparse matrix
Transposition Mechanism (STM) can be implemented as
a functional unit of a vector processor. An instance of the
mechanism for a section size s = 8 is depicted in Figure 3.
The main part of the unit consists of the s X s-memory.
The s x s-memory is used to store an s2-block of a hi-
erarchically stored matrix. The mechanism can transpose
one s2-block at a time. First, the s2-block is stored in the
§ X s-memory one section at a time. When the complete
s2-block is stored, the s2-block is then read from the s x s-
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Fig. 3. The Sparse matrix Transposition Mechanism (STM)

memory in the transpose fashion than storing. For exam-
ple, if data was stored in a row-wise fashion (entering the
s X s memory in Figure 3 from the top), it is read in a
column-wise fashion, exiting the memory from from the
left. We now illustrate the procedure in more detail, show-
ing how the level-0 s2-block depicted in Figure 2 is trans-
posed. We assume that a part of an s2 block is stored in a
vector register R. The contents of a register R are stored
in the s X s-memory via the column-wise I/O-buffer lo-
cated at the top of the unit. The depth of this buffer defines
how many elements can maximally be stored per clock cy-



cle and is referred to as the s x s-memory buffer band-
width B, which in the case of Figure 3 is 4. At each cycle
the I/O-buffer is filled with non-zero elements of the same
row along with their corresponding column positions. In
the next cycle, the column positions are used by the Non-
zero Locator unit to scatter the non-zero values to correct
positions in the row-buffer. The non-zero indicator at the
corresponding cells of the buffer are then set accordingly
to indicate the a non-zero or a zero value. This process
is repeated until all the non-zeroes in the current row are
stored in the row buffer. Thereafter, the entire row buffer
is copied into the s X s-memory using the row position
information (not shown in Figure 3). Then, the elements
of all the following rows is stored in the s X s memory in
the same way. Now, the transposition of the s2-block can
be obtained by reversing the order used for storing, at the
column-wise section of the STM. Column by column, the
s2-block is moved into column-buffer. There, using the
Non-zero-Locator, the non-zero values and their row po-
sitions are copied into I/O-buffer (maximally B at a time)
and then stored into a register in the register file.

The implementation of the non-zero locator is not triv-
ial and we, therefore, describe it below in further detail.
Non-zero locator is graphically depicted in Figure 4. The
function of this circuit is to extract from a string of input
bits (the non-zero indicators) the position of the first B
I’s. When there are more than B non-zero elements the
located non-zeros are set to zero (not depicted in Figure 4)
and the process is repeated in order to locate the following
B non-zero elements. When there are less than B non-zero
elements one or more of the “0”-counters will produce an
overflow. This overflow indicates to the control logic that
a new row or column needs to be fetched from the s x s-
memory.

As we have mentioned, the Transpose Mechanism can
only transpose an s2-block. However, because of the sim-
ilar structure of the HiSM at all hierarchy levels we can
apply the same transposition mechanism on all levels in
order to achieve the transposition of the entire matrix, Fig-
ure 5 graphically illustrates this principle. In the following
we show the validity of this approach more formally. Con-
sider an element a;; at position (4, j) of the matrix A which
has to be transposed. We can write the position coordinates
as a combination of the coordinates at each hierarchy level:
i =g +i18+i2s> 4+ ... + iqs? where 1, is the row po-
sition of a;; at level k, s—the section size (dimension of
the s-block), and ¢ = max([log, M, [log, N) is the
number of hierarchy levels. For example, for the element
a10,10 of the matrix depicted in the left part of Figure 5,
the ¢-coordiantes are as follows: ¢ = 10, ¢19g = 2, and
i1 = 1. Similarly, for the column coordinates we have

I JRI JT Ry

Non-zero Indicators
"1" when non-zero
"0" when zero

Position of Ist "1"
Position of 2nd "1"
Position of 3rd "1"
Position of 4th "1"

Fig. 4. The Non-zero Locator

j = jo+ji15+ jas® + ...+ igs?. We remark that iy, ji,
are exactly the position coordinates stored in the s blocks
in HiSM format. Let 7 and j denote the the new coor-
dinates of the element a;; after transposition, and z~k and
Ji be the coordinates at hierarchy level & after transpo-
sition. Since we transform the element positions within
the s2-blocks at each level, the new coordinates at each
level will become iy = jo,i1 = Jji,... ,z'~q = Jq and
jNO = z'o,fl = 11,... ,j~q = iq4. Therefore,

i =g +i1s s ... +igsl =
=Jo+ 15+ j2s” + ...+ jgs? =,
J =jo+ 15+ jas® ...+ jgsl =
=0+ 115+ igs? + ... +igs? =

This shows exactly that transposing the blocks at all level
results in the transposition of the whole HiSM-stored ma-
trix.
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Fig. 5. Hierarchical Matrix Transposition: Transposing each block at all hierarchies is equivalent to the trasposition of the entire

matrix

IV. PERFORMANCE EVALUATION

In this section we study the performance of the vector
processor extended with the proposed matrix transposi-
tion mechanism for HiSM and compare it with the perfor-
mance of a standard vector processor on the transposition
algorithm based on the most widely used storage format
for general sparse matrices, the Compressed Row Stor-
age (CRS). Before proceeding to the simulation results we
describe the simulation environment, the way the HiSM
and CRS transposition algorithms has been vectorized, and
benchmark matrices.

A. Experiment Methodology and Tools

The performance comparison of HiSM and CRS trans-
pose is carried out on a vector processor simulator that we
have developed. It supports both standard as well as HiSM
funtionality and is based on the SimpleScalar [9] simu-
lator. SimpleScalar has been extended to support vector
instructions, vector functional units and a vector memory
unit. The memory unit (Vector Load/Store) model is a high
bandwidth memory that can support the access of 4 32-bit
words a cycle after a startup latency of 20 cycles. For in-
dexed accesses the memory can only provide one 32-bit
word per cycle. Therefore, for example, a contiguous vec-
tor of 64 words can be loaded in 20 + % = 36 cycles,
whereas 20 4+ 64 = 84 cycles are needed to perform an
indexed load of a 64-element vector.

Furthermore, we have set the funtional unit paralellism
p of the vector processor to be 4. This parameter denotes
the maximum number of elements of a vector that can be
processed in a single cycle. In the case of the proposed
transpose mechanism p is equal to the buffer bandwidth
parameter B. The section size (vector register length or

maximum vector length) was set to 64. Finally, we con-
figured the simulator to support the vector chaining (for-
warding of the results of one functional unit to the next),
which allows to overlap the execution of dependent vector
instructions.

The vector code for both HiSM and CRS have been
hand-coded in assembly. The HiSM implementation em-
ployes recursion since it has to deal with a hierarchical data
structure. The pseudo code for it, with a numbfer of the ac-
tual implementation details been ommited, is presented in
Figure 6. The transpose_block() procedure performs the
transposotion of an s X s-block and is called recursively at
line 22. The BSA denotes the starting address of the s2-
blockarray The first two for loops (lines 2-9) perform the
actual tranposition of the s2-block elements. This is done
by first loading the elements plus the positional informa-
tion into the processor and storing the values row-wise into
the s x s memory (first for loop). Subsequnetly the reverse
process is performed with the with the difference that the
elements are loaded column-wise from the s X s memory
in order for the elements to be arranged in the transposed
order. This code is fully vectorized and makes use of new
vector instructions that have been developed to support the
HiSM format (see also [5]). More specifically, the code
that performs the trasposition of the s%s block is depicted
in Figure 7 and corresponds to lines 2-9 in Figure 6. In the
first two lines the Start address and the length of the s2-
blockarray are loaded into scalar registers. Subsequently,
the icm instruction initializes the s X z memory by setting
all the non-zero indicator (see Figure 3) to zero. On the
next line the ssv/ instruction sets the vector length regis-
ter of the vector processor to vl = max(s,r1l) where s is
the section size of the processor and substracts that value
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transpose_block(BAS, BAL, LV L)
for (all Block Sections (BS) in memory) do
Load BS from main memory to Vector Register
Store BS row-wise in s X s memory
od
for (all Block Sections (BS) in s X s memory) do
Load BS from sxs memory to Vector Register
Store BS to memory
od
if (LVL # 0)
for (all Lengths Sections (LS) in memory) do
Load LS from main memory to Vector Register
Store LS row-wise in s X s memory
od
for (all Lengths Sections (LS) in s X s memory) do
Load LS from szs memory to Vector Register
Store LS to memory
od
for (all pointers (PTR) in block) do
Load PTR
Load corresponding Length (LEN)
Call transpose_block(PTR,LEN,LVL-1)
od

fi
Fig. 6. Transposition for HiSM.

from r1. The vl parameter indicates to the subsequent vec-
tor instructions how many elements to process. Next, the
v_ldb loads a section of length vl of the s2-block array to
the vector processor. The element values or pointers are
stored in vector register vrl and the corresponding row-
column pairs in register vr2. The vrl is updated automat-
ically by thev_ldb instruction. The vrl and vr2 registers
are then stored row wise in the s X s-memory by the use of
the v_ster. This instruction stores the elements at the cor-
responding positions in the s X s-memory as described in
Section III via the row-wies I/O buffer. During execution
the corresponding non-zero indicators are also set. This
process repeats until 72 = 0 and all the sections of the s2-
block have been processed. The second part of the code is
the reverse process. The v_ldcc instruction loads a section
of elements from the s X s-memory and stores the val-
ues or pointers (depending on the level of the hierachy) to
the vector register vr1 and the corresponding row-column
pairs to the vector register vr2. The v _stb instruction then
stores the vrl and vr2 vectors into main memory in the
HiSM format. Note that the same memory location and
amount as the original is needed to store the transposed
block and therefore no allocation of memory for the trans-
posed is needed as is the case with CRS.

Id rl, BSA # Start Address

1d r2, BSL # Block Length

icm # Init sxs Memory

Loopl:

ssvl r2 # Set vector length

v_1db rl, vrl, vi2  # Load block elements

v_ster  vrl, vi2 # Store row-wise in sXs memory
bne r2, Loopl  #repeat Loop 1

1d rl, BSA # Start Address

1d r2, BSL # Block Length

Loop2:

ssvl R2 # Set vector length

vidcec  vrl, vr2 # Load column-wise from sxs memory
v_stb rl, vrl, vi2  # Store block elements

bne r2, Loop2  #repeat Loop 2

Fig. 7. Transposition for HiSM.

We remark that the vector instruction pairs (v_Idb, v _stcr)
and ( v_ldcc, v_stb) can be chained, i.e., the results of one
instruction can be forwarded to the next. However, due to
fact that the s X s-memory has to be filled before it can be
read back, the transposition unit can not be fully pipelined.
Nevertheless, separately, the write and read phases can be
pipelined in three stages. This means that 3 cycles are re-
quired for the last elements to enter the s X s-memory: In
the first stage (a) the elements enter the I/O buffer. In the
second stage (b) the elements are scattered by the non-zero
locator to their corresponding positions and set the non-
zero indicator accordingly. In the last stage the elements
are inserted in the corresponding row in the s X s-memory.
Similarly, 3 cycles are needed for the last results to be re-
turned to the vector register.

Having described the main code for the transposition of
the s x s-block we continue here our description of Fig-
ure 6. Lines 11-23 are excuted only if the s2-block is not
at the lowest level, i.e., the elements contain pointers to
lower level s2-blocks that also need to be transposed. In
lines 11-18 the vector associated with the current block
and contains the lengths of the s2-blocks one level below
is treated in the same way as the elements in lines 2-9 in
order to have the correct length corresponding to the al-
ready transposed element. Subsequently in lines 19-23 the
function transpose_block is called again with parameters
that correspond to the s2-block one level below. This is re-
peated for all pointers of the current s2-block. We remark
here that the amount of overhead that is induced by the ex-
tra processing needed for the higher levels is small since
the number of high level s2-blocks amount typpically to
about 2 — 5% of the total matrix storage for s = 64.

The CRS format is depicted graphically in Figure 8 and
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for (each column 7)
compute number of its non-zeroes, store it in IAT[i].
Scan-add array IAT : IAT[i] = >"/= IATYj]
for (each row 7) do
iaa = IA(i); iab = IA(i + 1) — 1;
for (jp = iaa; jp < iab; ++jp) do
J=JA(p)+1;
k = IAT(j);
JAT (k) = i;
ANT(k) = AN(jp);
IAT(j) = k + 1;

Fig. 9. Transposition for CRS.

is briefly described as follows. The non-zero elements of
the matrix are all stored in a long continous vector (called
the Array of Non-zeros (AN)) in a row-wise fashion. An
equally long second array JA stores the column position
of each of the non-zero elements in the AN (in the figure,
columns and rows are numbered from 1, not from 0). Last,
an Index Array (IA) of length M (the number of rows in
the matrix) holds pointers to positions in the AN and JA
that represent the first non-zero element in each row in the
matrix.

The goal of a transposition algorithm for CRS is to build
for the transposed matrix the array of non-zeroes, the col-
umn position array, and the index array, which are de-
noted as ANT, JAT, and IAT, respectively. For our exper-
iments we have employed the standard CRS transposition
algorithm described by S. Pissantetsky [10], a simplified
pseudo-code of which is depicted in Figure 9. Below, we
sketch its main parts and how they have been vectorized.

The first for-loop (lines 1-2) computes the number of
non-zero elements in each column. Before this compu-
tation is started, elements of /AT are initilized to zeroes.

This operation is easily vectorized, being translated into a
sequence of vector stores. The computation of IAT[], i.e.,
the number of non-zeroes in column i, can be vectorized
as follows: first, a mask vector M;[j] is generated, so that
M;[j] = 1iff JA[j] = i. This can be done by means of
vector compare operations. The required number of non-
zeroes IAT[i] is simply equal to the sum of all the M;’s ele-
ments. This accumulation can be vectorized, e.g., based on
ideas presented in [11]. We remark, however, that because
the matrix is sparse, the dominant part of M;’s elements
will be zero and vector operations will be, therefore, inef-
ficient. For this reason we have not vectorized this code for
our experiments but translated it to the scalar instructions.
These instructions are then executed by the baseline 4-way
issue superscalar processor simulated by SimpleScalar.

Although the scan-add operation, which is performed
on /AT, seems to be sequential at a first glance, it can be
vectorized using, for example, the algorithm proposed by
Wang et. al. [11]. The final part of the CRS transposition
algorithm consists of two nested for-loops. The outer loop
(starting at line 4) loads at each iteration 7 the interval of
the column index vector JA corresponding to the i’th row.
The variables iaa and iab denote the indices of the first
and the last element in the interval, respectively. The in-
ner loop processes the loaded interval element by element.
The variable j computed in line 7 is the (column) index
of the currently processed element increased by one. It
means that the corresponding non-zero element belongs to
the j’th row of the transposed matrix A”. In line 8 the
pointer k to the beginning of this row is computed. Since
the element is in the ¢’th row of A, its column position in
AT is equal to 4, and this value is filled for it at the corre-
sponding position of JAT in line 9. In line 10 the value of
this non-zero element is filled in ANT. Finally, in line 11,
the row pointer for AT is incremented so that it points to
the next positions to be filled in JAT and ANT.

The pseudo-assembly code for the vectorized version of

the body of the described loop nest, omitting the loop con-
trol instructions, is as follows.

v_1d VRO, 4(&JA) s 7
v_1d_idx VR1, VRO, 4(&IAT) % 8
v_setimm VR2, i $ 9
v_st_idx VR2, VR1l, &JAT % 9
v_1d VR3, 4 (&AN) % 10
v_st_idx VR3, VR1l, &ANT % 10
v_add_imm VR1, 1 $ 11
v_st_idx VR1, 4 (&IAT) $ 11

Here, the symbol % denotes comments and the number at
the end of each line shows for each instruction the corre-
sponding line in the algorithm depicted in Figure 9.

We have described the simulation environment, proces-



sor parameters, and the algorithms, The performance of
the sparse matrix computations, however, also strongly de-
pends on the input matrices.

B. Input Matrices: The Sparse Matrix Suite

We use the matrix set provided by the Delft Sparse Ar-
chitecture Benchmark (D-SAB) suite [12] for our experi-
ments. The D-SAB benchmark matrices were chosen from
a wide variety of matrices that are available from the Ma-
trix Market Collection [13]. The collection offers 551 ma-
trices collected from various applications and includes sev-
eral other collections of sparse matrices and is therefore
the most complete we could get access to. Of these matri-
ces we have selected 132 matrices taking care not to select
similar matrices in terms of application, size and sparsity
patterns in order to reduce the amount while keeping the
variety intact. The 132 matrices matrices have been sorted
using three different criteria that relate to various matrix
properties:

e Matrix Size. The metric is the number of non-zeros
within the matrix. The range is from 48 non-zeros for ma-
trix besstmOI to 3753461 non-zeros for matrix s3dkt3m2
with an average of 115081.

e Locality. The locality is calculated as follows: First,
each matrix is divided into blocks of 32 x 32. For each
non-empty block the number of non-zeros is divided by
32 to express the number in terms of the dimension of the
block. The average over all non-empty blocks is the local-
ity metric. The range is from 0.07 for matrix bespwrliO,
a matrix with a very uniform distribution of the non-zeros
over the matrix to 12.85 for matrix gc324 a matrix that con-
tains large dense blocks. The average value is 2.18. This
metric gives an indication for the vector filling efficiency
when loading s2-blockarrays utilizing the HiSM storage
format.

e The Average non-zeros per row varies from 1 for matrix
besstm20, a matrix with only a diagonal and 172 for matrix
psmigr_Il and an average of 15.9. This metric is a good
indication of the efficiency of CRS versus JD.

Sorting of the selected 132 matrices with each of the three
mentioned criterions resulted in three sets. From each of
these sets ten matrices have been chosen with the equal
steps (in logarithmic scale®) between their corresponding
parameters. The result is a manageable but very diverse
set of 30 benchmark matrices to be used in the simula-
tions. For more detail on the selected matrices please refer
to [12].

2The logarithmic scale was chosen because we observed that the dis-
tribution of paramters after sorting was logarithmic rather than linear

Buffer Bandwidth Utilization

Width 1
Width 2
Width 4
Width 8

Width 16

Width 32

Fig. 10. Matrix Transposition

C. Buffer Bandwidth Utilization

Before presenting the performance results for CRS and
HiSM implementations of transpose, we address the fol-
lowing issue. We remark that the I/O-buffer in the pro-
posed mechanism can only contain elements that belong
to the same row. Consequently, depending on the number
of non-zero elements per row of an s2-block, the buffer
could be underutilized, especially for large buffer band-
widths. To avoid such an issue, we have additionally de-
veloped a version of the transpose mechanism for HiSM
where multiple rows can be inserted at a time provided
that these rows are consecutive. Since this extention is
more costly in hardware, we have studied the impact of
the number of accessible lines (i.e., rows/columns) L on
the buffer bandwidth utilization, which is defined as the
ratio of the achieved buffer bandwidth to the maximum
buffer bandwidth:

_Z/¢

BU 5

(D
where Z is the number of non-zero entries in all the s2-
blocks, C' is the execution time in cycles, and B is the
bandwidth of the unit.

The results have been averaged for the total of 30 bench-
mark matrices and are depicted in Figure 10. The highest
utilization is obtained for buffer bandwidth B = 1. The
reason that the utilization is not 100% is that during trans-
position of each s2-block a penalty of 6 cycles is payed, 3
cycles at the startup to and 3 at the end of block process-
ing. Furthermore we observe that for increasing number
of acceesible lines L the utilization increases. However,
we remark that for a number of accessible lines L > 4 the
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utilization does not increase significantly any more. There-
fore, we have decided to use L = 4 as the number of ac-
cessible lines for the transposition mechanism and we will
assume this value for further experimnets.

D. Performance Results

In Figures 11, 12, and 13 we depict how performance of
CRS and HiSM schemes depends on the the matrix local-
ity, the number of non-zeroes per row, and the size respec-
tively. For each matrix, three values are presented. The
first two bars show for each of HiSm and CRS the num-
ber of cycles needed to perform the transposition of a ma-
trix normalized to the number of non-zero elements. This
value is, essentially, the average number of cycles needed
to process a non-zero element and, therefore, illustrates
the efficiency of each algorithm. The third bar denotes the
speedup achieved by HiSM with respect to CRS.

We observe that for all matrices HiSM consistently out-
performs CRS. For the matrices from the first set (selected

Fig. 13. Performance w.r.t. matrix size

according locality), the speedup is in the range from 1.8 to
32.0 with an average of 16.5. We remark that the speedup
grows monotonically with the growth of the matrix local-
ity. This is to be expected, since the locality represents
the density of non-zeroes in a block. An increase in this
density increases the average number of non-zeroes in a
block and, consequently, the efficiency of the proposed
HiSM transposition mechanism, which is specifically has
been designed to operate on blocks. The CRS approach
is row-oriented and, therefore, its performance does not
show such a clear dependency on the locality.

On the other hand, when the average number of non-
zeroes per row (ANZ) increaes, the performance of the
CRS approach also increases, as shown in Figure 12. This
effect is quite expectable. The performance behaviour for
HiSM scheme depending on the ANZ value cannot be ob-
served from the figure due to small absolute values. In fact,
it is as follows. For the first several matrices (from bc-
sstm20 to slrmg4ml) it decreases almost monotonically,
and after this remains constant. This effect, probably, has
the following explanaition. In general, the sparsity pattern
for the matrices in the second set is such that their local-
ity correlates with ANZ and grows together with it, result-
ing in improved performance of HiSM, since that one in-
creases with an increase in locality. For the matrices from
the second set, which have been selected according to the
ANZ value. the HiSM vs. CRS speedup ranges from 11.9
to 28.9 with an average of 20.0.

In Figure 13 we depict the transposition performance on
the third set of matrices, which have been selected accord-
ing to the matrix size. The performance of both CRS and
HiSM does not show any particular dependence on the ma-
trix size. After studying the other two parameters for the
matrices in this set, the average number of non-zeroes ANZ
and the locality (see [14]), we observed the following. The



performance of each of both methods behaves consistently
with the observations made above: the CRS performance
increases together with ANZ value for a transposed matrix,
while that of HiSM increases when the locality of the ma-
trix is increased. In this sense, Figure 13 does not provide
any new insights into CRS of HiSM and is presented here
for completeness and consistency with the organization of
the benchmark matrix collection. The speedup of HiSM
vs. CRS for the matrices from the third set ranges from
3.4 to 28.2 with an average of 15.5. Finally, considering
the whole collection of 30 matrices we observe that the
speedup ranges from 1.8 to 32.0 with an average of 17.6.

V. CONCLUSIONS

In this paper we have proposed and described a novel
mechanism for transposition of the sparse matrices stored
according to the HiSM sparse matrix storage format. An
example implementation of mechanism as functional unit
for a vector processor is presented. We have calculated the
optimal parametrs for the mechanism and compared the
performance of the vector processor extended with the pro-
posed functional unit on the transposition of HiSM-stored
matrices with that of the standard vector processor per-
forming the transposition of the matrix stored according
to the popular CRS format. Using the proposed approach,
the HiSM-based transposition algorithm exhibits the av-
erage speedup of 17.7 with when compared to the CRS-
based algorithm. Finally, we observe that the performance
of the HiSM-based transposition correlates with the matrix
locality, which indicates the density of non-zeroes within
square blocks, and grows when this density increases.
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