
The MOLEN Processor Prototype

Georgi Kuzmanov Georgi Gaydadjiev Stamatis Vassiliadis

Computer Engineering Lab, EEMCS, TU Delft, The Netherlands,
E-mail:{G.Kuzmanov, G.N.Gaydadjiev, S.Vassiliadis }@EWI.TUDelft.NL

http://ce.et.tudelft.nl/

Abstract

We present a prototype design of the MOLEN polymor-
phic processor, a CCM based on the co-processor archi-
tectural paradigm. The Xilinx Virtex II Pro technology is
used as a prototyping platform. Experimental results prove
the viability of the MOLEN concept. More precisely, the
MPEG-2 application is accelerated very closely to its the-
oretical limits by implementing SAD, DCT and IDCT in
reconfigurable hardware. The MPEG-2 encoder overall
speedup is in the range between 2.80 and 2.96. The speedup
of the MPEG-2 decoder varies between 1.56 and 1.63.

1 Introduction
The MOLEN CCM concept (proposed in [8]) resolves

opcode space explosion, modularity, and compatibility
problems (e.g., identified in [2, 3, 5]). Unlike [1, 10], this
concept allows implementations with virtually unlimited
number of input and output parameters for the reconfig-
urable functions. In this paper, we present a prototype
design of the MOLEN CCM, utilizing the Virtex II Pro
FPGA of Xilinx [9]. Our prototype implements a mini-
mal ISA augmentation of only four instructions. Experi-
mental results suggest that the current prototype realization
can speedup the MPEG-2 encoder between 2.80 and 2.96
when implementing SAD, DCT and IDCT as reconfigurable
functions. When implementing IDCT alone, the projected
speedup of the MPEG-2 decoder is between 1.56 and 1.63.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the MOLEN concept. In Section 3, the
microarchitectural and implementation aspects of the proto-
type are introduced. Considering MPEG-2, Section 4 eval-
uates the prototype based on experimental results. Finally,
concluding remarks are presented in Section 5.

2 The MOLEN polymorphic processor
The two main components in the MOLEN machine or-

ganization (depicted in Figure 1) are theCore Processor,

Main Memory

Instruction

Fetch

Data

Load/Store

ARBITER

DATA

MEMORY

MUX/DEMUX

Reconfigurable Processor

Core

Processor

reconfigurable

microcode

unit

CCU

Register File

Exchange

Registers

Figure 1. The MOLEN machine organization

which is a general-purpose processor (GPP), and theRecon-
figurable Processor(RP). The ARBITER performs a partial
decoding on the instructions in order to determine where
they should be issued. Instructions implemented in fixed
hardware are issued to the GPP. Instructions for custom ex-
ecution are redirected to the RP. Data transfers from(to) the
main memory are handled by theData Load/Storeunit. The
Data Memory MUX/DEMUXunit is responsible for dis-
tributing data between either the reconfigurable or the core
processor. The reconfigurable processor consists of there-
configurable microcode(ρµ-code) unit and thecustom com-
puting unit (CCU). Theρµ-code unit is discussed in more
detail in Section 3. The CCU consists of reconfigurable
hardware and memory, intended to support additional and
future functionalities that are not implemented in the core
processor. Pieces of application code can be implemented
on the CCU in order to speed up the overall execution of the
application. A clear distinction exists between code that is
executed on the RP and code that is executed on the GPP.
The parameter and result passing between the RP targeted
code and the remainder application code is performed utiliz-
ing theexchange registers(XREGs), depicted in Figure 1.

An operation, executed by the RP, is divided into two dis-
tinct phases:setandexecute. The set phase is responsible
for reconfiguring the CCU for the operation. In the execute
phase, the actual execution of the operations is performed.
No specific instructions are associated with specific opera-

Decode
 Controls

Arbiter Emulation

Instructions

MUX

Control

Arbiter

Instructions from

Memory

Instructions

to the Core Processor

Occupy

Memory
 micro address
 Ex/Set

Start

reconf.

operation

End of
reconf.

operation

Figure 2. General arbiter organization.

tions to configure and execute on the CCU. Instead, pointers
to reconfigurable microcode(ρµ-code) are utilized. Theρµ-
code emulates both the configuration and the execution of
CCU implementations resulting in two types of microcode:
1) reconfiguration microcode that controls the CCU config-
uration; and 2) execution microcode that controls the exe-
cution of the CCU configured implementation.

The MOLEN programming paradigm is a sequential
consistency paradigm targeting the previously described or-
ganization (for details see [6]). The complete list of the
eight required instructions, denoted as polymorphic instruc-
tion set architecture (πISA), is as follows: 1) partial set
(p-set<address>) performs common and frequently used
configurations; 2) complete set (c-set <address>) com-
pletes the CCU’s configuration to perform less frequent
functions; 3)execute<address>: controls the execution
of the operations on the CCU configured by theset instruc-
tions; 4)set prefetch<address> and 5)execute prefetch:
prefetch the needed microcodes responsible for CCU recon-
figurations and executions into a local on-chip storage (the
ρµ-code unit); 6)break: synchronizes the parallel execu-
tion of the RP and the GPP; 7)movtx XREGa ← Rb and 8)
movfx Ra ← XREGb: move the content of general-purpose
register Rb to/from XREGa. The<address> field denotes
the location of the reconfigurable microcode responsible for
the configuration and execution processes.

3 The prototype design

In our prototype, we consider aminimal πISA of four
basic instructions:c-set, execute, movtx andmovfx. This
is the smallest set of MOLEN instructions needed to provide
a working scenario. As a platform FPGA, we utilized a Xil-
inx xc2vp20-5 device from the Virtex II Pro family with two
embedded PowerPC cores. Themovtx andmovfx instruc-
tions have been mapped to the existing PowerPC instruc-
tionsmtdcr andmfdcr , therefore the arbiter is designed to
decode only thesetand theexecuteinstructions.
The arbiter. The operation of the protoype arbiter is based
on decoding the incoming instruction flow (see Figure 2).
The original GPP ISA instructions are directed (via MUX)
to the core processor. Upon decoding of either aset or
anexecute, ”arbiter emulation instructions” are multiplexed

24-bit microcode address
000110

0
 5
 6
 29
 30
31

00 - complete set;
10 - partial set;
01 - execute.
OPC = 6

Figure 3. The ρ-form: p-set, c-set, and execute.

through the core processor instruction bus to drive the GPP
into a wait state. In the same time, control signals are issued
(via the control block in Figure 2) to the RP (in essence the
ρµ-code unit) to initiate a reconfigurable operation. The mi-
crocode location address is redirected to theρµ-code unit
and the data memory control is transferred to the RP. After
an RP operation is completed, data memory control is re-
leased back to the GPP, an instruction sequence is generated
to ensure that the GPP exits the wait state and the program
execution continues with the instruction immediately fol-
lowing the last executed RP instruction. Details regarding
arbiter operation and implementation can be found in [4].

Software considerations.Due to performance reasons, we
do not use PowerPC special operating modes instructions
as arbiter emulation instructions (e.g., exiting power-down
modes requires an interrupt). We employed the‘branch to
link register’ instruction (blr) to emulate a wait state and
‘branch to link register and link’(blrl) to move the proces-
sor out of this state. Thus the arbiter emulation instructions
(Figure 2) are reduced to only one instruction for wait and
one for ‘wake-up’. More details and additional performance
enhancing software considerations are discussed in [4].

πISA Instruction encoding. As a guideline in this imple-
mentation, we decided to follow the PowerPC instruction
format. We have chosen an opcode from the set of unused
opcodes to represent thesetandexecuteinstructions. Fig-
ure 3 depicts the reconfigurable instructions format, referred
to asρ-form. A set and anexecuteinstruction (using the
same opcode) are distinguished via instruction modifiers.
The encoding allows to utilize a 24-bits address (embedded
in the instruction word) to specify the microcode location.
Within this address, a modifier bit R/P (resident/pageable)
specifies where the microcode is located and how to inter-
pret the address field. That is, either a location in the main
memory (R/P=1) or in theρµ-code unit (R/P=0).

The ρµ-code unit. The internal organization of theρµ-
code unit is depicted in Figure 4. Theρµ-code unit com-
prises three main parts: the sequencer, the reconfigurable
control (ρ-control) store, and the reconfigurable microcode
(ρµ-code) loading unit. Thestart op signal is generated
by the arbiter and initiates a CCU operation. Theρµ-code
loading unit, loads (ρµ-code) into theρ-control store from
main memory addressmc addr. Once the desired micro-
program is available in theρ-control store, the sequencer
starts generating the microcode addresses towards the rC-
SAR (reconfigurable Control Store Address Register). The

reconfigurable

microcode

loading unit

Sequencer

Reconfi-

gurable

Control

Store

rC
S

A
R

sl_cs_write

MIR

Data In
mc_addr
start_op
 Data

Address

end_op

CCU

reconfigurable

 microcode unit
status

mc_addr
rm_start_op

Figure 4. ρµ-code unit internal organization.

microinstruction to be executed is transferred to the CCU
via the Microinsruction Register (MIR).Statussignals from
the CCU are used to determine next microcode address.
Once the CCU operation is complete, the sequencer gen-
erates signalendop to the arbiter, which initiates the exe-
cution of the next instruction from the application program.

Theρ-control store is used to store microcodes and com-
prises two sections - asetand anexecutesection. Both sec-
tions can be identical and are further divided into afixedand
a pageablepart. The fixed part stores the resident recon-
figuration and execution microcode of thesetandexecute
phases, respectively. Other microcode is stored in memory
and the pageable part of theρ-control store acts like a cache
to provide temporal storage. For more details regarding the
considered cache mechanisms and theρ-control store orga-
nization, the interested reader is referred to [8].
Memory organization. We considered the on-chip mem-
ory blocks of the utilized FPGA. The available RAM blocks
(BRAM) in xc2vp20 allow the implementation of 128
KBytes memory for both data and instructions. For perfor-
mance improvement, we separated the main memory into
two equal segments - 64 KBytes for instructions and 64
KBytes for data. It is possible to extend the memory vol-
ume up to the entire space addressable by PowerPC (32-bit
addresses) utilizing external memories. The later option has
not been considered in our prototype thus far, however.
Clock domains. For performance efficiency, three clock
domains have been implemented in our prototype.
1. PPC clk- clock signal to the core processor (PowerPC).
The frequency of this signal has been set to 250 MHz, the
maximal recommended value for the processors in the uti-
lized xc2vp20-5 engineering silicon; 2.mem clk- clock
signal to the main memory. This signal has been bounded
to the PPCclk and has been set to be three times lower, i.e.,
83 MHz; 3.CCU clk- a custom clock to the CCU driven by
an external pin. It may be utilized by a CCU, which requires
frequencies, different from the PPCclk and the memclk.

4 Experimental evaluation

We experimented with the Alpha Data XPL Pro lite de-
velopment board (ADM-XPL). The MOLEN organization
and the considered CCU designs have been described in
VHDL and have been synthesized with Project Navigator
ISE 5.2 SP3 of Xilinx. The MPEG-2 application has been
targeted as a benchmark. We used profiling information to
identify and design performance critical kernels as CCU im-
plementations. Due to memory limitations of the current
prototype, we run only extracted kernels on the MOLEN
processor and directly measure the performance gains. Us-
ing these measurements, the profiling data, and Amdahl’s
law, we estimate the projected overall speedup, rather than
directly run the entire MPEG-2 application on MOLEN.
Software profiling results. In the first step of the exper-
imentation we identify the functions that are most suit-
able for hardware implementations, i.e., the most time-
consuming kernels from the application. To this purpose,
we performed measurements on a PowerPC 970 processor.
The considered application is the Berkeley implementation
of the MPEG-2 encoder and decoder from libmpeg2. As
input data, we used two popular video sequences, namely
claire and container. Profiling results (obtained with the
GNU profilergprof) for the considered benchmarks are pre-
sented in Table 1. The execution time spent in SAD, DCT
and IDCT operations by MPEG2 encoder (column 6) em-
phasizes that these functions require around 2/3 of the total
execution time. Therefore these functions can be considered
for CCU implementations.
Experimental results. We have embedded the considered
CCU implementations (SAD, DCT and IDCT) within the
prototype and carried out experiments in two stages:
Stage 1.Compile the software kernels for the original Pow-
erPC ISA and run them on one of the PowerPC405 proces-
sors, embedded in the xc2vp20 device. The kernels have
been extracted from the original application source code
without any further code modifications. For our experi-
ments, we considered the same data sequences as used in the
profiling phase. After deriving the PowerPC cycle counts
for each of the software kernels, we initiate the next stage.
Stage 2. The software kernel code is substituted with a
new piece of code to supportπISA. The corresponding ker-
nel CCU configuration is present in the reconfigurable pro-
cessor. Identically to the preceding experimentation stage,
we obtain the exact number of PowerPC cycles required to
complete the entire kernel operation on MOLEN.

The first two chart groups in Figure 5 present cycle
counts for the original PowerPC ISA (in logarithmic scale).
The last chart group presents the cycle numbers, consumed
by MOLEN while processing the same data. After ob-
taining the execution cycle numbers both for PowerPC and
MOLEN, the speedup of each kernel is estimated. Table 2
presents the calculated kernel speedups with respect to each

Table 1. MPEG2 profiling results for each of the considered functions and its descendants
MPEG2 encoder MPEG2 decoder

sequence # frames@Resolution SAD (16 x 16) DCT (8 x 8) IDCT (8 x 8) Total IDCT (8 x 8)

claire 168@360x288 53.8 % 11.8 % 1.0 % 66.6 % 37.6 %
container 300@352x288 56.2 % 10.7 % 1.0 % 67.9 % 40.4 %

Figure 5. Cycle numbers (lg scale) for kernels
execution in original PowerPC ISA (claire and
container) and in πISA (fixed µcode)

Table 2. MPEG-2 Kernels Speedups
SAD16 SAD128 SAD256 DCT IDCT

claire 8.3 23.9 28.2 302.2 24.4
container 12.2 35.2 41.5 302.1 24.4

CCU implementation. Three SAD implementations have
been considered, namely SAD16, SAD128 and SAD256,
where the number indicates the number of simultaneously
processed pixels [7].
Projected application speedup. To calculate the pro-
jected speedup of the entire application with respect to
the CCU implementations and theπISA, we employed the
well known Amdahl’s law. Obtained figures for the entire
MPEG-2 encoder and MPEG-2 decoder applications are re-
ported in Table 3,where the simultaneous configuration of
the SAD128, DCT, and IDCT operations has been consid-
ered. For the MPEG-2 decoder, only the IDCT reconfig-
urable implementation has been employed. Columns, indi-
cated by label ”theory” contain the theoretically achievable
maximum speedup. Columns labelled with ”impl.” contain
data for the projected speedups with respect to the consid-
ered MOLEN implementation. Results in Table 3 strongly
suggest that the MPEG-2 encoder and decoder speedups ob-
tained during our experimentation very closely approach the
theoretically estimated maximum possible speedups.

5 Conclusions

We presented a prototype design of the MOLEN poly-
morphic processor implemented on a Xilinx Virtex II Pro
FPGA. The paper discussed various related implementa-

Table 3. MPEG2 Overall Speedup
MPEG2 encoder* MPEG2 decoder
theory impl. theory impl.

claire 2.99 2.80 1.60 1.56
container 3.12 2.96 1.68 1.63
* fixed µ-code SAD128 + DCT + IDCT

tion issues. The MPEG-2 application was accelerated very
closely to its theoretical limits by implementing SAD, DCT
and IDCT in reconfigurable technology. The MPEG-2 en-
coder overall speedup was in the range between 2.80 and
2.96 while the speedup of the MPEG-2 decoder varies be-
tween 1.56 and 1.63. These results proved the viability of
the MOLEN concept and showed its potentials for acceler-
ating complex real-life applications.

References

[1] F. Campi, M. Toma, A. Lodi, A. Cappelli, R. Canegallo,
and R. Guerrieri. A VLIW Processor with Reconfigurable
Instruction Set for Embedded Applications. InISSCC Digest
of Technical Papers, pp. 250–251, Feb 2003.

[2] M. Gokhale and J. Stone. Napa C: Compiling for a Hybrid
RISC/FPGA Architecture. InProc. IEEE Symp. on FCCM,
pp. 126–135, 1998.

[3] S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimaera
Reconfigurable Functional Unit. InProc. IEEE Symp. on
FCCM, pp. 87–96, 1997.

[4] G. Kuzmanov and S. Vassiliadis. Arbitrating Instructions
in an ρµ-coded CCM. InProc. 13th Intl. Conf. FPL’03,
Springer-Verlag LNCS, vol. 2778, pp. 81–90, 2003.

[5] A. L. Rosa, L. Lavagno, and C. Passerone. Hard-
ware/Software Design Space Exploration for a Reconfig-
urable Processor. InProc. DATE 2003, pp. 570–575, 2003.

[6] S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, and E. M.
Panainte. The molen programming paradigm. InProc.
Third Intl. Workshop on Systems, Architectures, Modeling,
and Simulation (SAMOS’03), pp. 1–7,2003.

[7] S. Vassiliadis, E. Hakkennes, S. Wong, and G. Pechanek.
The Sum-of-Absolute-Difference Motion Estimation Accel-
erator. InProc. 24th Euromicro Conf., pp. 559–566, 1998.

[8] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN
ρµ-Coded Processor. In11th Intl. Conf. FPL’01, Springer-
Verlag LNCS, vol. 2147, pp. 275–285, 2001.

[9] Xilinx Corporation. Virtex-II Pro Platform FPGA Hand-
book, v.1.0, 2002.

[10] A. Ye, N. Shenoy, and P. Banerjee. A C Compiler for
a Processor with a Reconfigurable Functional Unit. In
ACM/SIGDA Symp. on FPGAs, pp. 95–100, 2000.

