
The ρ–TriMedia Processor

Mihai Sima

The ρ–TriMedia Processor

On the cover: Constantin Brâncuşi’s monumental Endless Column in Târgu-Jiu,
Romania. The 29.33-meter column of metal-coated cast-iron modules on a steel
spine is part of a sculptural ensemble originally installed in 1937-1938, which also
includes the travertine Table of Silence and Gate of the Kiss.

The ρ–TriMedia Processor

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 15 maart 2004 om 13:00 uur

door

Mihai SIMA

inginer
Facultatea de Electronică şi Telecomunicaţii

Institutul Politehnic din Bucureşti
geboren te Boekarest, Roemenië

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr. S. Vassiliadis

Toegevoegd promotor:
Dr. S. Cotofana

Samenstelling promotiecommissie:

Rector Magnificus Technische Universiteit Delft, voorzitter
Prof.dr. S. Vassiliadis Technische Universiteit Delft, promotor
Dr. S. Cotofana Technische Universiteit Delft, toegevoegd promotor
Prof.ir. G.L. Reijns Technische Universiteit Delft
Prof.dr.dr.h.c.mult. M. Glesner Darmstadt University of Technology
Prof.dr. R. Stefanelli Politecnico di Milano
Prof.dr.ir. E. Deprettere Universiteit Leiden
Dr.ir. J.T.J. van Eijndhoven Philips Research Laboratories
Prof.dr. C.I.M. Beenakker Technische Universiteit Delft, reservelid

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Sima, Mihai
The ρ–TriMedia Processor
Mihai Sima. – [S.l. : s.n.]. – Ill.
Thesis Technische Universiteit Delft. – With ref. –
Met samenvatting in het Nederlands. Include un rezumat ı̂n limba română.
���������́��� 	���́�
�
 �
� ���
����́�
ISBN 90-5326-041-2
Subject headings: reconfigurable computing, computer design and engineering
Cover illustration: “Endless Column” by Constantin Brâncuşi, Târgu-Jiu, Romania

Keywords: VLIW processors, reconfigurable hardware, media processing

Copyright © 2004 Mihai SIMA msima@ece.uvic.ca
All rights reserved. No part of this dissertation may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the consent of the author.

To the memory of my father

The ρ–TriMedia Processor
Mihai Sima

Abstract

I
n this dissertation, we present an augmentation of the TriMedia–CPU64™
VLIW processor with a Field-Programmable Gate Array (FPGA), and assess
the potential performance of this hybrid for performing media-oriented tasks.

Since only minimal modifications of the processor organization are allowed, the
FPGA is connected to TriMedia–CPU64 as any other hardwired functional unit.
The resulting hybrid is referred to as ρ–TriMedia. We first describe an extension
of the TriMedia–CPU64 instruction set architecture that incorporates support for
the FPGA. Essentially, a kernel of new instructions denoted as SET and EXECUTE
is provided. The SET instruction controls the reconfiguration of the FPGA, and
the EXECUTE instruction launches the operations performed by the FPGA-mapped
computing units. The approach is generic, consequently the user is given the free-
dom to define and use any customized computing units. Moreover, by using the
opcode fields in adjacent VLIW issue-slots to define an argument for the EXECUTE
opcode, a large number of reconfigurable operations can be encoded, while only a
single entry for the EXECUTE instruction needs to be allocated in the opcode space.
This way, the reconfigurable operation does not create pressure on the instruction
decoder, neatly fits in the existing instruction format and the existing connectivity
structure to the register file, and hence requires a minimal hardware overhead. To
assess the potential performance of ρ–TriMedia, we focus on the MPEG standard,
and address a number of computing-intensive media kernels: Inverse Discrete Co-
sine Transform, Inverse Quantization, Entropy Decoding, and YCC-to-RGB Color
Space Conversion. For each kernel, an FPGA-based computing unit is designed.
The ACEX™ EP1K100 FPGA from Altera is utilized as a reconfigurable core.
The experiments carried out on a TriMedia–CPU64 cycle accurate simulator indi-
cate that a speed-up of more than 40% on ρ–TriMedia over the standard TriMedia–
CPU64 is achieved for a number of MPEG2-conformance scenes. Given the fact
that TriMedia–CPU64 is a 5-issue slot VLIW processor with a 64-bit datapath and
a very rich media-oriented instruction set, such an improvement within its target
media processing domain achieved with a relatively small FPGA, indicates that
FPGA–augmented TriMedia–CPU64 (ρ–TriMedia) is a promising approach.

ii

Acknowledgments

T
he work presented in this dissertation contains the results of my research
performed at the Computer Engineering Laboratory of the Electrical Engi-
neering Department, Delft University of Technology, and Philips Research

Laboratories in Eindhoven, The Netherlands in the last four years. During that time
I came across many people who supported and assisted me. I would like to take
the opportunity to thank them.

First and foremost, I thank my advisor Prof.dr. Stamatis Vassiliadis for giving
me the opportunity to perform my PhD research within his group, as well as for his
technical advices and moral support over the years. I am especially indebted to him
for guiding me through the fascinating domain of reconfigurable computing. His
belief that this new paradigm is about to become the breaking idea in a computer
science world almost drained of major ideas is the wind in poop without which the
‘Computer Engineering Laboratory’ ship would never reach its destination.

I would also like to acknowledge the contribution of Dr. Sorin Coţofană. In
addition to supporting me during the research activity, he has guided me through
the trials and tribulations of the life abroad. He has been an endlessy patient partner
and friend always ready to help me. Thank you.

I also thank Prof.dr. Mircea Bodea for giving a hand to my destiny. Without his
support I might have never had the chance to start a dissertation at Delft University
of Technology.

At Philips Research Laboratories in Eindhoven I hugely enjoyed the company
of Dr. Jos van Eijndhoven. His numerous suggestions have improved the content
of this dissertation. Thank you.

To my colleagues Stephan Wong, Stephan Suijkerbuijk, and Pyrrhos Stathis
who helped me with propositions translation into Dutch, abstract translation into
Dutch, and abstract translation into Greek, respectively, a warm thank you.

I want also thank Lidwina Tromp for taking the trouble to help me through the
bureaucratic process that I came across. Without her support, I would have not
been able to focus strictly on research.

iii

Special thanks go to my good friend Mike Mananedakis, who proved that
‘a friend in need is a friend indeed.’

To my parents, for all their unconditional support they have given me over the
years. Their belief in me and my abilities has allowed me to pursue my dreams.
For this and their love I owe them a debt of gratitude.

This project was funded by the doctoral fellowship RWC-061-PS-99047-ps
from Philips Research Laboratories in Eindhoven, The Netherlands.

Mihai Sima Victoria, B.C., Canada

February 11, 2004

iv

Contents

Abstract i

Acknowledgments iii

List of Acronyms 1

List of Figures 3

List of Tables 7

List of Algorithms 9

List of Trademarks 11

1 Introduction 13

1.1 Problem overview and dissertation scope 15

1.2 Open questions and terminology 17

1.3 Overview of dissertation . 20

2 Reconfigurable Computing Paradigm 23

2.1 Reconfigurable Hardware . 24

2.2 A microcoded computing machine 26

2.3 Field-programmable Custom Computing Machines 29

2.4 Conclusion . 38

v

3 The ρ–TriMedia Architecture 39

3.1 Standard TriMedia–CPU64 architecture 40

3.2 The architecture of the multiple-context FPGA 42

3.3 The ρ–TriMedia processor . 44

3.4 ρ–TriMedia development flowchart 49

3.5 ρ–TriMedia programming methodology 50

3.6 TriMedia–CPU64 processing domain 57

3.7 Conclusion . 58

4 Inverse Discrete Cosine Transform 61

4.1 Theoretical background . 61

4.2 2-D IDCT pure-software implementation 63

4.3 1-D IDCT implementation on FPGA 64

4.4 2-D IDCT implementation on ρ–TriMedia 72

4.5 Conclusion . 79

5 Inverse Quantization 81

5.1 Theoretical background . 82

5.2 IQ pure-software implementation 83

5.3 IQ implementation on FPGA . 84

5.4 IQ implementation on ρ–TriMedia 86

5.5 Conclusion . 97

6 Entropy Decoding 99

6.1 Theoretical background . 100

6.2 Entropy decoder pure-software implementation 103

6.3 Variable-length decoding in FPGA 113

6.4 Entropy decoder implementation on ρ–TriMedia 121

6.5 Experimental results . 128

6.6 Conclusion . 137

vi

7 Pel Reconstruction 139

7.1 Pel reconstruction theoretical background 139

7.2 Pel reconstruction implementation on ρ–TriMedia 141

7.3 Experimental results . 146

7.4 Conclusion . 149

8 YCC-to-RGB Color Space Conversion 151

8.1 Theoretical background . 152

8.2 YCC-to-RGB pure-software implementation 154

8.3 YCC-to-RGB implementation on FPGA 155

8.4 YCC-to-RGB implementation on ρ–TriMedia 156

8.5 Conclusion . 161

9 Conclusions 163

9.1 Summary . 163

9.2 Contributions . 166

9.3 Proposed research directions . 168

A MPEG2 Statistics 169

Bibliography 171

Samenvatting 185

Rezumat ı̂n limba română 187

����́�
�
 �
� ���
����́ ���

List of Publications 191

Curriculum Vitae 195

vii

viii

List of Acronyms

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction Processor

CPU Central Processing Unit

CU Configuration Unit

FCCM Field-programmable Custom Computing Machines

FPA Field-Programmable Array

FPGA Field-Programmable Gate Array

FPL Field-Programmable Logic

GPP General-Purpose Processor

IDCT Inverse Discrete Cosine Transform

IQ Inverse Quantization, Inverse Quantizer

MPEG Moving Picture Experts Group

RC Reconfigurable Computing

RFU Reconfigurable Functional Unit

RLD Run-Length Decoder

SRAM Static Random-Access Memory

VLD Variable-Length Decoding, Variable-Length Decoder

VLIW Very-Long Instruction Word

1

2

List of Figures

1.1 The performance of FCCMs against GPPs and ASICs. 14

2.1 Context ID broadcasting. 25

2.2 The basic microprogrammed computer. 27

2.3 The microcode concept applied to FCCMs. The ∆ arrangement. . 30

2.4 The PRISC architecture . 32

2.5 The MorphoSys architecture . 33

2.6 The PipeRench architecture (solid lines are data paths, dashed lines
are address and control paths) . 34

2.7 The RaPiD engine – adapted from [33] 35

2.8 The symplified organization of the MOLEN processor – from [117]. 36

2.9 The MOLEN instruction format. 37

3.1 TriMedia–CPU64 organization – adapted from [113]. 40

3.2 ACEX 1K logic element structure and timing microparameters. . . 43

3.3 The TriMedia-CPU64 VLIW core extension. 45

3.4 The hardwired double-slot operation instruction format. 48

3.5 The RFU double-slot instruction format. 48

3.6 The syntax and annotation code for a user-defined IDCT operation. 49

3.7 100 MHz reduction modules on Altera’s ACEX EP1K100 (speed
grade -1) FPGA. 56

3.8 A generic video codec. 57

4.1 The modified ‘Loeffler’ algorithm. 62

3

4.2 The butterfly – [67]. 63

4.3 The rotator – [67]. 63

4.4 Three possible implementations of the rotator. 63

4.5 The computing scenario of 8 × 8 IDCT on the extended TriMedia. 65

4.6 Bypassing the first transposition. 65

4.7 Sign-extension for: (a) – 15-bit multiplier; (b) – 13-bit multiplier. . 67

4.8 Rounding-To-Nearest implementation. 67

4.9 Rounding a real value to the nearest integer. 67

4.10 The partial product matrix and the selected reduction steps for mul-
tiplication by the constant C′

0. 68

4.11 The partial product matrix and the selected reduction steps for mul-
tiplication by the constant C′

1. 69

4.12 The partial product matrix and the selected reduction steps for mul-
tiplication by the constant S′

1. 69

4.13 The partial product matrix and the selected reduction steps for mul-
tiplication by the constant C′

3. 70

4.14 The partial product matrix and the selected reduction steps for mul-
tiplication by the constant S′

3. 70

4.15 The partial product matrix and the selected reduction steps for mul-
tiplication by the constant C′

6. 71

4.16 The partial product matrix and the selected reduction steps for mul-
tiplication by the constant S′

6. 71

4.17 The 1-D IDCT pipeline. 72

4.18 Schedule result for a 1-D IDCT having the latency of 16 and re-
covery of 2 (LD stands for LOAD, RD for read, WR for write, ST
for STORE, and T for TRANSPOSE). 73

4.19 The speed-up of various 2-D IDCT implementations on several
state-of-the-art architectures relative to standard TriMedia–CPU64. 80

5.1 The IQ-4 implementation on FPGA. 84

5.2 Schedule result for an IQ-4 unit having the latency of 18 and re-
covery of 2 (LD stands for LOAD, RD for read, WR for write, and
ST for STORE). 87

4

5.3 Schedule result for an IQ-8 unit having the latency of 18 and re-
covery of 2 (LD stands for LOAD, RD for read, WR for write, and
ST for STORE). 89

5.4 Schedule result for an IQ-8 unit having the latency of 18 and re-
covery of 2. Two 8 × 8 blocks are processed per loop iteration
(LD stands for LOAD, RD for read, WR for write, and ST for STORE). 90

5.5 Schedule result for two IQ-4 units, each having the latency of 18
and recovery of 2 (LD stands for LOAD, RD for read, WR for write,
and ST for STORE). 91

5.6 Schedule result for two IQ-4 units, each having the latency of 18
and recovery of 2. A single 8 × 8 block is processed per loop
iteration (LD stands for LOAD, RD for read, WR for write, and ST
for STORE). 93

5.7 Schedule result for four IQ-4 units, each having the latency of 18
and recovery of 2 (LD stands for LOAD, RD for read, WR for write,
and ST for STORE). 95

6.1 Variable-length decoding principle. 100

6.2 Run-length decoding principle. 101

6.3 MPEG2–compliant entropy decoding example. 102

6.4 The flowchart of the variable-length decoding procedure. 112

6.5 The conceptual VLD-1 implementation on FPGA. 117

6.6 The detailed VLD-1 implementation on FPGA. 118

6.7 The FPGA–based VLD-2. 120

6.8 The original bitfunshift and extended bitfunshift operations. 122

6.9 Updating the register copy of the leading (most significant) 64-bit
chunks of the VLC bit-string. 122

6.10 The dataflow of the VLD-1–based entropy decoder: (a) – without
grafting; (b) – with grafting. 125

6.11 The firing-up process of the entropy decoder software pipeline. . . 127

6.12 The format of the nz coeff pos relative to a macroblock. 129

7.1 Pel reconstruction conceptual diagram – adapted from [70]. 141

7.2 The pieces of code that benefit from FPGA support. 142

5

7.3 Three possible computing scenarios of pel reconstruction. 143

7.4 The winning computing scenario of pel reconstruction. 147

7.5 ρ–TriMedia versus standard TriMedia speed-up. 148

8.1 Two–dimensional 2–fold upsampling by replication. 153

8.2 Color space conversion strategy for the inner loop. 155

8.3 The color space converter implementation on FPGA. 157

8.4 Scheduling result for a CSC unit having the latency of 10 and re-
covery of 2. 158

6

List of Tables

2.1 The PRISC PFU instruction format 33

3.1 Performances of several reduction modules for ACEX EP1K100
FPGA (Speed Grade -1). 54

4.1 The average number of coded blocks per slice for a number of
MPEG-conformance bit-strings. 75

4.2 Performance figures for 8 × 8 IDCT on (FPGA-augmented) Tri-
Media. 76

4.2 Performance figures for 8 × 8 IDCT on (FPGA-augmented) Tri-
Media (contd.). 77

4.3 2-D IDCT performance figures on state-of-the-art architectures. . 79

5.1 The average number of coded blocks per slice – from Appendix A. 88

5.2 Performance figures for IQ. 96

6.1 Selection of VLC tables . 101

6.2 The original VLC table format. 104

6.3 The proposed VLC table format. 107

6.4 Number of address lines, size, and offset for each VLC table. . . . 108

6.5 First VLC partition . 109

6.6 Second VLC partition . 109

6.7 Third VLC partition . 109

6.8 Forth VLC partition . 109

6.9 Fifth VLC partition . 109

7

6.10 Sixth VLC partition . 110

6.11 Seventh VLC partition . 110

6.12 Eighth VLC partition . 110

6.13 Partitioning of the Tables B14 and B15 into groups and classes. . . 116

6.14 Intrinsic MPEG-2 stream statistics – excerpt from Appendix A. . . 129

6.15 VLD-2 – The format of the first argument register – Ry (uint64). 131

6.16 VLD-2 – The format of the second argument register – Ryy (uint64).131

6.17 VLD-2 – The format of the rezult register Rz (vec64sh). 131

6.18 VLD-2 – The format of the rezult register Rw (vec64ub). 132

6.19 Entropy decoding experimental results. 134

6.20 Relative efficiency of a hardwired VLD-2. 136

7.1 MPEG-2 statistics for several conformance bit-strings – excerpt
from Table A.2. 144

7.2 Total number of blocks, macroblocks, slices, and pictures/frames
for several MPEG-2 conformance scenes – excerpt from Table A.1. 144

7.3 Cache miss penalty, FPGA context switching overhead, and
pipeline fire-up + flushing overhead for different computing sce-
narios. 145

7.4 Pel reconstruction experimental results for the winning computing
scenario. 145

7.5 Pel reconstruction relative improvement. 148

8.1 Performance figures for Y ′CbCr-to-R′G′B′ conversion. 160

A.1 Total number of variable-length symbols (DCT coefficients and
end-of-block), blocks, macroblocks, slices, and pictures/frames for
several MPEG-2 conformance bit-strings. 169

A.2 MPEG-2 statistics for several conformance bit-strings. 170

8

List of Algorithms

1 An example of a C-level code calling the RFU 51

2 An example of a deep software pipeline calling long-latency RFU-
based operation . 53

3 IQ-4 with four phases . 94

4 Entropy decoder routine – reference implementation 105

5 Converting the level from 8-bit unsigned to a 16-bit signed integer 107

6 TriMedia-specific code for testing the end-of-block condition . . . 108

7 Entropy decoder routine with the prologue exposed to compiler . . 114

8 Color space conversion – pure software solution. 154

9

10

List of Trademarks

All trademarks and registered trademarks are the property of their respective
holders and are acknowledged.

TriMedia–CPU64™ is the property of Royal Philips Electronics and designates a
processor model targeted to research activities.

ACEX 1K® family of programmable logic devices is the property of Altera
Corporation.

MAX+PLUS-II® programmable logic design environment is also the property of
Altera Corporation.

Leonardo Spectrum® synthesis environment is the property of Mentor Graphics.

ModelSim® digital simulation tool is also the property of Mentor Graphics.

11

12

Chapter 1

Introduction

O
ne of the fundamental trade-offs in the design of a computing machine in-
volves the balance between flexibility and performance. At one extreme
of the processing spectrum a General-Purpose Processor (GPP) provides

flexibility at the expense of performance. At the other extreme Application-Specific
Integrated Circuits (ASIC), achieve high performance at the expense of flexibil-
ity. Concerning multimedia, which is the main domain of this dissertation, we
would like to mention that the digital processing of audio, video, speech, and
graphics data places a high demands on devices for transmission, storage, and
computation. Especially the video requires a large amount of information band-
width unless compression technology is used. In turn, the compression technol-
ogy calls for a large amount of processing. For example, National Television
Systems Committee (NTSC) resolution MPEG-2 [74] decoding requires more than
400 MOPS, and 30 GOPS are required for encoding in real time. For this rea-
son, the multimedia functions have been traditionally implemented in ASICs, or
in hardwired-assists in Application-Specific Instruction Processors (ASIP). Due to
the ASIC/ASIP hardwired-assist lack of flexibility, a different full-custom circuit
is needed for each particular task. Also, even with slight improvements and/or
changes over existing devices, the ASIC has to be redesigned, which translates
to a considerable engineering effort. With today’s rapidly evolving standards and
functional requirements, these fixed-function devices are prone to rapid obsolence.
On the other side, a programmable computing platform allows functions to be
implemented in software rather than in custom hardware. This dramatically
reduces the development cost and time-to-market versus the traditional fixed-
function design approach, and ensures that a single device can be applied in a
range of different products and adapted to quickly evolving standards in the media
domain.

13

The ability for providing a hardware platform which can be metamorphosed
under software control has established Reconfigurable Computing (RC) [68],
[119], [69], as an emerging computing paradigm for more than ten years. Accord-
ing to this paradigm, the main idea in improving the performance of a computing
machine is to define custom computing resources on a per-application basis, and
to dynamically configure them onto an Field-Programmable Gate Array (FPGA)
[14]. In this way, a large number of application-geared computing units can be
emulated. Therefore, the reconfigurable computing paradigm appears to be the po-
tential solution to design a computing engine that acts like an ASIC but has the
GPP flexibility.

As a general view, a computing machine working under the Reconfigurable
Computing paradigm typically includes a General-Purpose Processor (GPP) aug-
mented with an FPGA. The basic idea is to exploit both the GPP flexibility
to achieve good performance for a large class of control-dominant applications,
and FPGA capability to implement application-specific computations for data-
dominant applications. Such a hybrid is referred to as a Field-Programmable Cus-
tom Computing Machine (FCCM) [15], [41]. The synergism of GPP and FPGA
may provide the possibility to achieve orders of magnitude improvements in per-
formance over a GPP alone, while preserving the flexibility of the programmed
machines over ASICs in implementing a large number of applications. However,
the FCCM performance in terms of speed and power may still be lower than the
performance of an ASIC. A map of the peformance of FCCMs against GPPs and
ASICs is depicted in Figure 1.1.

GPP

ASIC

Programmability

Performance

FCCM

Figure 1.1: The performance of FCCMs against GPPs and ASICs.

In this dissertation we focus on Media FCCMs – reconfigurable computing
platforms that accelerate the digital processing of audio, video, and graphics. In
particular, we analyze the augmentation of TriMedia–CPU64™ – a media-oriented
64-bit 5 issue-slot VLIW processor – with a field-programmable gate array, and
assess the potential performance such hybrid achieves when performing media-
oriented tasks, e.g., MPEG decoding.

14

In this chapter, we highlight the initial requirements and freedom degrees of our
research activity, that define the dissertation scope. We especially pose three fun-
damental research questions that are to be answered throughout the presentation.
The chapter is organized as follows. The problem overview and the dissertation
scope are presented in Section 1.1. Major open questions are enumerated in Sec-
tion 1.2. The usage of particular words is discussed in the same section. Section 1.3
completes the chapter with an overview of the dissertation.

1.1 Problem overview and dissertation scope

A significant amount of work has been carried out in reconfigurable computing
area for more than a decade. Esentially, the research activity connected to media
processing domain has mainly focused on two directions:

1. Building a reconfigurable device, which is tuned to stream-processing tasks
[43, 33, 72, 37, 101].

2. Augmenting a general-purpose processor, e.g., MIPS, with a reconfigurable
core [87, 124, 48, 92, 72, 59, 101].

The first direction fails the full programmability requirement and consequently
it is not discussed any longer. Concerning the second research direction, we would
like to emphasize that thus far it has been assumed a rather simple general-purpose
processor, for which any FPGA-based assist is likely to be of great help. In this dis-
sertation we are concerned with powerfull processors that may not be easily helped
with FPGA addition. Moreover, current proposals do not consider the media pro-
cessing domain extensively; in particular, tasks that do not exhibit instruction-level
paralellism, e.g., entropy decoding, or exhibit data- and/or instruction-level paralel-
lism only in certain regions, e.g., pel reconstruction, have not been considered. As-
suming a powerful processor (in particular, a well-engineered VLIW engine as De-
Hon mentioned [28]) that is highly optimized to media processing domain, achiev-
ing a significant performance improvement within the considered processing do-
main is much more challenging. For this dissertation, TriMedia–CPU64™ VLIW
core, which is itself roughly three times faster than the commercially-available
TriMedia-1000 processor, is subject to improvement by augmentation with a re-
configurable core. The initial requirements and freedom degrees of our research
activity [81] can be summarized as follows:

1. Investigate the reconfigurable computing paradigm and assess what gains
can be expected from it in the framework of a media-oriented VLIW core.

15

2. Propose an extension of the instruction set architecture that incorporates a
reconfigurable functional unit into the VLIW core.

3. Use the TriMedia–CPU64 architecture as an experimental platform for the
media-oriented VLIW core.

4. Quantify the TriMedia–CPU64 + FPGA hybrid with realistic performance
figures.

Based on these requirements and the available development tools for TriMedia
and FPGA, we restrict our dissertation scope as follows.

• Since a processor from the media-oriented VLIW class has to be addressed,
we do not analyse superscalar general-purpose processors augmented with
multimedia-assist instructions, e.g., MMX-extended Pentium. The FPGA
augmentation of such superscalar processors is a parallel research direction
that is currently carried out by other members of the Computer Engineering
Laboratory at Delft University of Technology [20].

• As mentioned, a primary goal is to augment TriMedia–CPU64 with a recon-
figurable core while only minimal changes in the basic architecture, com-
piler, scheduler, and simulator are needed. Thus, we assume that TriMedia–
CPU64 is augmented with a Reconfigurable Functional Unit (RFU) that
works synchronously and under the direct supervision of the host processor
as any other hardwired functional unit. That is, the RFU reads in and writes
back registers as specified by the syntax of the instruction issued by TriMe-
dia instruction decoder. Also, the latency of an operation executed by RFU is
deterministic (i.e., it does not depend on the input data), and therefore known
at compile time. However, re-entrant or non-re-entrant computing units can
be mapped on the RFU as long as these constraints are fulfilled.

• We would like to emphasize that we address only single-processor systems
in this dissertation. While the augmentation the TriMedia–CPU64 with an
FPGA-based coprocessor working asynchronously with the host processor is
an interesting research direction, such approach resembles somehow a dual-
processor system. Since the efficiency of a processor–coprocessor system is
not necessarily an issue related to the reconfigurable computing paradigm,
we will not consider it any further. However, an FPGA-augmented copro-
cessor can actually be thought of as a host controller (which can be even
TriMedia-based, as in the one envisioned to act as a VLD engine [40]) that

16

is augmented with a reconfigurable functional unit. Therefore, our achieve-
ments concerning FPGA-augmented TriMedia–CPU64 can easily be used to
build an FPGA-augmented co-processor as well.

• A fine-grain FPGA (ACEX EP1K100 from Altera) is used as an experimen-
tal reconfigurable platform. Although the architectural extension we propose
in the dissertation conceptually allows for augmentation with a coarse-grain
FPGA as well, the rationale for using a fine-grain device is that we aim to
assess the performance of the TriMedia + FPGA hybrid, while a large flexi-
bility in defining circuits on the reconfigurable core is preserved. We would
also like to note that the debate ”fine-grain or coarse-grain reconfiguration
core” is a research direction by itself that we do not address in this disserta-
tion. Since we envision large silicon area as an implementation commodity,
the possible larger area of a fine-grain device with respect to a coarse-grain
device is likely not to be a serious restriction [81].

• A hypothetical 4-context FPGA having the architecture of the raw hardware
and the context-reconfiguration scheme of an ACEX EP1K100 device is as-
sumed. Although a multiple-context FPGA is not commercially available for
the time being, the research activity that has been carried out by the scien-
tific comunity in the last 10 years encourages us to consider multiple-context
reconfigurable cores as being implementable in the near future.

• The evaluation of the FPGA-augmented TriMedia–CPU64 performance is
carried out within TriMedia–CPU64 media-processing domain. In partic-
ular, we focus on MPEG video decompression tasks. As a general view,
compression removes redundancy in the signal to be compressed. A decom-
pression task is basically a serial process and, thus, lacks instruction-level
parallelism. Since a VLIW processor has to benefit from instruction-level
parallelism in order to be efficient, the decompression task is likely to be
an intricate function on TriMedia–CPU64. This is the main reason why
MPEG decoding is a proper benchmark for evaluating the FPGA-augmented
TriMedia–CPU64.

1.2 Open questions and terminology

As indicated earlier, the main idea of the reconfigurable computing paradigm is to
define new computing units on a per-application basis, and to dynamically config-
ure them onto FPGA. At the architectural level, a common approach to manage
this process is to introduce a new instruction for each portion of the application

17

mapped into FPGA [47, 5]. That is, a new opcode is used for each new reconfig-
urable operation, which severely restrict the operation to be performed in FPGA.

An architectural extension which requires a single operation code while a rela-
tive large number of reconfigurable operations can be encoded within the standard
RISC instruction format has been proposed by Razdan in the Programmable RISC
(PRISC) project [87]. However, the relative large number of reconfigurable oper-
ations (namely 211 = 2048) is achieved at the expenses of a small-width opcode
field (thus, only a small number of opcodes are still available to define the hard-
wired operations, namely 26 = 64), and also of small-width fields for the source
and destination registers (thus, only a small number of operands can be encoded,
namely 25 = 32). A better approach than PRISC is provided by the MOLEN ρµ–
coded processor [117], which trade-offs register encoding for reconfigurable oper-
ations encoding. In MOLEN, all the bits which are not used for the opcode point
to a microcode address where a microcode routine performs the desired opera-
tions. The expenses induced by the MOLEN approach are additional specialized
registers and proper MOVE instructions between the standard and these additional
registers. In this dissertation we use a MOLEN subset to support reconfigurability
in TriMedia–CPU64.

Based on these considerations, the following major open question can be posed
with respect to media-oriented VLIW processors in general, and TriMedia–CPU64
processor in particular:

1. What is the minimal set of architectural changes needed for incorporat-
ing the reconfigurable array into the TriMedia–CPU64 VLIW core?

We investigate such question and propose a way to encode a large number of re-
configurable operations while only a single entry in the opcode space is needed. In
the same time, we show that the TriMedia–CPU64 instruction format is preserved.
Related to the first major open question is:

2. What is the impact of the architectural changes on the compilation and
simulation tool chain of the TriMedia–CPU64 core?

For historical reasons, the TriMedia–CPU64 development tools contain a retar-
getable compiler and simulator, which were used during the processor development
stages. It is this retargetability attribute of the development tools that proves to be
easily adaptable to support the FPGA-dedicated operations, as we will show later
on.

18

Once the mechanism that incorporates the reconfigurable array into the VLIW
core is provided, a natural major open question to be posed is:

3. What is the influence of the reconfigurable array on the TriMedia–
CPU64 computing performance?

To answer to these questions, our research activity calls for a high-level archi-
tecture design, and new implementation of the multimedia kernels. Consequently,
it includes algorithm research, and VHDL design. As it is shown later on, the aug-
mentation of the TriMedia–CPU64 processor with a field-programmable gate array
results in significant performance-wise advantages for a typical set of multimedia
kernels.

Before we present the overview of the dissertation, we discuss our usage of
particular words and terminology.

Terminology: In the discipline of computer engineering, the term architecture
is typically used as an abbreviation for computer architecture, which is defined
as the conceptual structure, attributes, and behavior of a computer as seen by a
machine-language programmer [6]. A computer, in turn, consists of three major
components: the processor that includes a central processing unit and a number of
on- or off-chip coprocessors, memory, and input/output system. For this thesis, we
examine only the design of the central processing unit, which is also commonly re-
ferred to as processor core. Hence, in this dissertation, we use the term architecture
as an abbreviation for processor core architecture rather than an entire computer if
we do not specify otherwise.

Programmable-Logic Devices (PLD) and Field-Programmable Gate Arrays
(FPGA) are both reconfigurable devices. However, we pre-eminently above all
use the term of FPGA hereafter to refer to a reconfigurable device. The higher
logic capacity of FPGAs and the efforts of the scientific comunity to augment FP-
GAs with PLD-like programmable logic in order to make use of both FPGA and
PLD characteristics, support our choice for this terminology.

A reconfigurable processor is a programmable computing machine working
under the reconfigurable computing paradigm. We make a distinction between a
reconfigurable design and an FPGA-mapped computing unit. A reconfigurable
design is a hardware-software compound that consists of FPGA configuration in-
formation defining custom computing units, and software routines including calls
to FPGA-mapped computing units.

Finally, we use the term functional unit to refer to a hardwired resource within

19

the CPU, such as the arithmetic and logic unit, for which the syntax and semantics
of the supported operations are both defined at manufacturing time. In turn, we use
the term reconfigurable functional unit (RFU) to refer to a functional unit contain-
ing a reconfigurable core, for which only the syntax of the custom operations are
defined at manufacturing time. The semantics can be defined by the user as needed,
and changed at boot and/or run time. We use the term latency to refer to the time
lag expressed in clock cycles between the issue of an operation and availability
of its result. We use the term recovery to refer to the minimum number of clock
cycles between the issue of successive operations on the same functional unit.

1.3 Overview of dissertation

In the second chapter, we address the Reconfigurable Computing paradigm and in-
troduce a formalism based on microcode according to which any custom operation
performed by an FPGA-mapped computing unit is executed as a microprogram
with two basic stages: SET CONFIGURATION and EXECUTE CUSTOM OPERATION.
Based on the SET/EXECUTE formalism, we provide a brief survey of field-
programmable custom computing machines, with an emphasize on the reconfig-
urable microcoded MOLEN processor. The survey we propose is organized as a
taxonomy. The two classification criteria we use are: (1) the verticality and hor-
izontality of the microcode, and (2) the availability of an explicit SET instruction
that is exposed to the programmer. The net effect of this approach is a view on
FCCMs at the architectural level, while the implementation and realization details
are hidden. In this way, the principal interactions within a processor system are
revealed without the need to refer to a particular user environment.

In Chapter 3 we describe the organization of the FPGA-augmented TriMedia–
CPU64 processor, which encompasses an FPGA-based Reconfigurable Functional
Unit, and a Configuration Unit managing the reconfiguration of the FPGA. Subse-
quently we propose an extension of TriMedia–CPU64 instruction set architecture,
which incorporates support for reconfigurable hardware. The extension is fully
compatible with the existing TriMedia–CPU64 instruction format and requires a
single opcode entry for all reconfigurable operations. We also present a program-
ming methodology for FPGA-augmented TriMedia, highlighting the high-level
C as well as FPGA programming techniques. We complete the chapter with an
overview of the TriMedia–CPU64 media processing domain.

The Chapters 4 and 5 address two computational-demanding tasks, which the
standard TriMedia–CPU64 is highly optimized for: Inverse Discrete Cosine Trans-
form (IDCT) and Inverse Quantization (IQ). Both tasks exhibit a large data-level

20

parallelism, thus are suitable for SIMD-style processing with TriMedia operations.
We first present the implementation details of two FPGA-mapped computing units
that support the computation of the mentioned tasks. Then we analize the organiza-
tion of several software pipeline loops calling the FPGA-mapped units, and assess
their performance achieved on the FPGA-augmented TriMedia–CPU64. We show
that a significant improvement of 40% for IDCT and 32% for IQ is achieved on
FPGA-augmented TriMedia–CPU64 over standard TriMedia–CPU64.

In Chapter 6 we show that significant improvement can also be achieved on
FPGA-augmented TriMedia–CPU64 for a task that is strictly sequential, and thus
does not exhibit instruction-level parallelism: Entropy Decoding. We first propose
a strategy to partially break the data dependency related to variable-length decod-
ing. Then we show that an FPGA-based Variable Length Decoder, which decodes
two variable-length symbols per call (VLD-2), leads to the most efficient entropy
decoding in terms of instruction cycles. Specifically, between 7.8 and 9.1 cycles
are needed per symbol, which translates to 50% improvement over a pure-software
implementation.

Chapter 7 analyses TriMedia–CPU64 extended with the Entropy Decoding, IQ,
and IDCT reconfigurable designs described in the previous chapters, and assesses
the performance improvement such extensions have when performing MPEG2–
compliant pel reconstruction. In particular, we consider three computing scenarios
for pel reconstruction: the entire (1) macroblock, (2) slice, and (3) picture/frame
is fully processed before the next reconfigurable design is launched. By decod-
ing a set of five MPEG-conformance bit-strings on the TriMedia–CPU64 cycle-
accurate simulator, we show that processing at slice level is the winner scenario,
and a speed-up of 1.4× is achieved on FPGA-augmented TriMedia–CPU64 over
standard TriMedia–CPU64.

Chapter 8 presents a reconfigurable design for YCC-to-RGB color space con-
version – a computing-intensive video processing task. Strictly speaking, this task
is not part of MPEG decoding process. However, since it is always carried out
following MPEG decoding, we consider that it is worth to be analized. For this
function, we also show that a significant improvement of 44% can be achieved
over a pure-software implementation.

Chapter 9 concludes the dissertation summarizing our findings, discussing the
main contributions, and suggesting open areas for further research.

21

22

Chapter 2

Reconfigurable Computing Paradigm

T
he ability for providing a hardware platform which can be metamorphosed
under software control has established Reconfigurable Computing (RC)
[38], [68], [119], [69], [46], [45], [60] as an emerging computing paradigm.

Typically, a processor working under the RC paradigm includes a reconfigurable
core, which different computing units can be statically or dynamically instantiated
on and then activated at application run-time. By taking advantage of the freedom
to adapt these computing units to application, the execution of the critical parts of
the application is accelerated. With the Reconfigurable Computing paradigm the
user can navigate on two dimensions to implement application-geared computing
facilities: a spatial dimension and a temporal dimension. In the spatial dimension,
tasks which are computational demanding can be efficiently executed by a properly
designed FPGA-mapped computing unit. In the temporal dimension, a sequential
reconfiguration strategy can be used in order to deal with insufficient configurable
hardware. In this way, by swapping the configurations in and out of the FPGA
upon demand, only the necessary hardware is instantiated at any given time. It is
interesting to note that, as opposed to a program of a classical processor which
includes only a software image of the algorithm for the static hardware platform,
an FCCM program includes a hardware image of the computing resources, and
also a software image that will run on those resources.

In connection to the spatial and temporal dimensions, we would also like to
mention that a mask-programmed gate array (MPGA), a fused- or PROM-based
array [46], or an ASIC exhibit only spatiality, as they cannot be reprogrammed by
the end user. On the other hand, a microprocessor-based FPGA emulator, such as
that mentioned in [107], exhibits at most temporality, as it cannot provide support
for adaptive hardware. Thus, we can state that:

23

The computing paradigm, which gives the programmer the freedom to
navigate along both spatial and temporal dimensions, can be consid-
ered to be reconfigurable computing.

Due to these considerations, FPGAs which are not SRAM-based cannot be
used with the new paradigm. Therefore, we will refer to SRAM-based FPGAs
as simple FPGAs hereafter, and will provide additional explanations only when
necessary in order to avoid confusions. It is interesting to note that the in-system
reprogramming capability of SRAM-based FPGAs has been initially considered as
a weakness due to the volatility of programming data, but eventually it has been
proven to be the key issue in Reconfigurable Computing.

Numerous computing machines working under the reconfigurable computing
paradigm have been proposed in the recent past. In this chapter we present an
overview of the most significant achievements in the Reconfigurable Computing
domain. In that sense we introduce a formalism based on microcode, which al-
lows a characterization of the reconfigurable computing domain at the architectural
level, while the implementation and realization details are hidden. The chapter
is organized as follows. In Sections 2.1 and 2.2 we review the terminology and
concepts of the reconfigurable hardware and microcoded engines, respectively. A
taxonomy of field-programmable custom computing machines with an emphasize
on the MOLEN architectural and programming model is presented in Section 2.3.
The last section completes the chapter with closing remarks.

2.1 Reconfigurable hardware – terminology and concept

A device which can be configured in the field by the end user is usually referred
to as a Field-Programmable Device (FPD) [28], [46], [13]. Generally speaking,
the constituents of an FPD are Raw Hardware and Configuration Memory. The
function performed by the raw hardware is defined by the information stored into
the configuration memory. The field-programmable devices can be classified in
two major classes: Programmable Logic Devices (PLD) and Field-Programmable
Gate Arrays (FPGA). Details on each class can be found for example in [14].
Although both PLD and FPGA devices can be used to implement digital logic
circuits, we will pre-eminently above all use the term of FPGA hereafter to refer
to a programmable device. The higher logic capacity of FPGAs and the numerous
attempts to augment the FPGA devices with PLD-like programmable logic in or-
der to make use of both FPGA and PLD characteristics, support our choice for this
terminology.

24

Some FPGAs can be configured only once, for example, by burning fuses.
Other FPGAs can be reconfigured any number of times, since their configuration
is stored in an SRAM. Initially considered as a weakness due to the volatility of
configuration data, the reprogramming capabilities of SRAM-based FPGAs led to
the new RC paradigm. By reconfiguring the FPGA under software control, cus-
tom computing units can be implemented on-the-fly. This way, computationally-
demanding operations can be executed in hardware rather in software.

The huge reconfiguration data rate that is needed to achieve a run-time re-
configuration [11] constitutes the major drawback of the RC paradigm. Attempts
to overcome this drawback led to different reconfiguration strategies which, in
turn, induced the name of the major FPGA architectural classes: Single-Context,
Multiple-Context, Partial Reconfigurable. In a single-context device, the complex-
ity of the circuitry for reconfiguration is kept at a minimum, a global reconfigura-
tion of the array being needed even for changing 1 bit of configuration information.

At the expense of an enlarged configu-

4−context
Configuration
Memory

Outputs

Global
Context

Identifier

Inputs
Hardware

Raw

Figure 2.1: Context ID broadcasting.

ration memory, a multiple-context FPGA
stores multiple layers of configuration in-
formation referred to as contexts, only
one of them being active at a time. An
extremely fast context switch is possi-
ble, e.g., by broadcasting a context iden-
tifier (Context ID) on a global selection
bus as depicted in Figure 2.1. In this
way, a fast global reconfiguration of the
processing elements and interconnection
switches [27], [110] or only of the in-
terconnection switches [9] is provided.
However, loading a new configuration

from off-chip is still limited by the low off-chip reconfiguration bandwidth. Usu-
ally, each layer of the configuration memory can be independently written. Thus,
the circuit defined by the active configuration layer may continue its execution,
while the non-active configuration layers are being reconfigured. In a partially re-
configurable device, means for a selective reconfiguration of a context is provided
[35], [89], [25], [24], [105], [106]. The highest flexibility in partial reconfigu-
ration is achieved by a random reconfiguration technique, which gives access to
the configuration storage space much like a random access memory. Despite of
these characteristics, the reconfiguration speed is limited by the narrow interface
to the configuration memory (typically 32-bit bus). We would like to mention that
the portion of the context that is not being configured may continue its execution.

25

Therefore, as in a multiple-context FPGA, the computation and reconfiguration can
be overlapped, but now this happens within the same context.

Four FPGA-mapped circuits are presented in the next chapters: 1-D IDCT,
inverse quantizer, variable-length decoder, and color space converter. As it will
become relevant throughout the dissertation, there are almost no commonalities
among these computing units. Consequently, to switch the active circuit, say, from
inverse quantizer to variable-length decoder, a global context reconfiguration has
to be carried out. Thus, partial reconfigurability does not bring any advantages
in terms of reconfiguration efficiency. This is the rationale for which only the
multiple-context reconfiguration is considered hereafter.

By defining and mapping new computing resources onto FPGA, the architec-
ture of the computing machine can be adapted to application. The idea of adap-
tating the architecture to application is not new. Till the new RC paradigm has
emerged, this adaptation has been performed by emulation on programmable hard-
ware. The code performing the emulation is denoted as microcode. The basics of
the microcoded computing machines and the flexibility to adapt their architecture
to application are the subject of the next section.

2.2 A microcoded computing machine

Figure 2.2 depicts the organization of a microprogrammed computing machine as
it has been described in [86]. In the figure, the following acronyms are used: GPR
– General Purpose Registers, ACC – Accumulator, CR – Control Registers, and PC
– Program Counter. For such a computer, a microprogram in Control Store (CS) is
associated with each incoming instruction to be emulated. This microprogram is
to be executed under the control of the Sequencer, as follows:

1. The sequencer maps the incoming instruction code into a control store
address, and stores this address into the Control Store Address Register
(CSAR).

2. The microinstruction addressed by CSAR is read from CS into the MicroIn-
struction Register (MIR).

3. The microoperations specified by the microinstruction in MIR are decoded,
and the control signals are subsequently generated.

4. The computing units perform the computation according to control signals.

26

Multiplier

micro−Control
RegistersAutomaton − CA)µ(

− PL)µ(

Adder L/S Unit

CSAR

Computing facilities

micro−Programmed Loop

Instruction

Sequencer
Status

M
IR

Shuffle

GPR ACC CR PC

Control
Store

. .
 .

. . .

Figure 2.2: The basic microprogrammed computer.

5. The sequencer uses status information generated by the computing facilities
and some information originating from MIR to prepare the address of the
next microinstruction. This address is then stored into CSAR.

6. When an end-of-operation microinstruction is detected, a jump is executed
to an instruction fetch microroutine. At the end of this microroutine, the new
incoming instruction initiates a new cycle of the microprogrammed loop.

In connection to this mechanism, let us assume we have a Computing Machine
(CM) and its instruction set. An implementation of the CM can be formalized by
means of the doublet:

CM = {µP , R} (2.1)

where µP is a microprogram which includes all the microroutines for implement-
ing the instruction set, and R is the set of N computing (micro-)resources or facil-
ities which are controlled by the microinstructions in the microprogram:

R = {r1 , r2 , . . . , rN} (2.2)

Let us assume the computing resources are hardwired. If the microcode1 is
exposed to the user, i.e., the instruction set is composed of microinstructions, there
is no way to adapt the architecture to application but by custom-redesigning the

1In this presentation, by microcode we will refer to both microinstructions and microprogram.
The meaning of the microcode will become obvious from the context.

27

computing facilities set, R. On the other hand, if the microcode is not exposed to
the user, i.e., each instruction is emulated by a microroutine, then the architecture
can be adapted by rewriting the microprogram µP .

Since the architecture of the microinstructions associated to the hardwired
computing resources is fixed, the adaptation procedure by rewriting the microcode
could have a limited efficiency: new microprograms are created to emulate the
behavior of instructions on fixed (i.e., inflexible) computing resources.

If the resources themselves are microcoded, the formalism recursively propa-
gates to lower levels. Thus, the implementation of each resource can be viewed as
a doublet composed of a nanoprogram (nP) and a nano-resource set (nR):

ri = {nP , nR} , i = 1, 2, . . . , N (2.3)

Now, the rewriting of the nanocode is limited by the fixed set of nano-resources.

At this point, we want to emphasize that the microcode is a recursive formal-
ism. The micro and nano prefixes should be used against an implementation refer-
ence level2 (IRL). Once such a level is set, the operations performed at this level
are specified by instructions, and are under the explicit control of the user. There-
fore, the operations below this level are specified by microinstructions, those on
the subsequent level are specified by nanoinstructions, and so on.

In connection with Figure 2.2, of particular interest is the number of comput-
ing resources each microinstruction controls. In this respect, the microinstructions
can be classified by the number of controlled resources according to the following
definition:

Definition 2.1 Given a hardware implementation which provides a number of
computing units, the amount of explicitly controlled units during the same “is-
sue” time unit (cycle) determines the verticality or horizontality of the microcode,
as follows:

• A microinstruction that controls multiple units in one cycle is horizontal.

• A microinstruction that controls a single unit is vertical.

Finally, we would like to mention that by eliminating instructions that require
emulation and by exposing vertical microcode to the programmer is having a RISC
architecture. When exposure regards horizontal microcode, it is having a VLIW
architecture [118].

2If not specified explicitly, the IRL is considered as being the level defined by the instruction
set. For example, although the microcode is exposed to the user in the RISC machines, the RISC
operations are specified by instructions, rather than by microinstructions.

28

2.3 Field-programmable Custom Computing Machines

The presence of the reconfigurable hardware (customizable hardware rather than
fixed hardware for emulation) opens up new ways to adapt the processor designs.
Assuming the resources are implemented on a programmable array, adapting the
resources to the application is entire flexible and can be performed on-line. In this
situation, the resource set R can be metamorphosed into a new one, R∗:

R −→ R∗ = {r∗1 , r∗2 , . . . , r∗M}, (2.4)

and so does the set of associated (micro)-instructions. It is entirely possible that
writing new (micro)-programs with application-specific (micro)-instructions may
be more effective than with fixed (micro)-instructions.

To have a view on FCCMs at the architectural level, while the implementa-
tion and realization details remains hidden, we further introduce a formalism by
which an FCCM architecture can be analyzed from the microcode point of view.
This formalism originates in the observation that every FPGA-related instruction
of an FCCM can be emulated, thus it can be mapped into a microprogram. With
this in mind, in the remaining we will provide a survey of numerous FCCMs that
have been proposed in the recent past. The survey is organized as a taxonomy of
FCCMs, in which the classification criteria are microcode related.

A microcode-based formalism for FCCMs. As we already mentioned, by mak-
ing use of the FPGA capability to change its functionality in pursuance of a recon-
figuring process, adapting both the functionality of computing facilities and mi-
croprogram in the control store to the application characteristics becomes possible
with the new RC paradigm. For the information stored in FPGA’s configuration
memory determines the functionality of the raw hardware, the dynamic implemen-
tation of an instruction on FPGA can be formalized by means of a microcoded
structure. Assuming the FPGA configuration memory is written under the control
of a Loading Unit, the control automaton, the FPGA, and the loading unit may
have a ∆ arrangement, as depicted in Figure 2.3. The circuits configured on the
raw hardware and the loading unit(s) are all regarded as controlled resources in
the proposed formalism. Each of the previously mentioned resources is given a
special class of microinstructions: SET for the loading unit, which initiates the re-
configuration of the raw hardware, and EXECUTE for the circuits configured on raw
hardware, which launches the custom operations.

In this way, any custom operation of an FCCM can be executed in

29

EXECUTE FIX

Resources (Facilities)
Fixed Computing LOADING UNIT

Instruction

Feedback

FPGA−assigned
assigned Instruction
Fixed Computing Resource

Feedback
Master Controller

−PL)

Micro−programmed loop

SET CONFIGURATIONEXECUTE CONFIGURATION

µ(

Feedback

Configurable Computing

RAW HARDWARE

Configuring
Resources (Facilities)

MEMORY
configuration

the
Determines

Resources (Facilities)

CONFIGURATION

FPGA

Figure 2.3: The microcode concept applied to FCCMs. The ∆ arrangement.

a reconfigurable manner, in which the execution is carried out as a mi-
croprogrammed sequence with two basic stages: SET CONFIGURATION, and
EXECUTE CUSTOM OPERATION. It is the SET/EXECUTE formalism we use in build-
ing the taxonomy of FCCMs. The net effect of this approach is to allow a view
on an FCCM at the level defined by the reference of the user, i.e., the architectural
level, decoupled from lower implementation and realization hierarchical levels. In
this way, the principal interactions within a processor system are revealed without
the need to refer to a particular user environment. We would like to mention that
our approach resembles the requestor/server formalism proposed by Flynn [34].

It is worth to specify that only EXECUTE FIXED OPERATION microinstructions
can be associated with fixed computing facilities, because such facilities cannot be
reconfigured. Also, assuming that a multiple-context FPGA [28] is used, activating
an idle context is performed by an ACTIVATE CONFIGURATION microinstruction,
which is actually a flavor of the SET CONFIGURATION microinstruction. Hereafter,
we will refer to all loading unit(s) and resource(s) for activating the idle context as
Configuring Resources (Facilities).

Since an FCCM includes both computing and configuring facilities, the state-
ment regarding the verticality or horizontality of the microcode as stated in Defini-
tion 2.1 needs to be adjusted, as follows:

Definition 2.2 For an FCCM hardware implementation which provides a num-
ber of computing and configuring facilities, the amount of explicitly controlled
computing and/or configuring facilities during the same “issue” time unit (cycle)
determines the verticality or horizontality of the microcode.

Therefore, any of the SET CONFIGURATION, EXECUTE CUSTOM OPERATION, and

30

EXECUTE FIXED OPERATION microinstructions can be either vertical or horizontal,
and may participate in a horizontal microinstruction.

Let us set the implementation reference level as being the level of instructions
in Figure 2.3. In the particular case when the microcode is not exposed to the up-
per level, an explicit SET instruction is not available to the user. Consequently, the
system performs by itself the management of the active configuration, i.e., without
an explicit control provided by user. In this case, the user “sees” only the FPGA-
assigned instruction which can be regarded as an EXECUTE CUSTOM OPERATION
microinstruction visible to the instruction level. Here, we would like to note that the
EXECUTE FIXED OPERATION microinstruction is always visible to the user. Con-
versely, when the microcode is exposed to the upper level, an explicit SET in-
struction is available, and the management of the active configuration becomes the
responsibility of the user.

A Proposed Taxonomy of FCCMs Before introducing our taxonomy, we would
like to overview the previous work in FCCM classification.

In [39] two parameters for classifying FCCMs are used: Reconfigurable Pro-
cessing Unit (RPU) size (small or large) and availability of RPU-dedicated local
memory. Consequently, FCCMs are divided into four classes. Since what exactly
means small and what exactly means large is subject to the complexity of the al-
gorithms being implemented and the available technology, the differences between
classes are rather fuzzy. Also, providing dedicated RPU memory is an issue which
belongs to implementation level of a machine; consequently, the implications to
the architectural level, if any, are not clear.

The Processing Element (PE) granularity, RPU integration level with a host
processor, and the reconfigurability of the external interconnection network are
used as classification criteria in [84]. According to the first criterion, the FCCMs
are classified as fine-, medium-, and coarse-grain systems. The second criterion
divides the machines into dynamic systems that are not controlled by external de-
vices, closely-coupled static systems in which the RPUs are coupled on the proces-
sor’s datapath, and loosely-coupled static systems that have RPUs attached to the
host as coprocessors. According to the last criterion, the FCCMs have a reconfig-
urable or fixed interconnection network.

In order to classify the FCCMs, the loosely coupling versus tightly coupling
criterion is used by other members of the FCCM community, e.g., [60], [124],
[56], [101]. In the loosely coupling embodiment, the RPU is connected via a bus
to, and operates asynchronously with the host processor. In the tightly coupling
embodiment, the RPU is used as a functional unit.

31

We emphasize that all these taxonomies are build using implementation criteria.
As the user observes only the architecture of a computing machine, classifying
the FCCMs according to architectural criteria is more appropriate. Since FCCMs
are microcoded machines, we propose to classify the FCCMs according to the
following criteria:

• The verticality/horizontality of the microcode.

• The explicit availability of a SET instruction.

While the first criterion is a direct consequence of the proposed formalism, sev-
eral comments regarding the second criterion are worth to be provided. An user-
exposed SET instruction allows the reconfiguration management to be done explic-
itly in software, thus being subject to compile-time optimization. The drawback
is that a more complex compiler is needed for scheduling the SET instruction at a
proper location in time. Conversely, if no architectural support for reconfiguration
management is provided, i.e., SET is not exposed to the user, such management is
carried out in hardware at run-time. Since the instruction window for hardware-
based scheduling is usually much smaller than that for software-based scheduling,
while the SET latency is on the order of hundreds or thousands of cycles, run-time
managed reconfiguration may lead higher reconfiguration penalty. However, with a
hardware-based management, the code compatibility between FCCMs with differ-
ent FPGA size and reconfiguration pattern can be preserved. In this later case, the
user has no concern about the reconfiguration, and the configuration management
is an implementation issue, much like the cache management in a conventional
processor is. In order to describe the classification process, several classification
examples are provided subsequently. We have to mention that, for each system, the
implementation reference level has been chosen such that as much FCCM-specific
information as possible is revealed.

PRISC [87] is a RISC processor aug-

Register file

. . .

MUX

FU FU PFU

Programming Ports
(address & data)

Pnum

Figure 2.4: The PRISC architecture

mented with Programmable Functional
Unit (PFU), which is connected to the
register file of the host (Figure 2.4).
On such programmable unit, application-
specific instructions can be implemented.
To control the PFU, the fixed-format of
32-bit R-type RISC instructions (two in-
put and one output registers) is used (Ta-

ble 2.1). When the value of the opcode field is equal with expfu (execute PFU),
then a PFU instruction is being called. Further, the 11-bit value of the Logical PFU

32

function (LPnum) indicates the required PFU configuration, i.e., the function to be
executed. Since a single fixed or programmable functional unit can be explicitly
controlled during a time cycle, the microcode is vertical.

Instruction format expfu rs rt rd LPnum
Number of bits 6 5 5 5 11

Table 2.1: The PRISC PFU instruction format

The PFU is implemented on a global-reconfigurable single-context FPGA. The
active configuration identifier is stored in a dedicated register (Pnum). If the value
of LPnum �= value of Pnum, a reconfiguration is needed. An exception is then
raised, the processor is stalled, and a reconfiguration process is initiated. As the
reconfiguration process is not under the control of the user, being managed in hard-
ware, a dedicated instruction for reconfiguration, i.e., a SET CONFIGURATION, is
not available.

As depicted in Figure 2.5, the

Core Processor

Frame Buffer
(2 x 128 x 64)

(8 x 8)
RC Array

Context

Main
Memory

DMA
Controller

TinyRISC

Memory
MorphoSys

Figure 2.5: The MorphoSys architecture

Morphoing System (MorphoSys)
[101] comprises five major com-
ponents: a MIPS-like RISC pro-
cessor core, called TinyRISC,
an 8 × 8 reconfigurable array
(RC-Array) of reconfigurable cells
and a Context Memory, a Frame
Buffer, and a DMA Controller. In
addition to the standard RISC in-
structions, TinyRISC instruction

set is augmented with two classes of specific instructions for controlling the Mor-
phoSys components: DMA instructions and RC-Array instructions. DMA instruc-
tions initiate data transfers between main memory and the Frame Buffer, and also
the loading of context words from main memory into the Context Memory. RC-
Array instructions specify which of the Context Memory configuration plane is
executed and also the mode of context broadcast (vertical or horizontal). An entire
line of cells of the 8 × 8 reconfigurable array is controlled by a single context, but
rather in an SIMD-style. Therefore, we classify MorphoSys as a vertical coded
machine. Since the user can specify what context to prefetch and what context to
be executed, we conclude that an explicit SET instruction is provided to the user.

The PipeRench coprocessor [16] consists of a set of identical physical Stripes
which can be configured under the supervision of a Configuration Controller at

33

run-time, a Configuration Memory storing the stripe configurations, four Data Con-
trollers (DC), a State Memory, an Address Translation Table (ATT), and a Mem-
ory Bus Controller, as presented in Figure 2.6. A single physical stripe can be
configured per cycle; therefore, the reconfiguration of a stripe takes place con-
currently with execution of the other stripes. Pipelines of arbitrary length can be
implemented on PipeRench. A program for this device is a chained list of con-
figuration words, each of which includes three fields: configuration bits for each
virtual pipeline stage of the application, a next-address field which points to the
next virtual stripe, and a set of flags for the configuration controller and four Data
Controllers. Therefore, the configuration word is a horizontal instruction. Since
the configuration controller handles the multiplexing of the application’s stripes
onto the physical fabric, the scheduling of the stripes, and the management of the
on-chip configuration memory, while the user has only to provide the chained list
of the configuration words, we can conclude that there is no user-exposed SET
instruction.

Address

Data

Fabric ATT

Memory
ConfigurationCTRL

Bits
State

Memory

DC/SDC/RDCDC

C
on

fi
gu

ra
ti

on
C

on
tr

ol
le

r

M
em

or
y

B
us

C
on

tr
ol

le
r

Figure 2.6: The PipeRench architecture (solid lines are data paths, dashed
lines are address and control paths)

The (re)configuration of the Nano-Processor [123] is initiated by a master unit
at application load-time. The system may be used, at least theoretically, in a multi-
tasking environment, in which the applications are active or idle. Since no further
details whether the user can or cannot manage the reconfiguration are given, we
classify this systems as not providing information about an explicit SET instruction.

The Reconfigurable Pipelined Datapath (RaPiD) is a field-programmable array
of coarse-grained functional units (e.g., ALUs, multipliers, registers, RAMs) that
is intended to implement deep linear (1-D) pipelines, much like those encountered
in DSP applications [33, 26]. The functional units are interconnected in a mostly
nearest neighbor fashion, through a set of segmented buses that run over the length

34

of the datapath, as depicted in Figure 2.7.

Output

H

L

A
L
U

R

M
A

I/O

Stream Manager

R

M
A

A
L
U

R

M
A

bus connectors

Input
Stream

P
A

T
H

C
O

N
T

R
O

L
D

A
T

A
 P

A
T

H

Configurable Interconnection Network

Configurable Pipelined Instruction Decoder
Stream
Input

Control

Instruction
Generator

Stream

Figure 2.7: The RaPiD engine – adapted from [33]

The datapath is controlled using a combination of static and dynamic control
signals. The static control signals are defined by RaPiD configuration, and deter-
mine the configuration of the interconnection network, and, therefore, the structure
of the pipeline. The RaPiD configuration is stored in a configuration memory as
in ordinary FPGAs, is loaded at application launch-time, and remains constant for
the entire duration of the application. The dynamic control signals schedule the
datapath operations over time. These signals are issued by a control path which
stretches parallel with the datapath, as it is depicted in Figure 2.7. The control path
which is also a configurable pipelined structure consisting of segmented buses, has
to be configured at application launch-time, too.

The dynamic control is managed outside of the array. The dynamic control
signals are inserted at one end of the control path by an Instruction Generator,
and are passed from stage to stage of the control path pipeline where they are
sent to functional units. The control path pipeline plays the role of a MIR with
serial loading, where multiple computing units are controlled at a time. Therefore,
we classify microcode as being horizontal. A SET instruction that can change the
static configuration is not claimed by the RaPiD’s architects, i.e., no instruction
generated by the instruction generator can reconfigure the array. However, the
master processor supervizing the RaPiD can initiate a reconfiguration process only
at the application launch-time. For this reason, we classify RaPiD as not providing

35

obvious information about an explicit SET instruction.

The Colt/Wormhole FPGA [10] is an array of Reconfigurable Processing Units
interconnected through a mesh network. Multiple independent streams can be in-
jected into the fabric. Each stream contains information needed to route the stream
through the fabric and to configure all RFUs along the path, as well as data to be
processed. In this way, the streams are self-steering, and can simultaneously con-
figure the fabric and initiate the computation. Therefore, SET is explicit and the
microcode is horizontal.

The MOLEN reconfigurable microcoded (ρµ–coded) processor utilizes a mi-
crocoded engine to incorporate architectural support for the reconfigurable hard-
ware [117]. Its symplified organization is depicted in Figure 2.8.

ARBITER

Reconfigurable Unit

CCU−codeρµHwUHwU . . .

Core Processing Unit

I_BUFFERMEMORY

Figure 2.8: The symplified organization of the MOLEN processor – from [117].

In this organization, instructions are first fetched from the memory and stored
into the instruction buffer (I BUFFER). Then, the ARBITER performs a partial de-
coding in order to determine where the instructions should be issued. Instructions
that have been implemented in fixed hardware are issued to the Core Processing
Unit, where they are executed on Hardwired functional Units (HwU). The instruc-
tions that benefit from reconfigurable hardware support are issued to and executed
on the Reconfigurable Unit, as described subsequently.

The reconfigurable unit consists of an FPGA-based Custom Configured Unit
(CCU) and the ρµ–code unit. An operation (which can be as simple as an instruc-
tion or as complex as an entire piece of code) executed by the reconfigurable unit is
divided into two distinct phases: set and execute. The set phase, which is respon-
sible for reconfiguring the CCU hardware and, thus, for enabling the execution of
the operation, is performed by executing reconfiguration microcode within the ρµ–
code unit. In the execute phase, the configured operation is performed by executing
execution microcode within the same ρµ–code unit. This approach is generic; by
loading different reconfiguration and execution routines, new operations can be im-
plemented. Concerning the MOLEN instruction set architecture, we would like to

36

mention that, in addition to the fixed instructions that are core-dependent, two new
instructions are defined to control the described phases: SET and EXECUTE. Their
argument points to the location where the reconfiguration or execution microcode
resides, as depicted in Figure 2.9. This way, instead of specifying a new instruction
for each new operation (requiring instruction opcode space), microcode locations
are simply pointed to.

OPCODE field argument field
SET reconfiguration microcode address
EXECUTE execution microcode address

Figure 2.9: The MOLEN instruction format.

Obviously, the SET instruction is exposed to the programmer. Concerning the mi-
crocode, either a vertical or horizontal microcoded engine are supported by the
MOLEN architecture, according to which we classify MOLEN as being either ver-
tical or horizontal machine.

Following the above mentioned methodology, the most well known FCCMs
can be classified as follows:

1. Vertically microcoded FCCMs

(a) With explicit SET instruction: PRISM [7], PRISM-II/RASC [120],
[121], RISA′ [108], RISA′′ [108], MIPS + REMARC [71], MIPS
+ Garp [48], OneChip-98′′ [56], URISC [31], Gilson’s FCCM [36],
Xputer/rALU [42], Molen vertically-coded processor [117], Mor-
phoSys system [101].

(b) Without explicit SET instruction: PRISC [87], OneChip [124], Con-
CISe [59], OneChip-98′ [56], DISC [122], Multiple-RISA [109], Chi-
maera [47].

(c) Not obvious information about an explicit SET instruction: Virtual
Computer [17], [123], Functional Memory [64], CCSimP (load-time
reconfiguration) [91], NAPA [90].

2. Horizontally microcoded FCCMs

(a) With explicit SET instruction: CoMPARE [92], Alippi’s VLIW [5],
RISA′′′ [108], VEGA [58], Colt/Wormhole FPGA [10], rDPA [43],
FPGA-augmented TriMedia/CPU64 [95], Molen horizontally-coded
processor [117].

(b) Without explicit SET instruction: PipeRench [16].

37

(c) Not obvious information about an explicit SET instruction: Spyder
[54], RaPiD (load-time reconfiguration) [26].

We would like to mention that applying the classification criteria on OneChip-
98 machine introduced in [56], we determined that an explicit SET instruction was
not provided to the user in one embodiment of OneChip-98, while such an instruc-
tion was provided to the user in another embodiment. It seems that two architec-
tures were claimed in the same paper. We referred to them as OneChip-98′ and
OneChip-98′′ . The same ambiguous way to propose multiple architectures under
the same name is employed in [108]. For the Reconfigurable Instruction Set Ac-
celerator (RISA), our taxonomy provides three entries (RISA′, RISA′′, RISA′′′).

2.4 Conclusion

In this chapter we reviewed the classical way of adapting the architecture to appli-
cation provided by a microcoded implementation of the instruction set. To analize
the phenomena inside FCCMs at the architectural level, yet without reference to a
particular instruction set, we also proposed a formalism based on microcode, ac-
cording to which the execution of an FPGA-based operations is carried out in two
stages: set and execute. Based on this formalism, a survey of FCCMs proposed
in the literature, which is organized as a taxonomy of FCCMs, has been proposed.
Two classification criteria were extracted from the microcoded-based formalism:
(1) the verticality/horizontality of the microcode, and (2) the explicit availability
of a SET instruction. In terms of the first criterion, the FCCMs were classified in
vertically or horizontally microcoded machines. In terms of the second criterion,
the FCCMs were classified in machines with or without an explicit SET instruction.
The taxonomy we proposed is architectural consistent, and can be easily extended
to embed other criteria.

In the next chapter we will describe the TriMedia–CPU64 + FPGA hybrid,
which is a horizontally coded FCCM having the SET instruction exposed to the
machine-level programmer.

38

Chapter 3

The ρ–TriMedia Architecture

I
n order to compute in hardware multimedia tasks with real-time requirements,
while preserving the programmability over ASICs, we propose to augment
the TriMedia–CPU64 processor with an FPGA that is connected to the host

processor as a functional unit – a hybrid that is referred to as ρ–TriMedia. The
decision for coupling the FPGA as a functional unit is the result of the constraints
defined by the research project [81] that includes minimal modifications of the
basic architecture, and the associated compiler and scheduler. In this chapter, we
address the first two general research questions connected to ρ–TriMedia, which
have been raised in Chapter 1:

1. What are the architectural changes needed for incorporating the reconfig-
urable array into TriMedia–CPU64 VLIW core?

2. What is the impact of the architectural changes on the compilation and sim-
ulation tool chain of the TriMedia–CPU64 core?

The chapter is organized as follows. A brief presentation of the standard
TriMedia–CPU64 architecture and the associated programming environment is
provided in Section 3.1. Section 3.2 outlines the architecture of the FPGA we use
as an experimental reconfigurable core. The architecture of the FPGA-augmented
TriMedia–CPU64 is presented in Section 3.3. Section 3.4 outlines the major
steps required to implement a task on ρ–TriMedia, while the FPGA-augmented
TriMedia–CPU64 programming methodology is described in Section 3.5. Sev-
eral considerations on the media processing domain, which the ρ–TriMedia perfor-
mance is evaluated on, are provided in Section 3.6. The final section completes the
chapter with some conclusions and closing remarks.

39

3.1 Standard TriMedia–CPU64 architecture

TriMedia–CPU64 architecture features a rich instruction set optimized for media
processing. Specifically, it is a 5 issue-slot VLIW, launching a long instruction
every clock cycle [113]. It has a uniform 64-bit wordsize through all functional
units, the register file, load/store units, internal and external buses. Each of the
five operations in a single instruction can in principle read two register arguments
and write one register result every clock cycle. In addition, each operation can
be optionally guarded with the least-significant bit of a fourth register to allow for
conditional execution without branch penalty. With the exception of floating point
divide and square root unit, all functional units have a recovery of 1, while their
latency ranges from 1 to 4. The TriMedia core is assumed to support multiple-
slot operations, or super-operations [115]. Such a super-operation occupies two or
more adjacent slots in the VLIW instruction, and maps to a wider functional unit.
This way, operations with more than two arguments and one result are possible.
The architecture also supports subword parallelism (SIMD-style) on byte, half-
word, or word entities. The current TriMedia–CPU64 organization is presented in
Figure 3.1.

15 read ports + 5 write ports

single−slot
functional
unit

double−slot

Global Register File

Bypass Network

128 registers 64 bit

Instruction Decoder

unit
functional

Figure 3.1: TriMedia–CPU64 organization – adapted from [113].

Like a superscalar processor, TriMedia–CPU64 can perform several operations
in parallel, and thus can exploit the Instruction-Level Parallelism (ILP) the program
exhibits. However, unlike a superscalar processor, these operations are scheduled
at compile time. Since many of the applications within the media domain contain
instances of data that need similar processing, such as pixels in a stream of digital
video, another type of parallelism, called Data-Level Parallelism (DLP) is encoun-
tered, too. Thus, it is important to pack adjacent elements into vectors of data to
facilitate simultaneous processing by means of a single (SIMD-style) instruction.

To support SIMD-style processing on smaller entities inside a 64-bit word, a
special set of operations is implemented. In addition, operations oriented to signal-

40

processing are also supported. All these operations are selected by the programmer
at the C–language level by corresponding function calls, as described later this
section. The instruction set covers most combinations of the following options:

• a 64-bit word is processed as a vector of 8-, 16-, or 32-bit elements;

• two’s complement C-style wrap-around arithmetic or clipping against maxi-
mum and minimum integer values on the result is possible;

• the data are interpreted as signed or unsigned values, making a difference
for operations that clip their results, and for operations that perform accurate
rounding of least-significant bits that would otherwise be lost;

• a complete set of operations, such as add, subtract, min, max, abs, equal,
greater, shift, multiply, type conversion, element shuffles, loads, and stores
is provided.

• multiplication that returns only the upper half of the muliply result;

• multiply-and-sum to perform an element-wise multiply and summing to-
gether all products, in order to return a single integer with the inner product
value in full precision;

• sum-of-absolute-differences, determining the absolute values of element-
wise differences, and summing them together to a single integer;

• special vector shuffle operations for transpose operations on matrices aimed
to support 2-dimensional filtering;

• look-up-table operations, where a single vector provides in parallel four short
unsigned integers as indices to a table, and four new values are read from the
table to constitute the resulting vector.

The TriMedia–CPU64 programming method is a best-of-both-worlds approach
to standard C and assembly programming. The C compiler is responsible to detect
the ILP that is implicit in program and schedule the extracted machine-level oper-
ations. In the same time, in order to explicitly exploit DLP within the C code, the
programmer is given direct access to the hardware operations at C level by means
of so-called custom operations which are recognized by the C compiler. The sup-
ported vector types include arrays of signed and unsigned 8-, 16-, and 32-bit inte-
gers, and 32-bit floating point vectors. For example, vec64ub referrs to a 64-bit
VECtor containing eight Unsigned Bytes, vec64sh referrs to a 64-bit VECtor
containing four Signed (16-bit) sHort integers, vec64uw referrs to a 64-bit VEC-
tor containing two Unsigned (32-bit integer) Words, etc. These types are build into

41

the TriMedia–CPU64 compiler, so they can be used directly in C as arguments and
return values of the custom operations. An example of a custom operations is

vec64sh sh add(vec64sh x, vec64sh y)

that returns the element-wise sum of two 4-element 16-bit signed integer vec-
tors. The compiler then takes care of the correct translation of the program con-
structs, scoping rules for variables, stack handling, register allocation, and oper-
ation scheduling. The programmer can thus concentrate on choosing appropriate
data representations, and calling the appropriate custom operations to accomplish
the necessary calculations.

The TriMedia–CPU64 development tools contain a retargetable compiler and
simulator, which were used during the development stage of the processor for De-
sign Space Exploration [49]. Mainly, the number, type, and issue-slot allocation of
the functional units supporting custom operations were explored. The retargetable
tools read in a Machine Description File, so that they can adapt their behavior to
the particular instance of the processor under test. Among the parameters of the
machine description file are the number of instances of a functional unit, in which
issue slot the functional unit is available, and which operations the functional unit
supports. For most custom operations, the TriMedia–CPU64 compiler only needs
to know of their existence, their latency, and the number and types of arguments
and results, i.e., their syntax. The compiler does not need to know about the actual
function implemented by most of the custom operations, i.e., their semantics. We
anticipate and state that the retargetability of the C compiler for custom operations
and the lack of the need to know at compile time the semantics of a custom opera-
tion provides a native support for the compilation of FPGA-dedicated operations.

3.2 The architecture of the multiple-context FPGA

As described, Field-Programmable Gate Arrays (FPGA) [14] are devices which
can be configured in the field by the end user. In essence, an FPGA is composed
of two constituents: Raw Hardware and Configuration Memory. The information
stored into the configuration memory defines the function performed by the raw
hardware. In this dissertation, we assume that a multiple-context FPGA is embed-
ded with TriMedia–CPU64 on the same die. Essentially, a multiple-context FPGA
[27, 110, 93] has its configuration memory replicated in order to contain several
configurations for the raw hardware, which are referred to as contexts hereafter.
That is, a cache of contexts is available on-chip only one being active at a time.
Such a cache allows a context switch to occur on the order of nanoseconds [110].

42

However, loading a new configuration from off-chip is still limited by low off-chip
bandwidth that has an average rate on the order of 50 ns/byte [21].

For experimental purpose, we assume that at most four contexts can be stored
simultaneously on the FPGA chip. Our assumption does not violate the general ac-
cepted figure regarding multiple-context FPGAs – see for example [28, 110]. Since
a multiple-context FPGA is not commercially available for the time being, we also
assume a hypothetical FPGA having the architecture of the raw hardware and
context reconfiguration scheme identical to those of a (single-context) ACEX 1K
device from Altera [22]. Our choice could allow future single-chip integration, as
both ACEX 1K FPGA and TriMedia families are manufactured in the same TSMC
technological process. Briefly, an ACEX 1K device contains an array of Logic
Elements or Cells, a number of Embedded Array Blocks (EAB), each EAB being
a RAM block with 8 inputs and 16 outputs, and an interconnection network. The
structure and timing microparameters (speed grade -1) of the ACEX 1K logic ele-
ment are presented in Figure 3.2. Notably, a fast carry-chain having a propagation
time of only 0.2 ns per logic element facilitates the implementation of arithmetic
functions, such as adders, counters, and comparators.

Cascade−In

Chain
Cascade

(LUT)
Table

Look−Up

Chain
Carry

Carry−In

Interconnect
To FastTrack

Interconnect
To LAB Local

Register
Programmable

ENA

QD

CLRN

PRN

Register Bypass

Clock

data1
data2
data3
data4

Cascade−OutCarry−Out

• LUT-input to LUT-output delay (tLUT): max. 0.6 ns
• Carry-input to LUT-output delay (tCLUT): max. 0.5 ns
• LAB local interconnect to Carry-output delay (tCGEN): max. 0.5 ns
• Carry-input to Carry-output delay (tCICO): max. 0.2 ns
• Cascade-input to Cascade-output delay (tCASC): max. 0.8 ns

Figure 3.2: ACEX 1K logic element structure and timing microparameters.

The reconfiguration of an ACEX 1K device can be performed according to the
common Passive Parallel Asynchronous scheme, in which a master unit treats the

43

FPGA as memory [22]. That is, the master unit drives data to the FPGA serially,
one word at a time. There are no partial reconfiguration capabilities for the consid-
ered device; thus, a global reconfiguration of a context is required even for chang-
ing 1 bit of its configuration data. Since we envision that circuits without many
commonalities are to be configured on the programmable array, this limitation is
not a serious restriction.

Subsequently, we also assume that a context can be configured only when it
is not active. Thus, the active context can continue its operation while the idle
contexts are being reconfigured. As mentioned, the FPGA context switching occurs
on the order of nanoseconds. Trimberger et al. [110] claim that a context switching
can be completed in 30ns for a 20 × 20 array of Logic Blocks. For an ACEX
EP1K100 device which includes about 4,992 LUTs and 12 EABs, that is, for an
FPGA which is more than 15 times larger, we make a conservative assumption
and consider that the context switching penality is on the order of 500 ns. The
rationale behind the assumption that the reconfiguration time increases linearly
with the FPGA size is related to power consumption, which can become a concern
with large FPGAs as identified by Trimberger et al. [110].

The architectures of standard TriMedia–CPU64 and FPGA have been pre-
sented. Subsequently, we introduce the architectural extension for the TriMedia-
CPU64 that incorporates support for the reconfigurable hardware.

3.3 ρ–TriMedia – the FPGA–extended TriMedia–CPU64

In this section we propose to augment the TriMedia-CPU64 processor with a Re-
configurable Functional Unit (RFU) consisting of a multiple-context FPGA core
and its associated Controller, and a Configuration Unit (CU) managing the recon-
figuration of the FPGA. This hybrid will be referred to as ρ–TriMedia hereafter.
Both RFU and CU are embedded into TriMedia as any other hardwired functional
units, i.e., they receive instructions from the instruction decoder, read their input
arguments from and write the computed values back to the register file, as depicted
in Figure 3.3. Since the latency and recovery of the hardwired operations are not
embedded into the VLIW core controller but rather into the functional units them-
selves, only minimal modifications of the basic architecture, and the associated
compiler and scheduler are required.

In order to use the RFU, the user is provided a kernel of new instructions:
SET CONTEXT, ACTIVATE CONTEXT, and EXECUTE. This kernel constitutes the
extension of the TriMedia instruction set architecture we propose. Loading con-
text information into the FPGA configuration memory is performed by the Con-

44

(W
ri

te
−B

ac
k

st
ag

e)

(R
ea

d
st

ag
e)

INSTRUCTION DECODER

SET
CONTEXT

ACTIVATE
CONTEXT (R

ea
d

st
ag

e)

(W
ri

te
−B

ac
k

st
ag

e)

CONFIGURATION UNIT

Data

REGISTER FILE

Register indicesRegister indices Data

RFU
CONTROLLER

Active Configuration Selector

Operation Pattern, Latency, Recovery Selectors

Resources (Facilities)

RAW HARDWARE

EXECUTE

Configuring Resources
Configurable Computing

(RFU−OP IDENTIFIER)

CONFIGURATION
MEMORY

RECONFIGURABLE FUNCTIONAL UNIT

Figure 3.3: The TriMedia-CPU64 VLIW core extension.

figuration Unit under the command of a SET CONTEXT instruction, while the
ACTIVATE CONTEXT instruction swaps the active configuration with an on-chip idle
one. EXECUTE instructions launch the operations performed by the FPGA-mapped
computing units [100]. With these instructions, the user is given the freedom to de-
fine and use any computing unit subject to FPGA size and TriMedia organization.

Uploading configuration information to the CU is performed under the com-
mand of a double-slot instruction issued on Slot pair 1+2:

SET CONTEXT (context) Rs1, Rs2, Rs3 → Rd

where context is the fourth (immediate) argument specifying the context to be
reconfigured, while the registers Rs1, Rs2, and Rs3 contain 192 bits of configu-
ration information. If the instruction completes successfully then the register Rd
contains 0, otherwise it contains an error code. For example, if an attempt to recon-
figure the active context is made, the instruction has no effect on the configuration
and returns 1.

Subject to the architecture of the FPGA, the configuration information being
uploaded by SET CONTEXT instructions can be interpreted in different ways before
it is sent to the RFU. Thus, different configuration patterns can be supported. For
example, assuming an FPGA has partial reconfiguration capabilities (e.g., XC6200
family from Xilinx [25]), or incorporates means to reconfigure only the cells that
are different from the current configuration (e.g., AT6000 family from Atmel [23]),
complex reconfiguration patterns can be generated by a microprogrammable CU
[117]. This case, the SET CONTEXT instructions may also upload a reconfigurable
microprogram to the CU, giving the user a large flexibility to reconfigure the
FPGA.

However, for a global-reconfigurable FPGA with a serial context reconfigura-
tion scheme, which in fact we assume in our subsequent experiment, the CU can
be as simple as a parallel-to-serial converter. As mentioned in Section 3.2, the

45

average latency for loading new FPGA configuration information from off-chip
is about 50 ns/byte, that is 10 cycles/byte. Since the SET CONTEXT instruction
places 192 bits = 24 bytes on the CU at a time, it has a latency of 240 cycles. For
an EP1K100 FPGA, which has a configuration file of 1,337,000 bit [22], 6,964
SET CONTEXT instructions or 6,964 × 240 = 1,671,360 cycles are needed to com-
pletely reconfigure a context.

For FPGA context switching, a single-slot instruction issued either on Slot 1 or
Slot 2 is provided:

ACTIVATE CONTEXT (context) → Rd

where context is an immediate argument specifying the context that is being
activated. If the context is already active, the instruction has no effect. An attempt
to activate a context prior to its complete reconfiguration has also no effect on the
active context, and is signaled by loading an error code into Rd. If the activation
completes successfully, the Rd contains 0. Given the fact that the FPGA context
switching penality is 500 ns (Section 3.2), the ACTIVATE CONTEXT instruction has
a latency of 100 TriMedia@200 MHz cycles.

Conceptually speaking, computing units of user-definable computing pattern1,
latency, recovery, and slot-assignment2 can be configured on RFU. Thus, the RFU
can act as five independent single-slot functional units each of them executing a
different custom operation, a mixture of single- and multiple-slot functional units,
or even a five-slot functional unit. In all these situations, the RFU may receive
EXECUTE instructions issued on any of the five TriMedia slots, and use all 10 read
and 5 write ports of the register file per call.

In connection to the FPGA-augmented TriMedia implementation, we would
like to note that the flexibility in defining slot-width and slot-assignments for RFU-
mapped operations determines the implementation cost. For example, assuming
the maximum freedom degree in defining slot-assignments for RFU operations, a
separate RFU controller has to be placed on each issue slot. In addition, the TriMe-
dia instruction decoder has to be able to decode EXECUTE instructions on each of
the five issue slots. Moreover, since only single- and double-slot operations are cur-
rently supported by the compiler and scheduler for the time being, the toolchain has
to be modified to support 3-, 4-, and 5-issue slot operations. However, we would
like to note that the later requirement is likely not to pose serious difficulties.

Although the maximum flexibility in defining RFU-based operations may be
of theoretical value, it is not of practical relevance in the context of our current

1i.e., the operation slot-width and the number of input and output registers.
2i.e., the issuing slot(s) that the computing facility is sensitive to.

46

investigations. As one can notice in the next sections, all the RFU operations for
the considered media-processing domain can be implemented with single-, double-
, and triple-slot operations. For this reason, in this dissertation we consider only
a particular instance of FPGA-augmented TriMedia, in which only a single-slot
instruction on Slot 1, a double-slot instruction on Slot pair 1+2, and a triple-slot
instruction on Slot group 1+2+3 can be issued to the RFU.

For each of the single-slot, double-slot, and triple-slot RFU instructions, a sep-
arate operation code is allocated: EXECUTE 1, EXECUTE 2, and EXECUTE 3, respec-
tively. In all cases, the standard TriMedia–CPU64 instruction format is preserved:
the opcode is a 9-bit field, and each and every source and destination registers is
specified by a 7-bit field. Up to two inputs and one output, four inputs and two
outputs, and six inputs and three outputs can be specified by the single-, double-,
and triple-slot instructions, respectively:

EXECUTE 1 Rs1, Rs2 → Rd1
EXECUTE 2 Rs1, Rs2, Rs3, Rs4 → Rd1, Rd2
EXECUTE 3 Rs1, Rs2, Rs3, Rs4, Rs5, Rs6 → Rd1, Rd2, Rd3

The EXECUTE instructions are generic, since their semantics can be rede-
fined. By reconfiguring the raw hardware with a sequence of SET CONTEXT and
ACTIVATE CONTEXT instructions, followed by issuing an EXECUTE instruction, any
new user-defined operation subject to FPGA size and TriMedia organization can be
launched into execution, while only a single entry in the opcode space is needed to
encode the EXECUTE instruction. Since all the fields in the EXECUTE 1 instruction
format except for the opcode field encode the input and output registers, there are
no provisions for additional encoding. Thus, only a single operation per context
can be encoded within EXECUTE 1. That is, if a different single-slot operation is to
be launched, then a reconfiguration of the raw hardware must be carried out before-
hand by SET/ACTIVATE instructions. However, as we describe subsequently, more
operations per context can be encoded within a multiple-slot EXECUTE instruction.
This may reduce the number of reconfigurations when a large FPGA is available.

In standard TriMedia–CPU64, only one of the opcode fields in a multiple-slot
instruction defines the operation, all the others being set NOPs (Fig. 3.4). By using
these unused fields as an argument for the RFU OPCODE (Fig. 3.5), a large number
of RFU operations can be encoded, while only a single entry for the EXECUTE
instruction needs to be allocated in the opcode space. Assuming, for example, a
double-slot operation, the 9-bit additional opcode (which is subsequently referred
to as an RFU−OP IDENTIFIER or simple RFU−OP−ID) can specify 512 different
operations.

We would like to mention that the two parts of the double-slot operation are

47

Slot 1 Slot 2 3, 4, 5
HW OPCODE src. & dest. NOP src. & dest. ...

Figure 3.4: The hardwired double-slot operation instruction format.

Slot 1 Slot 2 3, 4, 5
RFU OPCODE src. & dest. RFU-OP ID src. & dest. ...

Figure 3.5: The RFU double-slot instruction format.

decoded separately, and only when the first part specifies an EXECUTE 2 opcode,
the second opcode is interpreted as an RFU−OP IDENTIFIER, and thus decoded
locally at the RFU by the RFU controller. This way, an RFU super-operation does
not create pressure on the instruction decoder, neatly fits in the existing instruction
format, fits the existing connectivity structure to the register file, and hence requires
only a little hardware overhead.

The RFU controller itself can be a simple decoder for the RFU−OP−ID field,
a finite-state machine having the RFU−OP−ID as argument, or even a microcoded
engine for which the RFU−OP−ID points to the address of a micro-routine [117]. In
the later case, the microcode within the RFU controller becomes part of the RFU
configuration, and, therefore, subject to reconfiguration by means of SET CONTEXT
and ACTIVATE CONTEXT instructions.

Due to TriMedia organization constraints, the RFU operands, i.e., the opera-
tion’s input and output registers, are encoded within the TriMedia instruction set.
That is, if new operands are required from, and/or additional results have to writ-
ten back to the register file, a new SET CONTEXT or EXECUTE instruction has to be
issued (ACTIVATE CONTEXT requires only a single immediate argument, as previ-
ously described). Thus, the FPGA reconfiguration and execution of FPGA-mapped
operations are performed within the TriMedia instruction set, and both the recon-
figuration microcode and execution microcode can be thought of as being exposed
to the instruction-level programmer. This is distinct from the ρµ-coded MOLEN
processor [117] that does not encode arguments and destinations within the SET
and EXECUTE instructions.

In connection to the EXECUTE instructions, we would like to emphasize that
their semantics, number of operands (or pattern), latency, and recovery are all ex-
plicitly user-definable, while the slot-width is defined implicitly by the particular
EXECUTE 1, EXECUTE 2, or EXECUTE 3 opcode. Therefore, it is the responsibility
of the programmer to augment the Machine Description File with appropriate in-
formation [80]. Assuming a user-defined IDCT operation, a way to specify such

48

information is to annotate the source code, as depicted in Figure 3.6. At the ma-
chine implementation level, these parameters are set by means of Selectors, which
become part of the RFU configuration, as presented in Figure 3.3. A different
{operation pattern, latency, recovery} set can be defined for each RFU−OP−ID.
With such mechanism, an EXECUTE instruction is trully generic, and the program-
mer is able to adjust its behavior as needed.

EXECUTE 2 <IDCT> Rs1, Rs2 → Rd1, Rd2

.rfu op id IDCT IDCT OP ID ; specifies the IDCT OP ID

.pattern IDCT 2i+2o ; IDCT has 2 input- and 2 output-registers

.latency IDCT 7 ; specifies the IDCT latency

.recovery IDCT 2 ; specifies the IDCT recovery

Figure 3.6: The syntax and annotation code for a user-defined IDCT operation.

Finally, several considerations about the latency of an RFU-mapped computing
unit are worth to be provided. Due to realization constraints, the RFU is likely to
be located far away from the Register File (RF) in the TriMedia-CPU64 floorplan.
The immediate effect is that there will be large delays in transferring data between
the RFU and RF, and the RFU will not benefit from bypassing capabilities of the RF
[113]. Consequently, read and write back cycles have explicitely to be provided.
In such circumstances, the latency of an RFU-mapped computing unit is composed
of 1 cycle for reading the input arguments from register file, the number of cycles
corresponding to the computation delay on FPGA, and 1 cycle for writing back the
results to the register file. Since an RFU call is quite expensive, it is recommended
to minimize the number of RFU calls, i.e., computing units which can perform
complex operations are recommended to be configured on the RFU.

To give an indication of the programming complexity on ρ–TriMedia, in the
next section, we outline the flowchart for task implementation on ρ–TriMedia.

3.4 ρ–TriMedia development flowchart

Given an application, the programming flowchart that the programmer has to pur-
sue in order to make use of ρ–TriMedia at best can be summarized as follows.

1. Profile the code and identify (large) functions that worth benefiting from
reconfigurable hardware support, thus accelerated.

49

2. For each of such function:

• write VHDL code, synthesize, place and route on FPGA;

• write C-level code that emulates the VHDL code in order to augment
the TriMedia-CPU64 cycle-accurate simulator3;

• rewrite the initial C-level code for standard TriMedia-CPU64 in order
to call the FPGA-mapped computing units.

3. Compile, simulate, and extract the performance figures.

4. Go to Step 1 if the performance figures are not satisfactory yet.

Therefore, as opposed to the standard TriMedia-CPU64 user, the ρ–TriMedia
user should be both a hardware and software designer. That is, the ρ–TriMedia
user has to write VHDL code, compile it, and map it on the particular FPGA core.
Then, the ρ–TriMedia user has to perform the hardware-software integration, and
call the new FPGA-based computing units within software routines.

We would like to mention that the process of programming for ρ–TriMedia is
semiautomatic, and several iterations through the stages mentioned above might
be needed to achieve a good program. Designing a fully automatic programming
environment is far beyond the scope of the dissertation. Consequently, we leave it
for further work.

3.5 ρ–TriMedia programming methodology

Instead of building an automatic tool we provide a programming methodology,
which is aimed to help the programmer to take the advantage of the new recon-
figurable functional unit. Next, we describe the ρ–TriMedia C-level programming
model. According to this model, the programmer is able to call FPGA–based oper-
ations by means of custom operations. Then, we address programming for recon-
figurable hardware and outline some issues connected to mapping on FPGA. We
complete the section with a set of recommendations for code developing.

ρ–TriMedia programming model. For the architectural extension to be effec-
tive, the user needs a programming model. At the C-level, we propose to call
RFU-based functions by defining additional custom operations. As mentioned,

3If the simulator cannot perform C and VHDL co-simulation.

50

since custom operations are already widely used by the standard TriMedia, grant-
ing the C-level programmer a direct access to hardware operations [80], only min-
imal modifications of the standard compilation toolchain are required. In addition
to the standard definition of custom operations, the programmer has also to specify
the pattern, latency, recovery and slot assignment for the new RFU-based opera-
tion, as well as the RFU OP ID if the operation is multiple-slot. A common way to
specify these parameters is by using pragmas [73]. An example of a C-level code
calling RFU is presented in Algorithm 1.

Algorithm 1 An example of a C-level code calling the RFU
#include <stdio.h>

#include "trimedia.h"

vec64sh Rx input, Ry input, Rz output, Rw output;

int main(void) {
...
#pragma RFU OP (pattern=2,2i+2o,latency=16,recovery=2)
IDCT(&Rz output, &Rw output, Rx input, Ry input);
...

}

In this example, Rx input, Ry input, Rz output, and Rw output specify each a
vector of four 16-bit signed integers. Thus, IDCT operation reads in eight 16-bit
signed integers and computes eight 16-bit signed integers. Assuming a standard
TriMedia processor, the compiler does not recognize the pragma; therefore, the
IDCT call is compiled into a function call, and the portability of the C-level code is
ensured. Considering an FPGA-augmented TriMedia, the compiler does recognize
the RFU OP pragma, and generates a machine-level instruction having the EXECUTE
opcode, and IDCT as RFU−OP−ID. As specified by the pattern field, this instruc-
tion designates a double-slot operation having two register inputs and two regis-
ter outputs. Since the pool of RFU-based functions which can be coded is quite
large (29 = 512 for a double-slot RFU instruction, 218 = 262, 144 for a triple-
slot RFU instruction, etc.), a large flexibility to allocate a different RFU−OP−ID for
each FPGA-mapped computing unit is available. This task is done by the compiler.
Based on the pattern, latency, and recovery fields, the EXECUTE 2 < IDCT > op-
eration is scheduled on slot pair 1+2 as any other hardwired operation having a
latency of 16 and a recovery of 2.

TriMedia is geared to the media domain, in which large sets of data are manip-

51

ulated in a repetitive fashion, basically around loops. Since complex long-latency
operations are envisioned to be configured on the RFU, the Instruction-Level Par-
allelism (ILP) within a single loop iteration containing RFU calls is expected to
diminish. In order to expose to the compiler the ILP that is still available across the
loop boundary, two strategies can be employed: (1) loop unrolling and/or grafting,
and the more efficient (2) software pipelining (which can be thought of as infi-
nite loop unrolling). While the first strategy trade-offs code size (and, thus, the
overhead associated to the additional instruction cache misses) with ILP [4], the
second strategy significantly increases ILP while maintaining about the same code
size. Moreover, due to its smaller code size with respect to loop unrolling, software
pipelining allows the programmer to control the real time response with higher
granularity [3]. Indeed, since an event (e.g., a pending interrupt) is handled only
when an interruptible jump is encountered, the cycling interruptible jump sched-
uled at the end of the loop is executed more often in a software pipelined loop than
in an unrolled/grafted loop. In addition, the programmer is able to control the num-
ber of uninterrupted executions of the unrolled/grafted or software pipeline loop by
forcing a jump to be interruptible or non-interruptible. Assuming for example the
software pipelining strategy, this control can be performed by declaring the loop
as atomic, as presented in Algorithm 2. The TriMedia compiler will recognize the
pragma TCS atomic, and generate non-interruptible jumps for all the jumps in the
IDCT function, with the exception of the return jump.

Despite of its advantages, the software pipelining strategy cannot be easily em-
ployed for the time being, since software pipelined machine-level code is more
difficult to generate than its unrolled/grafted counterpart. Indeed, the current Tri-
Media scheduler uses the decision tree as a scheduling unit [50]. Thus, all opera-
tions return their computed values in the same decision tree that they are launched,
even though the TriMedia architecture does not forbid the contrary. Since generat-
ing software pipeline loops essentially requires for returns of the computed values
beyond the decision tree boundary, decision tree-based scheduling is the major
limiting factor in generating tight software pipelined loops containing long-latency
operations. However, the loop containing RFU operations may be very simple and
symetrical (see, for, example [95]); thus, programming in assembly is indeed fea-
sible despite of the fact that the host is a complex VLIW processor. Conversely, we
will use C-level loop unrolling where programming directly in assembly proves to
be too complex for generating tight loops.

FPGA mapping issues. To efficiently map circuits on FPGA, the programmer
should take advantage of the FPGA architectural features. Since synthesizing be-
havioral VHDL code might not utilize all the FPGA architectural features, the re-

52

Algorithm 2 An example of a deep software pipeline calling long-latency RFU-
based operation
#include <stdio.h>

#include "trimedia.h"

vec64sh Rx input, Ry input, Rz output, Rw output;

#pragma TCS atomic
IDCT function(vec64sh Rx input, vec64sh Ry input,

vec64sh Rz output, vec64sh Rw output) {

for(i=0; i<N; i++) {
...
#pragma RFU OP (pattern=2,2i+2o,latency=16,recovery=2)
IDCT(&Rz output, &Rw output, Rx input, Ry input);
...

} /∗ the looping jump is translated into a ’non-interruptible jump’ ∗/

} /∗ the ’return’ is translated into an ’interruptible jump’ ∗/

int main(void) {
...
IDCT function(Rx input, Ry input, Rz output, Rw output);
...

}

sulting circuits usually do not exhibit satisfactory latency and reconfigurable hard-
ware usage. Therefore, a hand-crafted VHDL design, which exposes to the synthe-
sizer those computing primitives efficiently supported by the considered FPGA, is
needed.

As it can be observed in Figure 3.2, one of the architectural features of the
ACEX 1K family is the fast carry-chain path, which is dedicated for implement-
ing arithmetic functions such as adders, counters, and comparators. This feature
will be particulary useful in Chapters 4, 5, and 8 when custom implementations
for multipliers-by-constant are considered. Another important architectural fea-
ture of the considered FPGA is the fast cascade-chain path, which is dedicated for
implementing logic functions that have a wide fan-in. Adjacent LUTs are used
to compute portions of the function in parallel, while the cascade chain serially

53

Table 3.1: Performances of several reduction modules for ACEX EP1K100
FPGA (Speed Grade -1).

Performance fmax – MHz
Reduction module Leonardo- MaxPlus-II MaxPlus-II

Spectrum(1) WYSIWYG (2) FAST (3)
Two-operand 136 140 140

Three-operand 16-bit 104 107 117
Four-operand adder 104 103 109
Five-operand 84 81 81
Six-operand 84 76 76

Two-operand 24-bit 112 114 114
Three-operand adder 89 94 94
Four-operand 89 86 90

Two-operand 28-bit 102 103 103
Three-operand adder 83 85 83
Four-operand 83 77 81

Two-operand 30-bit 98 102 102
Three-operand adder 88 93 91

Five-operand 3-bit 108 147 138
Six-operand adder 108 131 121

Seven-operand 108 128 116

Five-operand 4-bit 105 126 113
Six-operand adder 105 126 107

Seven-operand 105 111 114

Five-operand 6-bit 101 113 107
Six-operand adder 101 97 105

Seven-operand 101 94 97

Three inputs Dadda’s 231 250 250
Four inputs population 228 250 250
Five inputs counter 155 175 169
Six inputs 155 188 188

the intermediate values. We anticipate and state that this architectural feature can
be used to compute the number of zero-leading bits in a string, as we describe in
Chapter 6.

Based on the ability to implement fast ripple-carry adders and wide fan-in logic
functions, the programmer has now to focus on mapping more complex functions.
For example, one of the most common circuit in the media domain is the multiplier,
which an optimization of the partial product matrix reduction has to be carried out

54

for. In connection to the partial product matrix, measured performances of several
reduction modules on ACEX 1K are presented in Table 3.1. All the figures cor-
respond to synchronous designs, i.e., both inputs and outputs are registered. The
estimations have been obtained by compiling VHDL code with Leonardo Spec-
trum™ from Exemplar, followed by placing and routing with MAX+PLUS II™
from Altera. Since the maximum operating frequency for the ACEX 1K is 180
MHz for the time being, we make a conservative assumption and consider the fig-
ures typed in italics as being too optimistic, although they have been generated
by software tools. The following settings of the software tools have been used:
(1) Leonardo-Spectrum™: Lock LCELLs: NO, Map Cascades: YES, Extended Op-
timization Effort, Optimize for Delay, Hierarchy: Flatten, Add I/O Pads: NO; (2)
MaxPlus-II: WYSIWYG, Optimize = 10 (Speed); (3) MaxPlus-II: FAST, Optimize
= 10 (Speed).

A pipelined FPGA implementation of a computing unit having a recovery of
1 implies that the FPGA clock frequency is equal with the TriMedia clock fre-
quency. Nowadays, the upper limit of the clock frequency in TriMedia family is
around 300 MHz, while the maximum clock frequency for ACEX 1K FPGA fam-
ily is 180 MHz. Thus, a hypothetical computing unit having a recovery of 1 is
not a realistic scenario, and a recovery of 2 or more is mandatory for the time be-
ing. Hereafter, we assume a recovery of 2 for the FPGA-based computing units,
which translates into an FPGA cycle time to TriMedia cycle time ratio of 2. Our
assumption does not violate the general accepted ratio figure of FPGA-mapped
logic versus hardwired logic [28]. Considering a TriMedia running at 200 MHz,
an FPGA–mapped pipeline will work with a clock frequency of 100 MHz.

In order to implement a pipeline at 100 MHz, reduction modules which can run
at 100 MHz or more should be considered. These modules are summarized below:

• Horizontal reductions of three, or four 16-bit lines to one line (Fig. 3.7(a)).

• Horizontal reduction of only two 30-bit lines to one line (Fig. 3.7(b)).

• Vertical reductions of three or four 7-bit columns to one line (Fig. 3.7(c)).

• Vertical reductions of six 5- or 6-bit columns to one line (Fig. 3.7(d)).

Based on these considerations, we can state that, as a rule of thumb for the
ACEX 1K family, the reduction is more efficiently horizontally than vertically.
This is why the appropriate reduction strategy (ripple-carry or carry-save) should
be re-evaluated with respect to a particular FPGA architecture.

Several recommendations for code developing. According to the methodology
we propose, the programmer can obtain better results if he/she follows a set of

55

25 20 15 10 5 03035

(a)

05101520253035

(b)

25 20 15 10 5 03035

(c)

25 20 15 10 5 03035

(d)

Figure 3.7: 100 MHz reduction modules on Altera’s ACEX EP1K100 (speed
grade -1) FPGA.

recommendations for code development. These recommendations are enumerated
subsequently.

1. Use the highest clock frequency allowed by FPGA in order to build deep
pipelines for stream processing tasks. For such tasks, the recovery of the
FPGA–mapped computing units is usually more important than latency. Ex-
amples are provided in Chapters 4, 5, and 8.

2. Minimize the latency rather the recovery when a sequential task is to bene-
fit from reconfigurable hardware support, e.g., variable-length decoder. An
example is provided in Chapter 6.

3. Try to program directly in assembly when the software pipeline loop is sim-
ple and symetrical in order to generate tight software pipeline loops. As we
show subsequently, this approach is indeed possible although the computing
engine is a complex VLIW processor. Examples are provided in Chapters 4,
5, and 8.

4. Use C-level custom operations to lauch FPGA–based operations as described
earlier this section if programming in assembly is too difficult or time-
consuming.

To assess the performance of the FPGA-augmented TriMedia–CPU64 hybrid,
we will address the TriMedia processing domain, and propose a number of re-

56

configurable designs for several multimedia-oriented kernels. To make the pre-
sentation self-consistent, several issues concerning the MPEG standard, which is
extensively addressed in the dissertation, are provided in the next section.

3.6 TriMedia–CPU64 processing domain

The application domain of the TriMedia–CPU64 processor includes multimedia-
oriented tasks, e.g., video coding and processing, audio coding, data communica-
tions, and graphics [88]. A typical mode of operation for a TriMedia-based system
is to serve as a video-decompression engine on a PCI card in a PC. Video de-
compression begins when the PC operating systems hands the TriMedia a pointer
to compressed video data. The most common standard for video compression is
MPEG, for which we provide a brief outline.

MPEG standard. The MPEG standard [70, 44] uses a large number of compres-
sion techniques to decrease the amount of data. Data compression is the reduction
of redundancy in data representation, carried out to decrease data storage require-
ments and data communication costs.

A typical video codec system is presented in Figure 3.8 [103, 70]. The lossy
source coder performs filtering, transformation (such as Discrete Cosine Transform
(DCT), subband decomposition, or differential pulse-code modulation), quantiza-
tion, etc. The output of the source coder still exhibits various kinds of statistical
dependencies. The (lossless) entropy coder exploits the statistical properties of
data and removes the remaining redundancy after the lossy coding.

Lossless
Entropy
Coder

EncoderDigital
video

in Lossy
Source
Coder

Lossless
Entropy
Decoder

Decoder
Channel

Decoder

‘‘Lossy’’
Source

Digital
video
out

Figure 3.8: A generic video codec.

In MPEG, the couple DCT + Quantization is used as a lossy coding technique.
The DCT algorithm processes the video data in blocks of 8 × 8 pixels, decompos-
ing each block into a weighted sum of amplitudes of 64 spatial frequencies. At
the output of DCT, the data is also organized as 8 × 8 blocks of coefficients, each
coefficient representing the contribution of a spatial frequency for the video block
being analyzed. Since the human eye cannot readily perceive high frequency ac-
tivity, a quantization step is then carried out. The goal is to force as many DCT

57

coefficients as possible to zero within the boundaries of the prescribed video qual-
ity. Then, a zig-zag operation transforms the matrix into a vector of coefficients
which contains large series of zeros. This vector is further compressed by an En-
tropy Coder which consists of a Run-Length Coder (RLC) and a Variable-Length
Coder (VLC). The RLC represents consecutive zeros by their run lengths; thus the
number of samples is reduced. The RLC output data are composite words, referred
to as symbols, which describe a run-level pair. The run value indicates the number
of zeros by which a (non-zero) DCT coefficient is preceeded. The level value rep-
resents the value of the DCT coefficient. When all the remaining coefficients in a
vector are zero, they are all coded by the special symbol end-of-block. Variable-
length coding is a mapping process between run-level /end-of-block symbols and
variable-length codewords, which is carried out according to a set of tables de-
fined by the standard. Not every run-level pair has a variable-length codeword to
represent it, only the frequent used ones do. For those rare combinations, an es-
cape code is given. After an escape code, the run- and level -value are coded using
fixed-length codes.

In this dissertation we focus on MPEG decoding, i.e., on the operation inverse
to MPEG encoding. More details regarding the MPEG standard will be provided
at each chapter as they become relevant.

3.7 Conclusion

We have described an extension of the TriMedia–CPU64 instruction set architec-
ture that incorporates support for the reconfigurable core. Our extension is particu-
larly convenient since it does not create pressure on the instruction decoder, neatly
fits in the existing instruction format, fits the existing connectivity structure to the
register file, and hence requires very little hardware overhead. In addition, since the
C-level custom operations are directly translated into machine-level operations, the
TriMedia–CPU64 compiler needs only to know their syntax. By using this char-
acteristic in connection to the retargetability of the compiler, new RFU-specific
operations can be easily specified at C level. Therefore, we can conclude that the
incorporation of the reconfigurable core has only a little impact on the compilation
and simulation tool chain.

So far, we have answered to the first two research questions we posed in the
Introduction. To answer to the third question, that is,

3. What is the influence of the reconfigurable array on the TriMedia–CPU64
computing performance?

58

we will propose a number of reconfigurable design and will assess the performance
improvement than can be achieved on ρ–TriMedia over TriMedia–CPU64. This is
the subject of the next chapters.

59

60

Chapter 4

Inverse Discrete Cosine Transform

I
nverse Discrete Cosine Transform (IDCT) constitutes an important operation
of MPEG-related standards and has found wide applications in other fields
(e.g., digital filtering) as well. Traditionally, IDCT has been implemented in

hardware for Application-Specific Instruction Processors (ASIP), or in software in
media-domain processors. In this chapter, we describe a reconfigurable IDCT de-
sign for ρ–TriMedia. Essentially, we implement an 1-D IDCT operation on the
reconfigurable functional unit, and establish the gains in performance when com-
puting a 2-D (8 × 8) IDCT.

The chapter is organized as follows. For background purpose, we present the
most important issues related to IDCT theory in Section 4.1. Several considerations
regarding the 2-D IDCT implementation on standard TriMedia-CPU64 are dis-
cussed in Section 4.2. Implementation issues of the 1-D IDCT computing resource
on FPGA are presented in Section 4.3. The execution scenario of the 2-D IDCT
on ρ–TriMedia, as well as experimental results are presented in Section 4.4. Sec-
tion 4.5 completes the chapter with some conclusions and closing remarks.

4.1 Theoretical background

The transformation for an N point 1-D IDCT is defined by [85]:

xi =
2
N

N−1∑
u=0

KuXu cos
(2i + 1)uπ

2N

where Xu are the inputs, xi are the outputs, and Ku =
√

1/2 for u = 0, otherwise

61

is 1. For MPEG, a 2-D IDCT processes an 8 × 8 matrix X [70]:

xi,j =
1
4

7∑
u=0

7∑
v=0

KuKvXu,v cos
(2i + 1)uπ

16
cos

(2j + 1)vπ

16

A standard strategy to compute the 2-D IDCT is the row-column separation.
The 2-D transform is performed by applying the 1-D transform to each row (hori-
zontal IDCTs) and subsequently to each column (vertical IDCTs) of the data ma-
trix. This strategy can be combined with different 1-D IDCT algorithms to further
reduce the computational complexity. One of the most efficient 1-D IDCT algo-
rithms has been proposed by Loeffler [67]. It has to be mentioned that the Loeffler
algorithm has an intrinsic gain of 2

√
2. Thus, after the vertical and horizontal 1-

D IDCTs have been computed, a factor of 2
√

2× 2
√

2 = 8 has to be compensated
out. This can be easily achieved by right-shifting by three positions.

To fulfill the IEEE numerical accuracy requirements for IDCT in MPEG ap-
plications [1] when all the computations are carried out with 16-bit signed values,
van Eijndhoven and Sijstermans proposed a slightly different version of the Lo-
effler algorithm in which the

√
2 factors are moved around [114], as depicted in

Figure 4.1. Due to its higher numerical accuracy, we will use this modified algo-
rithm in the subsequent experiment. We would like to mention that the modified
algorithm has also an intrinsic gain of 2

√
2.

2 C1

2 C3

3

0

1

2

3

4

5

6

7

OUTPUTS

2 C6

1/2

1/2

0

1

2

4

5

6

7

6

0

4

2

7

3

5

1

INPUTS

Figure 4.1: The modified ‘Loeffler’ algorithm.

In the figure, the round block signifies a multiplication by C′
0 =

√
1/2. The

butterfly block and the associated equations are presented in Figure 4.2.

A square block depicts a rotation which transforms a pair [I0, I1] into [O0, O1].

62

I0

1I

O0

1O

O0 = I0 + I1

O1 = I0 − I1

Figure 4.2: The butterfly – [67].

The symbol of a rotator and the associated equations are presented in Figure 4.3.

nkC

O1

0O

I1

0I O0 = I0k cos nπ
16 −I1k sin nπ

16 = kCnI0−kSnI1 = C ′
nI0−S′

nI1

O1 = I0k sin nπ
16 +I1k cos nπ

16 = kSnI0+kCnI1 = S′
nI0+C ′

nI1

Figure 4.3: The rotator – [67].

Although an implementation of such a rotator with three multiplications and
three additions is possible (Fig. 4.4 – a, b), we used the direct implementation
of the rotator with four multiplications and two additions (Fig. 4.4 – c), because
it shortens critical path and improves numerical accuracy. Indeed, there are three
operations (two additions and a multiplication) on the critical path of the imple-
mentations with three multipliers, while the critical path of the implementation
with four multipliers contains only two operations (a multiplication and an addi-
tion). Also, the initial addition involved by the three-multiplier implementations
may lead to an overflow when fixed-point arithmetic is carried out.

I

S

I

S

O

O

I

I

O

O

I

I

O

O

S

S C

C ’

0

n

n

n

1

n

1

’
n−

’

0

1

’

’ ’

0

S’n

1

+− ’
n

0

Cn C’

+ ’
nC’

’
n

0

S

1

n

1

0

n
C

(a) (b) (c)

Figure 4.4: Three possible implementations of the rotator.

4.2 2-D IDCT pure-software implementation

In the 2-D IDCT implementation on standard TriMedia–CPU64, all computations
are done with 16-bit values, and make intense use of four-way SIMD-style oper-
ations. The 8 × 8 matrix is stored in sixteen 64-bit words, each word containing

63

a half row of four 16-bit elements. Therefore, four 16-bit elements can be pro-
cessed in parallel by a single word-wide operation. Next to that, since TriMedia
is a 5-issue slot VLIW processor, five such operations can be executed per clock
cycle.

To calculate the 2-D IDCT, eight 1-D IDCTs are first computed using the mod-
ified ‘Loeffler’ algorithm [114]. By using the 4-way SIMD operations, four IDCTs
are effectively computed concurrently. That is, eight 1-D IDCTs are calculated as
two SIMD 1-D IDCTs. Then, the transpose of the 8 × 8 matrix is performed by a
transpose functional unit which covers a double issue slot. The TRANSPOSE double-
slot operation can generate the upper respectively lower two words of a transposed
4×4 matrix in one cycle. Therefore, the 8×8 matrix transpose is computed in eight
basic operations. Finally, eight 1-D IDCTs (two SIMD 1-D IDCTs) are computed
with the results generated by the transposition. Following the described procedure,
a complete 2-D IDCT including the LOAD and STORE operations (cache misses are
not counted) can be performed in 56 cycles [113]. 48 NOPs are inserted by the Tri-
Media scheduler in the 56-cycle routine (NOPs associated to super-operations are
not counted), which translates to an average utilization of 4.14 out of 5 operations
per instruction.

4.3 1-D IDCT implementation on FPGA

Since the standard TriMedia provides a good support for transposition and matrix
storage, we expect to get little benefit if we configure the entire 2-D IDCT into
FPGA. Our goal is to balance the cost of storing the intermediate 2-D IDCT results
into an FPGA-resident transpose matrix memory against obtaining free slots into
TriMedia. Consequently, in our implementation on the extended TriMedia, we con-
figure only an 1-D IDCT 2-slot computing resource on the RFU. By launching an
1-D IDCT double-slot operation having two 64-bit inputs and two 64-bit outputs,
an 1-D IDCT is computed on eight 16-bit values. To calculate the 2-D IDCT, eight
1-D IDCT are firstly computed. Then a transpose is performed on the 8 × 8 data
matrix using TriMedia native TRANSPOSE double-slot operations. Finally, eight
1-D IDCT are again computed. This execution scenario is presented in Figure 4.5.

Let us assume that a horizontal packing of the data is needed at the output of the
8×8 IDCT, i.e., four elements in the same matrix line are to be stored into a (64-bit)
double word. If the input data is also horizontally packed, then two transposition
stages are needed (Fig. 4.6 – left), otherwise, only the middle transposition stage is
required (Fig. 4.6 – right). In connection to the target media domain of TriMedia, in
particular the MPEG decoding task [70], we notice that the front transposition stage

64

Eight
FPGA−config.

1−D IDCT
operations

8x8 matrix
transposition

Eight
FPGA−config.

1−D IDCT
operations

8x8 input data 8x8 output data

Figure 4.5: The computing scenario of 8 × 8 IDCT on the extended TriMedia.

can be bypassed if the appropriate zig-zag scan ordering or its transposed version
is used during the reconstruction process of the 8 × 8 matrices. Consequently,
the performance evaluation of the 8 × 8 IDCT takes into consideration only eight
1-D IDCTs, a transposition stage, and again eight 1-D IDCTs.

As mentioned in Chapter 3,
Matrix Reconstruction Matrix Reconstruction

transposed zig−zagzig−zag

transposition
8x8 matrix

H−IDCT

V−IDCT

transposition
8x8 matrix

transposition
8x8 matrix

H−IDCT

V−IDCT

Figure 4.6: Bypassing the first transposition.

a hypothetical implementation
of an FPGA-based computing
unit having a recovery of 1 is
not a realistic scenario, and a re-
covery of 2 or more is manda-
tory for the time being. Here-
after, we assume a recovery of
2 for 1-D IDCT, which trans-
lates into an FPGA cycle time
to TriMedia cycle time ratio of
2. Considering a TriMedia–
CPU64 running at 200 MHz,
the pipelined implementation of
1-D IDCT will work with a
clock frequency of 100 MHz. In
the same time, the optimization
task should also attempt to find
the lowest possible number of
1-D IDCT pipeline stages. This
is needed in order to reduce the
pressure on the register file when the 2-D IDCT software pipeline is built. Sub-
sequently, we describe in detail the 1-D IDCT implementation on an ACEX
EP1K100 FPGA from Altera.

Implementation issues of the 1-D IDCT. All operations required to compute
1-D IDCT are implemented using 16-bit fixed-point arithmetic. Referring again to

65

Section 4.1, and to Figures 4.1, 4.3, and 4.4, since the computation of 1-D IDCT
requires 14 multiplications, an efficient implementation of each multiplication is
of crucial importance. For all multiplications, the multiplicand is a 16-bit signed
number represented in 2’s complement notation, while the multiplier is a positive
constant of 15 bits or less. As proved in [112], these word lengths in connection
with fixed-point arithmetic and proper rounding are sufficient to fulfill the IEEE
numerical accuracy requirements for IDCT in MPEG applications.

A general multiplication scheme for which both multiplicand and multiplier
are unknown at the implementation time exhibits the largest flexibility at the ex-
penses of higher latency and larger area. If one of the operands is known at the
implementation time, the flexibility of the general scheme becomes redundant,
and a customized implementation leads to improved latency and area. A scheme
which is optimized against one of the operands is referred to as multiplication-by-
constant. Since such a scheme is more appropriate for our application, we will use
it subsequently. We would like to emphasize that due to the FPGA reconfiguration
capability, this customization can be re-iterated if the constant changes.

To implement the multiplication-by-constant scheme, we built a partial product
matrix, where only the rows corresponding to a ‘1’ in the multiplier are filled in.
Then, reduction schemes which fit into a pipeline stage running at 100 MHz are
sought. It should be emphasized that a reduction algorithm which is optimum on a
particular FPGA family may not be appropriate for a different family.

In order to implement an IDCT at 100 MHz, reduction modules which can
run at 100 MHz or more should be considered. Subsequently, we present the
reduction steps for all multiplications. In order to implement 16-bit fixed-point
arithmetic, both the multiplicand and multiplier have been properly scaled so that
values remain representable with 16 bits and 15 bits, respectively, while preserving
the highest possible precision [112]. Also, only the most significant 16 bits of the
extended 31-bit product are to be stored. It is worth mentioning that only 30 of 31
bits of the product have to be computed. As depicted in Figure 4.7 – (a), the 31st

(most significant) bit (labeled ’30’) is derived from the sign-bit of the multiplicand,
while the carry from position ’29’ to ’30’ is discarded. Recursively, assuming that
the multiplier magnitude is small enough so that the multiplier can be represented
with only 14, 13, ... bits, then only 29, 28, ... of 31 bits, respectively, have to be
computed. The most significant 2, 3, ... bits of the product are derived from the
sign-bit of the multiplicand, while the carry from position ’28’ to ’29’, ’27’ to ’28’,
..., respectively, is discarded (Fig. 4.7 – (b)).

In addition to the solution we described in [95], we implemented a Rounding-
To-Nearest (rtn) scheme [75] at the end of each multiplication. Assuming

66

sss

s
0 0

Carry is discarded

30 0510152025

(b)

s

Carry is discarded

s

30 0510152025

(a)

Figure 4.7: Sign-extension for: (a) – 15-bit multiplier; (b) – 13-bit multiplier.

that the extended 31-bit product is p15, . . . , p1, p0, p−1, p−2, . . . , p−15, where
p−1, p−2, . . . , p−15 are the bits to be discarded, the rounding-to-nearest is per-
formed by adding the bit p−1 to the 16-bit (p15, . . . , p1, p0) unrounded product,
as it is depicted in Figure 4.8 (‘S’ represents the sign-bit, and ‘R’ specifies the
rounding-bit). The generated rounding function is depicted in Figure 4.9.

25 20 15 10 5 030

R
Rs

s

(discarded)

p
−15

pp
0 −1

p
15

Figure 4.8: Rounding-To-Nearest implementation.

−0.5−1−1.5−2−2.5

1 1.5 2 2.5 x
−1

0.5

−2

2

1

rtn(x)

Figure 4.9: Rounding a real value to the nearest integer.

In connection to the rounding stage, several comments are worth to be pro-
vided. First, in order to obtain the correct result when rounding from the (31-bit)
highest negative numbers, i.e., 7fff 8000 ÷ 7fff ffff, to zero, carry prop-
agation over all 16 bits of the rounded product is needed. That is, the sign bit
is involved in computation during the rounding stage. This imposes a significant
overhead as the final rounding is always on the critical path of the multiplication.
Once again, 16-bit fixed-point arithmetic and rounding-to-nearest is sufficient to
fulfill the IEEE numerical accuracy requirements for IDCT in MPEG applications.
This was really confirmed by performing the IEEE accuracy validation [112]. This
means that when rounding from the (31-bit) highest positive numbers, i.e., 3fff
8000 ÷ 3fff ffff, an overflow will never been encountered. For this reason,

67

saturating arithmetic is not needed and, therefore, has not been implemented. Sec-
ond, following the procedure described in [75], we estimate that the normalized
magnitude of the upward bias introduced by the rounding-to-nearest scheme is:

bias =
0.5

215−atzlsb

where atzlsb (all-time zero least significant bits) is the number of least significant
p−1, p−2, . . . , p−15 bits of the product which are zero all the time. In the most
disadvantageous case, atzlsb = 3 (multiplication by S′1, as shown later). Thus,

bias =
0.5
212

=
0.5

4096
= 0.00012207

which means that 4096 · 2 = 8192 operations containing a rounding step, i.e.,
multiplications, are needed to affect the precision of the 16-bit rounded product by
only 1 bit! Fortunately, the number of the operations containing a rounding step
which are needed to reconstruct a pixel (both 2-D IDCT and motion compensation
are considered) is far less that 8196 (is of the order of 20 or so). Consequently, the
bias introduced by the rounding to nearest scheme will never affect the result and,
therefore, is out of concern.

The partial product matrix and the selected reduction modules and steps for
multiplication by the constant C′

0 = 5a82h are presented in Figure 4.10 (the Ro-
man numerals indicate the reduction steps). First, the partial product matrix is built.
Then, reductions on the modules specified by the shaded areas are carried out. The
first stage generates four binary numbers of different lengths result, which are re-
duced to one row in the second stage. Therefore, a multiplication by the constant
C ′

0 including rounding is performed in two pipeline stages.

s

s

s

s

s

s

25 20 15 10 5 030

111111

sssssssss
sss

sss
ss

s

s
s
s s s

ss
s
s
s
s
s

s

R
R

sssss

I

II

s (discarded)

(discarded)

Figure 4.10: The partial product matrix and the selected reduction steps for
multiplication by the constant C′

0.

68

The partial product matrix and the selected reduction modules and steps for
multiplication by the constant C′

1 = 58c5 h are presented in Figure 4.11. The
reduction is performed in a horizontal way, two lines at a stage. Therefore, a mul-
tiplication by the constant C′

1 is performed in three stages. The multiplication by
the constant C′

1 proved too difficult to be implemented in two stages only.

s

s
s

s
s

s

s
s

25 20 15 10 5 030

1

sssssssss
sss

sss
ss

s

s
s
s s s

ss
s
s
s
s
s

111111

s
s s s s s

s s s
sss

s
s

ss

ssssssssssss
sssssss

ss

ssssss

s

R
R

I

II

III s (discarded)

(discarded)

Figure 4.11: The partial product matrix and the selected reduction steps for
multiplication by the constant C′

1.

The partial product matrix and the selected reduction modules and steps for
multiplication by the constants S′

1 = 11a8h, C ′
3 = 4b42h, S′

3 = 3249h, C ′
6 =

22a3h, and S′
6 = 539f h are presented in Figures 4.12, 4.13, 4.14, 4.15, and 4.16,

respectively. Concerning the multiplication by constant S′6, some comments are
worth to be provided. In order to reduce the number of ‘1’ in the multiplier S′6 and,
consequently, the number of rows in the corresponding partial product matrix, the
Booth’s recoding [75] has been applied. That is, the multiplier S′6 is rewritten as
S′

6 = 5420h− 0081 h, and the rows in the partial product matrix corresponding to
0081 h are subtracted rather than added.

s

sssss s
s
s

s

s

III

II

I

25 20 15 10 5 030

ss s
s s s s s

ss
s s

ss

1 1111

s s

s

s s
ss

s s

s s
s

s s
s

ssssss

s

R
R

sss (discarded)

(discarded)

Figure 4.12: The partial product matrix and the selected reduction steps for
multiplication by the constant S′

1.

69

s

s
s

s

s

ss s

25 20 15 10 5 030

1

ssssssssss s ss s

1 1

s
s
s s

s
s s s s s s

ss
s s

s

111

s
s
s

sss

s
s

s
ssss

ssssss

R
R

s
s

s

III

I

II

s (discarded)

(discarded)

Figure 4.13: The partial product matrix and the selected reduction steps for
multiplication by the constant C′

3.

s

s
s

s
s

s

sI

II

III

25 20 15 10 5 030

sssssssss
sss

sss
s

s
s
s s s

ss

11

s
s s s s

s s s
ss

111 1

s
s

ssss
sssssssss

sss

s

R
R

ss (discarded)

(discarded)

Figure 4.14: The partial product matrix and the selected reduction steps for
multiplication by the constant S′

3.

We would like to note that the critical path of the 1-D IDCT is located on the
lower half part of the modified ‘Loeffler’ algorithm (Fig. 4.1). Once the multiplica-
tion by constant C′

1 is performed in three stages, there is no gain in performance to
implement the other three multiplications by constants S′1, C ′

3, S′
3 in less than three

stages. Therefore, the multiplications by the constants S′1, C ′
3, S′

3 are implemented
in three stages also, even though they may allow for an efficient (timing) imple-
mentation in two stages, too (however, at the expense of a slightly larger area).
The same timing-relaxed implementation strategy is used for multiplications by
the constants C′

6 and S′
6, since they both are not located on the critical path.

The sketch of the 1-D IDCT pipeline is depicted in Figure 4.17 (the roman
numerals specify the pipeline stages). As mentioned, our effort was focused on
the optimization of the entire IDCT compound. Considering the critical path, the
latency of the 1-D IDCT is composed of:

70

s

s

s

s
s

s
s

25 20 15 10 5 030

sssssssss
sss

sss
ss

s

s
s
s s s

ss

11

s
s s s s s

s s s
sss

s
s

1111

s
s

s s

sssssss
s

sssss
s s s s s

s s s ss

R
R

I

II

III

IV ss (discarded)

(discarded)

Figure 4.15: The partial product matrix and the selected reduction steps for
multiplication by the constant C′

6.

(−)

(−)(−)

(−)

(+)

(+)

(+)

(+)

(+)s

ssssssssssssss s
s

25 20 15 10 5 030

11
1

11

ssssss
s

s

s
s

sss
sss

s

s s s s

ssss ss s

s
s

s s s s s s s

1

ss s s s ss

s s s s s s s

R
R

IV

III

II

I

s (discarded)

(discarded)

Figure 4.16: The partial product matrix and the selected reduction steps for
multiplication by the constant S′

6.

• one TriMedia cycle for reading the input operands from the register file into
the input flip-flops of the 1-D IDCT computing resource;

• two pipeline stages (that is, two FPGA cycles or four TriMedia cycles) for
computing the multiplication by constant C′

0;

• one pipeline stage (that is, two TriMedia cycles) for computing all addi-
tions/subtractions required by the butterflies that are located between the√

1/2 multipliers and
√

2C1 and
√

2C3 rotators.

• three pipeline stages (six TriMedia cycles) for computing the multiplication
by constant C′

1;

• one pipeline stage (two TriMedia cycles) for computing all the remaining
additions/subtractions (at the end of

√
2C1 and

√
2C3 rotators, and final but-

terflies);

• one TriMedia cycle for writing back the results from the output flip-flops of
the 1-D IDCT computing resource into the register file.

71

Therefore, the latency of the 8-point 1-D IDCT operation is 1 + (2 + 1 + 3 + 1)×
2 + 1 = 16 TriMedia cycles. We determined that 1-D IDCT uses 45% of the logic
elements and 257 I/O pins of an ACEX EP1K100 device.

WR
2x
RD

2x

pipeline stage

I

FPGA

en

Register
File

Clock
TriMedia

IDCT
Write−back
Enable

Enable
IDCT

Clock
TriMedia

(multiplication reduction module and/or
butterfly addition/subtraction)

en

II III IV V VI VII

2

en en enenenen

Enable
FPGA

File
Register

en

Figure 4.17: The 1-D IDCT pipeline.

4.4 2-D IDCT implementation on ρ–TriMedia

As mentioned, an 1-D IDCT with a latency of 16 and a recovery of 2 is configured
on the RFU at application launch-time. We assigned the IDCT operation to the slot
pair 1+2. After eight 1-D IDCTs, eight TRANSPOSE super-operations are scheduled
on the slot pairs 1+2 or 3+4 to compute the transpose of the 8 × 8 matrix. Then,
eight 1-D IDCTs complete the 2-D IDCT. Before and after each 2-D IDCT, LOAD
and STORE operations fetch the input operands from main memory into register
file, and store the results back into memory, respectively. The scheduled code and
the performance figures are presented in Figure 4.18.

In order to keep the pipeline full, back-to-back 1-D IDCT operation is needed.
That is, a new 1-D IDCT instruction has to be issued every two cycles. Since
true dependencies forbid issuing the last eight 1-D IDCTs of a 2-D IDCT to fulfill
back-to-back requirement, the 2-D IDCTs are processed in chunks of two, in an in-
terleaved fashion. A number of 2×16 = 32 registers are needed for this processing
pattern. This 2-D IDCT implementation exhibits a throughput of 1/32 IDCT/cycle
and a latency of 84 cycles for two IDCTs (that is, an average of 42 cycles/IDCT).
It is worth mentioning that the machine is well balanced, none of the 5-slot VLIW
instructions being fully occupied with operations:

72

2
x

L
D

W
R

R
D

3
4

5
6

7
8

9

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

2
x

ST

2
x

ST

W
R

2

2
x

L
D

R
D

2x

1

2x

2x
2x

L
A

T
E

N
C

Y
 =

 8
4

/ 2
 =

 4
2

cy
cl

es
SO

F
T

W
A

R
E

 P
IP

E
L

IN
E

 L
O

O
P

:
(6

7−
4+

1)
 /

2
=

32
 c

yc
le

s
fo

r
2

ID
C

T
s

T
H

R
O

U
G

H
P

U
T

 =
 1

 /
(6

4
/ 2

)
=

1
/ 3

2
ID

C
T

/c
yc

le

fo
ld

ed
 in

to
 t

he
 lo

op

fo
ld

ed
 in

to
 t

he
 s

of
tw

ar
e

pi
pe

lin
e

lo
op

JU
M

P

ba
ck

 t
o

In
st

ru
ct

io
n

4

‘V
er

ti
ca

l’
 s

ta
ge

 o
f

se
co

nd
 2

−D
 I

D
C

T

‘H
or

iz
on

ta
l’

 s
ta

ge
 o

f
fi

rs
t

2−
D

 I
D

C
T

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
63

64
65

66
67

68
69

70
71

72
73

74
75

76
77

78
79

80
81

82
83

84
1−

D
 I

D
C

T

fi
rs

t
2−

D
 I

D
C

T

‘H
or

iz
on

ta
l’

 s
ta

ge
 o

f
se

co
nd

 2
−D

 I
D

C
T

‘V
er

ti
ca

l’
 s

ta
ge

 o
f

Fi
gu

re
4.

18
:

Sc
he

du
le

re
su

lt
fo

r
a

1-
D

ID
C

T
ha

vi
ng

th
e

la
te

nc
y

of
16

an
d

re
co

ve
ry

of
2

(L
D

st
an

ds
fo

r
L
O
A
D,

R
D

fo
r

re
ad

,W
R

fo
r

w
ri

te
,S

T
fo

r
S
T
O
R
E,

an
d

T
fo

r
T
R
A
N
S
P
O
S
E)

.

73

• Two LOAD or two STORE operations are issued every other clock cycle on
slots 4 and 5; thus the slots 4 and 5 are only 50% occupied.

• IDCT super-operations are issued on slots 1 + 2 every other clock cycle,
which translates to a 50% usage of the slots 1 and 2.

• The transpose super-operations are also issued on every other clock cycle,
and the issuing slots can be either 1 + 2 or 3 + 4. Since there are only eight
transpositions per 2-D IDCT, the overall slot occupancy percentage does not
increase significantly above 50%.

In this way, there are plenty of free slots which can be utilized for other purposes,
e.g., for implementing the post-IDCT rounding and saturation required by MPEG
standard [70], or even a 2-D IDCT in the standard instruction set. Consequently,
the announced figures represent the lower bound of the performance that can be
achieved on ρ–TriMedia.

In connection to the scheduled code presented in Figure 4.18, we would like to
mention that cycling over Instructions 1 ÷ 84 is needed to launch the computation
of the next two 2-D IDCTs. The immediate effect is that there is an overhead asso-
ciated to firing-up and flushing the reconfigurable-hardware (1-D IDCT) pipeline.
Thus, the throughput of 1/32 IDCT/cycle corresponds to the ideal scenario of a
loop which is unrolled an infinite number of times.

In order to have a realistic scenario, two techniques can be employed: (1) finite
loop unrolling + grafting techniques, and (2) software pipelining. Both techniques
are analysed subsequently and performance figures are provided. Concerning the
second technique we have to mention that, for the time being, the TriMedia sched-
uler uses the decision tree as a scheduling unit [50]. Thus, all operations return the
results in the same decision tree that they are launched, even though the TriMedia
architecture does not forbid the contrary. This is the major limiting factor in gener-
ating deep software pipelined loops containing long-latency operations. However,
the code containing RFU operations is very simple. Therefore, programming di-
rectly in assembly is indeed a feasible solution for such simple routines, despite of
the fact that the host is a complex VLIW processor.

Figure 4.18 also presents the edges of the software pipeline loop (Instructions 4
and 67), as well as the corresponding JUMP operation which cycles over the loop.
To employ loop pipelining, the first 4 LOAD operations and the last 16 STORE op-
erations should be folded into the loop. Thus, the overhead associated to firing-up
and flushing the software pipeline (i.e., the prologue and the epilogue) consists of
these 4 LOAD, and 16 STORE operations, respectively, which have to be issued any
other cycle. Thus, the total overhead is 20 cycles.

74

In order to assess the implications of the loop prologue and epilogue in a real
case, we have focused on the average number of coded blocks per slice for a num-
ber of MPEG-conformance bit-strings (Table 4.1). If all the blocks in an MPEG
slice are first reconstructed and only then transformed as a single batch, then the
lowest average batch size is 38 blocks/slice (B frames in the popplen scene). This
figure translates into the worst case penality associated to the prologue and epi-
logue of the software pipeline loop of 20/38 ≈ 0.53 cycles/block. Since this
overhead represents less than 1.66% of the 32 cycle/block throughput in the most
disadvantageous case, it can be neglected.

Table 4.1: The average number of coded blocks per slice for a number of
MPEG-conformance bit-strings.

Scene Coded blocks/slice
Frame type I P B

bat 327 334 – 257 234
popplen 264 80 38
sarnoff2 270 171 61
tennis 264 167 71
ti1cheer 264 155 88

In Table 4.2, we present performance figures for two loop organizations (lin-
ear and software pipelined), several computing scenarios (FPGA-based 2-D IDCTs
are processed in chunks of two, FPGA-based 2-D IDCTs are blended with a single
2-D IDCT computed in software, vertical 1-D IDCTs and transpositions are com-
puted first for all matrices of the testbench, and only then all horizontal 1-D IDCTs
are carried out), and several degrees of loop unrolling. Since the IDCT rounding
and saturation as specified by MPEG standard [70] may be subject to optimization
at a complete MPEG decoder level, we will also present the experimental figures
for three cases: IDCT rounding and saturation is performed in FPGA as an addi-
tional (the eighth) hardware pipeline stage, in software in the standard TriMedia
instruction set, or postponed for a subsequent stage of MPEG decoding process.
We mention that when the IDCT rounding and saturation is carried out immedi-
ately after the 2-D IDCT completed, the square of the intrinsic Loeffler gain is also
compensated out by right-shifting by three positions (i.e., integer division by 8).

75

Ta
bl

e
4.

2:
P

er
fo

rm
an

ce
fig

ur
es

fo
r
8

×
8

ID
C

T
on

(F
P

G
A

-a
ug

m
en

te
d)

T
ri

M
ed

ia
.

L
oo

p
C

om
pu

tin
g

sc
en

ar
io

U
nr

ol
lin

g
ID

C
T

ro
un

di
ng

E
ff

ec
tiv

en
es

s
Pe

rf
or

m
an

ce
C

om
m

en
ts

or
ga

ni
za

tio
n

de
gr

ee
an

d
sa

tu
ra

tio
n

(i
ss

ue
s/

cy
cl

e)
(c

yc
le

s/
8×

8
m

at
ri

x)
L

in
ea

r
Tw

o
FP

G
A

-I
D

C
T

s
no

ne
no

ne
1.

94
41

.5
L

in
ea

r
Tw

o
FP

G
A

-I
D

C
T

s
no

ne
in

FP
G

A
1.

87
43

.0
re

qu
ir

es
tw

o
R
F
U−

O
P−

I
D

s
L

in
ea

r
Tw

o
FP

G
A

-I
D

C
T

s
no

ne
in

SW
1.

87
44

.4

L
in

ea
r

Tw
o

FP
G

A
-I

D
C

T
s

2
×

no
ne

2.
18

36
.8

L
in

ea
r

Tw
o

FP
G

A
-I

D
C

T
s

2
×

in
FP

G
A

2.
15

37
.3

re
qu

ir
es

tw
o
R
F
U−

O
P−

I
D

s
L

in
ea

r
Tw

o
FP

G
A

-I
D

C
T

s
2
×

in
SW

3.
76

38
.5

L
in

ea
r

Tw
o

FP
G

A
-I

D
C

T
s

3
×

no
ne

2.
30

61
.6

sp
ill

in
g

en
co

un
te

re
d

L
in

ea
r

Tw
o

FP
G

A
-I

D
C

T
s

3
×

in
FP

G
A

2.
11

63
.1

sp
ill

in
g

en
co

un
te

re
d

re
qu

ir
es

tw
o
R
F
U−

O
P−

I
D

s
L

in
ea

r
Tw

o
FP

G
A

-I
D

C
T

s
3
×

in
SW

3.
22

64
.0

sp
ill

in
g

en
co

un
te

re
d

L
in

ea
r

Fo
ur

FP
G

A
-I

D
C

T
s

+
on

e
SW

-I
D

C
T

no
ne

no
ne

3.
10

35
.6

L
in

ea
r

Fo
ur

FP
G

A
-I

D
C

T
s

+
on

e
SW

-I
D

C
T

no
ne

in
FP

G
A

/S
W

3.
24

38
.2

re
qu

ir
es

tw
o
R
F
U−

O
P−

I
D

s

L
in

ea
r

16
V

er
tic

al
1-

D
ID

C
T

s
+

T
ra

ns
po

si
tio

n
no

ne
n/

a
2.

30
28

.0
16

H
or

iz
on

ta
l1

-D
ID

C
T

s
no

ne
no

ne
1.

90
25

.5
To

ta
lf

or
2-

D
ID

C
T

–
–

–
53

.5
L

in
ea

r
16

V
er

tic
al

1-
D

ID
C

T
s

+
T

ra
ns

po
si

tio
n

no
ne

n/
a

2.
30

28
.0

re
qu

ir
es

tw
o
R
F
U−

O
P−

I
D

s
16

H
or

iz
on

ta
l1

-D
ID

C
T

s
no

ne
in

FP
G

A
1.

83
26

.5
To

ta
lf

or
2-

D
ID

C
T

–
–

–
54

.5

L
in

ea
r

16
V

er
tic

al
1-

D
ID

C
T

s
+

T
ra

ns
po

si
tio

n
2
×

n/
a

2.
92

22
.0

16
H

or
iz

on
ta

l1
-D

ID
C

T
s

2
×

no
ne

2.
33

20
.8

To
ta

lf
or

2-
D

ID
C

T
–

–
–

42
.8

L
in

ea
r

16
V

er
tic

al
1-

D
ID

C
T

s
+

T
ra

ns
po

si
tio

n
2
×

n/
a

2.
92

22
.0

re
qu

ir
es

tw
o
R
F
U−

O
P−

I
D

s
16

H
or

iz
on

ta
l1

-D
ID

C
T

s
2
×

in
FP

G
A

2.
27

21
.3

To
ta

lf
or

2-
D

ID
C

T
–

–
–

43
.3

76

Ta
bl

e
4.

2:
P

er
fo

rm
an

ce
fig

ur
es

fo
r
8

×
8

ID
C

T
on

(F
P

G
A

-a
ug

m
en

te
d)

T
ri

M
ed

ia
(c

on
td

.)
.

L
oo

p
C

om
pu

tin
g

sc
en

ar
io

U
nr

ol
lin

g
ID

C
T

ro
un

di
ng

E
ff

ec
tiv

en
es

s
Pe

rf
or

m
an

ce
C

om
m

en
ts

or
ga

ni
za

tio
n

de
gr

ee
an

d
sa

tu
ra

tio
n

(i
ss

ue
s/

cy
cl

e)
(c

yc
le

s/
8×

8
m

at
ri

x)
L

in
ea

r
16

V
er

tic
al

1-
D

ID
C

T
s

+
T

ra
ns

po
si

tio
n

3
×

n/
a

2.
79

37
.2

sp
ill

in
g

en
co

un
te

re
d

16
H

or
iz

on
ta

l1
-D

ID
C

T
s

3
×

no
ne

2.
03

35
.5

re
qu

ir
es

tw
o
R
F
U−

O
P−

I
D

s
To

ta
lf

or
2-

D
ID

C
T

–
–

–
72

.7
L

in
ea

r
16

V
er

tic
al

1-
D

ID
C

T
s

+
T

ra
ns

po
si

tio
n

3
×

n/
a

2.
79

37
.2

sp
ill

in
g

en
co

un
te

re
d

16
H

or
iz

on
ta

l1
-D

ID
C

T
s

3
×

in
FP

G
A

1.
98

36
.8

re
qu

ir
es

tw
o
R
F
U−

O
P−

I
D

s
To

ta
lf

or
2-

D
ID

C
T

–
–

–
74

.0

So
ft

w
ar

e
Tw

o
FP

G
A

-I
D

C
T

s
n/

a
no

ne
3.

81
32

.1
pi

pe
lin

ed
So

ft
w

ar
e

Tw
o

FP
G

A
-I

D
C

T
s

n/
a

in
FP

G
A

3.
69

33
.1

re
qu

ir
es

tw
o
R
F
U−

O
P−

I
D

s
pi

pe
lin

ed

So
ft

w
ar

e
A

ll
V

er
tic

al
1-

D
ID

C
T

s
+

T
ra

ns
po

si
tio

n
n/

a
n/

a
3.

20
20

.1
pi

pe
lin

ed
A

ll
H

or
iz

on
ta

l1
-D

ID
C

T
s

n/
a

no
ne

4.
10

16
.1

To
ta

lf
or

2-
D

ID
C

T
–

–
–

36
.2

So
ft

w
ar

e
A

ll
V

er
tic

al
1-

D
ID

C
T

s
+

T
ra

ns
po

si
tio

n
n/

a
n/

a
3.

20
20

.1
re

qu
ir

es
tw

o
R
F
U−

O
P
−I

D
s

pi
pe

lin
ed

A
ll

H
or

iz
on

ta
l1

-D
ID

C
T

s
n/

a
in

FP
G

A
4.

10
16

.2
To

ta
lf

or
2-

D
ID

C
T

–
–

–
36

.3

N
ot

e:
F

P
G

A
-I

D
C

T
st

an
ds

fo
r

an
ID

C
T

w
hi

ch
be

ne
fit

s
fr

om
re

co
nfi

gu
ra

bl
e

ha
rd

w
ar

e
su

pp
or

t
SW

-I
D

C
T

st
an

ds
fo

r
an

ID
C

T
ca

rr
ie

d
ou

ti
n

so
ft

w
ar

e.

77

As expected, the best result is obtained for a software pipeline loop: 1/32
IDCT/cycle. However, a linear loop organization with two FPGA-based IDCTs
and 2× unrolling is not a bad choice either, since it achieves a throughput only
17% lower: 1/37.3 IDCT/cycle. Since generating software pipeline loops is not
supported by the current TriMedia toolchain, the advantage of the later approach is
an easier programming task. If IDCT rounding and saturation can be postponed for
a different stage of MPEG decoding process, the best solution for a linear loop cor-
responds to a computing scenario with four FPGA-based and one software-based
IDCTs in the loop. The throughput in this case is 1/35.6 IDCT/cycle. For the same
linear loop organization and a computing scenario in which the vertical 1-D IDCTs
are computed for all the matrices of the testbench in a first loop, and only then all
the horizontal 1-D IDCTs are carried out in a separate loop, the double overhead
associated to the prologues and epilogues of the two loops decreases the through-
put to 1/42.8 IDCT/cycle (about 6% lower). Unrolling the loop three or more times
generates register spilling; thus the performance degrades significantly.

It is worth noting that IDCT rounding and saturation carried out in software
requires about 1.5 cycles/IDCT, and only 0.5 ÷ 1.0 cycles/IDCT when carried out
in FPGA. However, two RFU− OP− IDs are needed to embed IDCT rounding and
saturation in FPGA: one ID for horizontal 1-D IDCT, and one ID for vertical 1-
D IDCT. At this moment we would like to emphasize that due to the MOLEN
concept which provides means to specify multiple RFU-based operations for the
same RFU− OP, the need for two or more IDs never becomes a limitation.

In Table 4.3 and Figure 4.19 we compare the performances of several 2-D
IDCT implementations: on standard TriMedia [113], on FPGA-augmented TriMe-
dia, on FPGA alone [19], and on several 2-D convolution-oriented coarse-grain
programmable architectures: REMARC [72], MorphoSys [101], M.F.A.S.T. [78],
and ManArray [79]. Since the IDCT is applied on large batches of 8×8 blocks, the
throughput is more important than latency. For this reason, our performance anal-
ysis is focused on the 2-D IDCT throughput. A special remark regarding the dis-
tributed arithmetic–based implementation on FPGA alone has to be made. Since
the multiplications are computed by looking-up into on-chip small memories (the
so called Block SelectRAM cells) [19], the pipeline cannot be made deeper, and
55.6 MHz is the upper bound of the frequency that can be achieved on the Virtex
XCV600 device for such implementation. Thus, the number of cycles which cor-
responds to a throughput of 4.27 millions IDCT/sec at a clock frequency of 55.6
MHz is not relevant, and the comparison with the processor-based implementations
has to be made in terms of absolute throughput expressed in IDCT/sec. With 6.25
millions IDCT/sec, the FPGA-augmented TriMedia provides an improvement of
46% in terms of throughput over FPGA alone.

78

Table 4.3: 2-D IDCT performance figures on state-of-the-art architectures.

Computing engine FPGA family Throughput Latency FPGA
IDCT/cycle IDCT/s cycles ns usage

TriMedia–CPU64 (200 MHz) [113] n/a 1/56 3.57 M 56 280 n/a
FPGA-augmented TriMedia–CPU64 EP1K100 1/32 6.25 M 42 210 45 %

(Altera)
FPGA alone (55.6 MHz) [19] XCV600 non 4.27 M non 467.9 88 %

(Xilinx) relevant relevant
REMARC [72] Coarse-grain 1/54 no info. 54 no info. 100 %
MorphoSys (100 MHz) [101] Coarse-grain 1/37 2.70 M 37 370 100 %
M.F.A.S.T. (50 MHz) [78] n/a 1/22 2.27 M 22 440 n/a
ManArray [79] n/a 1/34 no info. 34 no info. n/a

The 2-D IDCT implementation on standard TriMedia exhibits the lowest
throughput (1/56 IDCT/cycle), while the highest throughput (1/22 IDCT/cycle)
is achieved for the implementation on M.F.A.S.T.. The second highest through-
put (1/32 IDCT/cycle) is achieved for the implementation on augmented TriMedia,
which is an improvement of 75% over standard TriMedia (40% in terms of comput-
ing time). We would like to comment that the difference in performance between
M.F.A.S.T. and FPGA-augmented TriMedia will diminish if additional computa-
tion is considered, e.g., the post-IDCT rounding and saturating required by MPEG
standard [70]. While the throughput will decrease on M.F.A.S.T., it will remain
about the same on FPGA-augmented TriMedia, since the 1-D IDCT pipeline can
be easily enlarged by an additional stage for computing post-IDCT rounding and
saturating (see Table 4.2). Alternatively, post-IDCT rounding and saturating can
be implemented within the standard instruction set of TriMedia, since there are still
plenty of empty slots, as already mentioned.

Finally, we would like to mention that the second highest throughput is
achieved with a fine-grain field-programmable custom computing machine, that
is, FPGA-augmented TriMedia, which exhibits flexibility over a 2-D convolution-
oriented architectures like M.F.A.S.T. [78] or ManArray [79] for implementing
heterogenous tasks, e.g., variable-length decoding [70].

4.5 Conclusion

In this chapter we investigated the inverse discrete cosine transform, and proposed
a reconfigurable 2-D IDCT design for ρ–TriMedia. Essentially, we implemented an

79

clipping (−256 ... 255)
rounding

T
ri

M
ed

ia
 a

lo
ne

T
ri

M
ed

ia
 +

 F
PG

A

1.0 x 1.04 x

R
E

M
A

R
C

M
or

ph
oS

ys
M

.F
.A

.S
.T

.
M

an
A

rr
ay

1.51 x 1.60 x

2.55 x

1.75 x2 x

3 x

1 x

Speed−up

with potential for: without potential for:

At the same throughput (1/32 IDCT/cycle and 1/22 IDCT/cycle),

Figure 4.19: The speed-up of various 2-D IDCT implementations on several
state-of-the-art architectures relative to standard TriMedia–CPU64.

1-D IDCT operation on the reconfigurable unit, and use the standard row-column
separation strategy to compute the 2-D IDCT (the 1-D transform is carried out on
each row and subsequently on each column of the 8 × 8 block). This way, the
1-D IDCT is computed in reconfigurable hardware, while the transposition of the
8 × 8 block is carried out in the standard TriMedia–CPU64 instruction set.

In particular, we also described the implementation of the 1-D IDCT computing
unit on the reconfigurable hardware. This implementation is based on a modified
Loeffler algorithm that ensures IEEE-compliancy for IDCT in MPEG applications.
A significant effort has been made to implement each multiplier. By writing VHDL
code, followed by placement and routing, we determined that the 1-D IDCT com-
puting unit has a latency of 16 and a recovery of 2 TriMedia@200 MHz cycles,
and occupies 45% of the logic elements of an ACEX EP1K100 FPGA from Altera.

By configuring the 1-D IDCT computing unit on the reconfigurable hardware,
and by calling it inside a software pipeline loop together with transposition oper-
ations, 2-D IDCT can be computed with the throughput of 1/32 IDCT/cycle. This
figure translates to an improvement of 40% in terms of computing time, that is, a
speed-up of 75% is achieved on ρ–TriMedia over standard TriMedia–CPU64. It is
also worth mentioning that there are plenty of empty slots in the implementation
on ρ–TriMedia. Consequently, the announced figures represent the lower bound of
the performance improvement that can be achieved on ρ–TriMedia. Given the fact
that TriMedia–CPU64 is a 5-issue slot VLIW processor with 64-bit datapaths and
a very rich multimedia instruction set, such an improvement within its target media
processing domain indicates that ρ–TriMedia is a promising approach with respect
to an IDCT task.

80

Chapter 5

Inverse Quantization

Q
uantization is basically a process for reducing the precision of the DCT
coefficients. Precision reduction is extremely important, since lower preci-
sion almost always implies a lower bit rate in the compressed data stream.
The quantization process involves division of the integer DCT coefficient

values by integer quantizing values. The result is an integer and fraction, and the
fractional part must be rounded according to the rules defined by MPEG. It is the
quantized DCT values that is transmitted to the decoder. For reconstruction, the de-
coder must first dequantize the quantized DCT coefficients, to reproduce the DCT
coefficients computed by the encoder. Essentially, the Inverse Quantization (IQ)
algorithm scales every element by a unique quantized weight. Since some pre-

cision was lost in quantizing, the reconstructed DCT coefficients are necessarily
approximations to the values before quantization.

Inverse Quantization is a computing-intensive stage of MPEG decoding. Tra-
ditionally, IQ has been captured directly in customized hardware in Application-
Specific Instruction Processors, or carried out in software in media-domain pro-
cessors. In this chapter, we describe a reconfigurable IQ design for ρ–TriMedia,
and demonstrate that significant speed-up can be achieved over standard TriMedia–
CPU64 for an IQ application.

The chapter is organized as follows. For background purpose, we present the
most important issues related to IQ theory in Section 5.1. Several considerations
regarding the IQ implementation on standard TriMedia-CPU64 are discussed in
Section 5.2. Implementation issues of an IQ computing unit on FPGA are pre-
sented in Section 5.3. The execution scenario of the IQ on ρ–TriMedia, as well
as experimental results are presented in Section 5.4. Section 5.5 completes the
chapter with some conclusions and closing remarks.

81

5.1 Theoretical background

After entropy decoding, the two-dimensional array of coefficients, QF [v][u], is
inverse quantised to produce the reconstructed DCT coefficients, F [v][u]. In
MPEG2, Inverse Quantisation (IQ) consists of three stages: Inverse Quantisation
Arithmetic, Saturation, and Mismatch Control [53]. The inverse quantisation arith-
metic produces F ′′[v][u] coefficients. For DC coefficients in intra-coded blocks,
Equation 5.1 is used:

F ′′[0][0] = intra dc mult × QF [0][0] (5.1)

where the factor intra dc mult is derived from the data element in-
tra dc precision according to Table 7-4 of the ITU-T Recommendation H.262 [53].
Basically, Equation 5.1 specifies a scaling-up by a factor of 8, 4, 2, or 1. For all
other coefficients, the following equation should be used:

F ′′[v][u] = (2 × QF [v][u] + k) × W [w][v][u] × quantizer scale/32 (5.2)

where

k =
{

0 intra blocks
sign(QF [v][u]) non-intra blocks

(5.3)

The factor quantizer scale is an unsigned integer and is encoded as a 7-bit
fixed-length code. Thus, it has values in the range {1, . . . , 31}, inclusive (0 is not
allowed). Each weighting coefficient, W [w][v][u], w = 0 . . . 3, v = 0 . . . 7, u =
0 . . . 7, is represented on an 8-bit unsigned integer, and extracted during the pars-
ing of the sequence header. The operator ‘/’ represents the integer division with
truncation of the result toward zero.

The coefficients resulting from the Inverse Quantisation Arithmetic are satu-
rated to lie in the range [−2048 · · · + 2047]. Finally, the mismatch control opera-

tion toggles the least significant bit of F [7][7] if the double sum
7∑

v=0

7∑
u=0

F [v][u] of

all DCT coefficients is even.

We would like to mention that MPEG defines rules for changing the quanti-
zation of the DCT coefficients from place to place in the image as follows. The
factor quantizer scale is derived from the data elements quantizer scale code and
quantizer scale type according to Table 7-6 of the ITU-T Recommendation H.262

82

[53], and therefore can be changed per coded macroblock. However, the factor in-
tra dc mult can be changed only per picture. Since we use only MP@ML MPEG
conformance bit-strings in all subsequent experiments, only two weighting matri-
ces (one for intra-coded blocks, and the other for non-intra-coded blocks) are used
for inverse quantization. Thus, w = {0, 1}.

For the inverse quantization, all the mentioned values should be regarded as
parameters. Consequently, the inverse quantization routine has to read in both the
DCT coefficients to be dequantized and the following parameters: the weighting
array W , the quantizer scale, and an intra/non-intra flag.

5.2 IQ pure-software implementation

After variable-length decoding, each DCT coefficient is represented on a 16-bit
signed integer. Thus, the 8 × 8 matrix can be thought as being stored in 16
four-element vectors. In this way, the IQ implementation can intensively use four-
way SIMD operations.

In the pure-software solution, all 64 coefficients are first inverse quantised with
the general Formula 5.2, and then saturated. In parallel, the intra DC coefficient
is scaled-up according to Equation 5.1. Next, if the block is intra-coded, the top
left-handed DCT coefficient of the 8×8 block is replaced with this DC coefficient.
Finally, mismatch sum is computed and the least significant bit of F [7][7] is up-
dated accordingly. We would like to mention that a separate IQ routine has been
designed for dequantizing each of the intra-coded and non-intra-coded informa-
tion. The rationale behind this strategy is to bypass the computation of the signum
function of QF [7][7], and also the addition of the term k ≡ 0 for intra-coded
blocks.

After developing C-level code that makes intensivelu use of TriMedia–CPU64
custom operations, compiling it, and running the executable on a cycle-accurate
simulator, we determined that an 8 × 8 matrix can be dequantized in 39 cycles
for intra-coded blocks, and 52 cycles for non-intra-coded blocks (LOAD and STORE
operations are taken into account). 26 NOPs are inserted by the TriMedia sched-
uler in the 39-cycle routine for intra-coded blocks, which translates to an average
utilization of 4.33 out of 5 operations per VLIW instruction. For non-intra-coded
blocks, 30 NOPs are inserted in the 52-cycle routine, which means that 4.41 out of 5
operations are issued per instruction. Since the average utilization of the issue slots
reaches such a large value, we can state that the TriMedia–CPU64 runs close to
its full processing speed, and the pure-software IQ implementation on TriMedia–
CPU64 constitutes a real challenge for an FPGA-based solution.

83

In inverse quantization of an 8 × 8 block, each and every pixel but the bottom
right-hand one (which is subject to the mismatch operation) is dequantized inde-
pendently of any other pixel in the block. Thus, IQ is mostly a feed-forward task
that exhibits a large data-level parallelism. Consequently, the entire IQ computa-
tion can benefit from reconfigurable support if sufficient reconfigurable hardware
is available. This way, the VLIW core will have only to load new data from and
write the computed data back to main memory. In the next section, a number of
details regarding IQ implementation on FPGA are outlined.

5.3 IQ implementation on FPGA

As mentioned, the number of pixels that can simultaneously be inverse quantized
on FPGA is subject to the raw hardware logic capacity. On an ACEX EP1K100
FPGA, we succeeded to map an IQ-4 unit that can process four coefficients per
call. This way, a burst of sixteen IQ-4 operations has to be launched in order to
dequantize an entire 8 × 8 block. As depicted in Figure 5.1, the IQ-4 circuitry is
structured as follows: the first part implements the IQ arithmetic (which is defined
by Equations 5.1 and 5.2) and subsequent saturation, while the last part is a finite
state machine implementing the mismatch control operation.

I_flag
qs
W

...

...

. . .I II VII

IQ Arithmetic & Saturation

QF

D Q

. . . 1 11 0 1 1

Mismatch

VIII F

Figure 5.1: The IQ-4 implementation on FPGA.

The reduction modules corresponding to multiplications by W [v][u] (8-bit un-
signed integer) and quantizer scale (7-bit unsigned integer) have been splitted-
up in order to fit into an 100 MHz pipeline. No special optimization technics
to reduce the partial product matrices have been employed; instead, we rely on
the FPGA mapping tools in detecting carry-propagate (which is fast on FPGA)
primitive. The factors intra dc mult and quantizer scale are generated in-
side FPGA from the MPEG data elements intra dc precision, respectively
quantizer scale code and q scale type.

84

In addition to the feed-forward circuitry for IQ arithmetic and saturation com-
putation, the IQ unit also includes a finite state machine that controls the processing
of the DC component in intra-coded blocks, as well as the mismatch operation as
follows:

• During the first out of sixteen IQ-4 calls needed for processing an 8×8 block,
the fourth element of the QF[3..0] vector (i.e., the DC component) is dequan-
tized according to Equation 5.1 for intra-coded blocks, and Equation 5.2 for
non-intra-coded blocks.

• The mismatch information is accumulated during sixteen successive IQ-4
calls, and updates the last DCT coefficient accordingly at the end of each
16th call.

Thus, the IQ-4 unit we propose is a circuitry with state (non-re-entrant func-
tional unit). In order to ensure a correct response, a block should be completely
processed before a new one is being considered. Furthermore, the 64-bit word
containing the DC component should be processed firstly, and the 64-bit word con-
taining the highest spatial frequency component should be processed lastly.

By writing and synthesizing VHDL code, we determined that 8 pipeline stages
are needed to implement the IQ-4 unit on an ACEX EP1K100 FPGA, which trans-
lates into a latency of 8× 2+ 1+ 1 = 18 and a recovery of 2 TriMedia@200 MHz
cycles. It worth to mention that IQ-4 unit occupies 43% of the logic cells, and 171
out of 333 I/O pins of the mentioned reconfigurable device.

We would also like to mention that, on the same device, we did not succeed to
map an IQ-8 unit that processes eight coefficients per call. Although about 80% of
the logic cells of the ACEX EP1K100 array would be occupied by the IQ-8 unit,
the FPGA mapping tools did not succeed to map the circuitry mainly due to the
large numbers of I/O pins that are needed. Indeed, 331 out of 333 I/O pins would
be used by IQ-8. The pin limitation in FPGA-based circuitry is a known problem
– see for example [8]. A way to overcome this limitation is to provide for a larger
FPGA having more I/O pins (and, implicitly, more raw hardware). However, this
solution is more expensive in terms of silicon area for the same number of I/O pins,
since the logic capacity increases with the square root of the chip edge, while the
number of I/O pins increases only linearly with the chip edge. A second solution is
to emulate an IQ-8 unit processing two 8×8 blocks by two IQ-4 units each mapped
on a smaller RFU, and each processing a separate 8 × 8 block.

In the next section, we present a number of routines that contain calls to
FPGA-mapped IQ computing units, and compare the performance achieved on
ρ–TriMedia over the standard TriMedia–CPU64.

85

5.4 IQ implementation on ρ–TriMedia

Since the FPGA-mapped IQ is a circuitry with state, two operations are needed to
control the unit: one that resets the finite state machine, and the other that launches
the proper IQ operation. Assuming an IQ-4 unit, the syntax of each operation is:

EXECUTE <RESET-IQ-4> →

EXECUTE <IQ-4> R QF, R W, R qs, R param → R F

The first operation has a latency of 3 cycles, while, as mentioned, the later (2-
slot) operation has a latency of 18 cycles and a recovery of 2 cycles. For rea-
sons that will become relevant later this dissertation, the inverse quantization
is carried out at slice level. That is, during the decoding of the slice header,
a pair of ACTIVATE CONTEXT (which activates the IQ-4 computing unit) and
EXECUTE <RESET− IQ− 4> is launched. Then, the entire slice is inverse quan-
tized by means of EXECUTE <IQ− 4> instructions.

To inverse quantize an 8 × 8 block of coefficients, sixteen IQ− 4 operations
are launched in a row. Before and after the RFU calls, LOAD and STORE operations
fetch the input operands from main memory into register file, and store the results
back into memory, respectively. Since the code is very simple and symmetrical,
generating a tight software-pipeline loop by programming directly in assembly is
indeed feasible, as depicted in Figure 5.2. As it can be observed, the loop is folded
at Cycles 4 and 35, thus a throughput of 1/32 IQ/cycle is achieved. The first two
LOAD operations that are executed during the previous loop iteration, and the last
9 STORE operations that are executed during the next loop iterations generate an
overhead for firing-up and flushing the software pipeline of 24 cycles. In addition,
loading the W [w][v][u], w = 0 . . . 1, v = 0 . . . 7, u = 0 . . . 7 array from mem-
ory into register file needs 16 LOAD operations, that is, 8 cycles. Thus, the total
overhead for firing-up and flushing the software pipeline is 32 cycles.

In order to assess the implications of the loop prologue and epilogue in a real
case, we have focused on the average number of coded blocks per slice for a num-
ber of MPEG-conformance bit-strings (Table 5.1). If all the blocks in an MPEG
slice are first reconstructed and only then transformed as a single batch, then the
lowest average batch size is 38 blocks/slice (B frames in the popplen scene). This
figure translates into the worst case penality associated to the prologue and epi-
logue of the software pipeline loop of 32/38 ≈ 0.84 cycles/block. Since this
overhead represents about 2.5% of the 32 cycle/block throughput in the most dis-
advantageous case, it can be neglected.

86

3
4

ba
ck

 t
o

In
st

ru
ct

io
n

4

JU
M

P

1
2

9
8

7
6

5

fo
ld

ed
 in

to
 t

he
 s

of
tw

ar
e

pi
pe

lin
e

lo
op

L
A

T
E

N
C

Y
 =

 5
4

cy
cl

es

T
H

R
O

U
G

H
P

U
T

 =
 1

 /
32

 b
lo

ck
/c

yc
le

SO
F

T
W

A
R

E
 P

IP
E

L
IN

E
 L

O
O

P
:

35
−4

+1
 =

 3
2

cy
cl

es

2x
W

R
R

D
1x

L
D

2x

1x
ST

1x
L

D
2x W

R

fo
ld

ed
 in

to
 t

he
 lo

op

2x R
D

17
16

15
14

13
10

11
12 IQ

−4

36
41

42
43

44
45

46
47

48
49

50
51

52
53

54
40

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

37
38

39

Fi
gu

re
5.

2:
Sc

he
du

le
re

su
lt

fo
r

an
IQ

-4
un

it
ha

vi
ng

th
e

la
te

nc
y

of
18

an
d

re
co

ve
ry

of
2

(L
D

st
an

ds
fo

r
L
O
A
D,

R
D

fo
r

re
ad

,W
R

fo
r

w
ri

te
,a

nd
ST

fo
r
S
T
O
R
E)

.

87

Table 5.1: The average number of coded blocks per slice – from Appendix A.

Scene Coded blocks/slice
Frame type I P B

batman – 257 234
popplen 264 80 38
sarnoff2 270 171 61
tennis 264 167 71
ti1cheer 264 155 88

Referring again to Figure 5.2, the issue-slot occupancy for a single IQ-4 unit
having a recovery of 2 cycles is as follows:

• 16 double-slot IQ-4 operations (slot: 1+2) = 32 slots
• 16 single-slot LOAD operations (slot: 4 or 5) = 16 slots
• 16 single-slot STORE operations (slot: 4 or 5) = 16 slots
• 1 single-slot JUMP operations (slot: 3) = 1 slot
• cycling condition computation (slot: 3) = 3 slots
• some pointer arithmetic (slot: 3) = about 6 slots

Thus, the global occupancy figure is 74 out of 32 × 5 = 160, which means
that 2.31 out of 5 issue-slots are filled in with operations. There are plenty of free
slots that can be utilized for other purposes, e.g., implementing an additional pure-
software IQ. Thus, the throughput figure of 1/32 blocks/cycle represents the lower
bound of the performance improvement.

Assuming that enough FPGA I/O pins are available, an IQ-8 computing unit
can be mapped on the reconfigurable array. The syntax of the new EXECUTE
(3-slot) operation is:

EXECUTE <IQ-8> R QF l, R QF r, R W, R qs, R param → R F l, R F r

In order to schedule all the STORE operations associated to the IQ-8 operation
in the next iteration IQ-8 is launched, the loop should be folded at cycle 22, as
depicted in Figure 5.3. This translates to a throughput of 1/18 block/cycle.

A better solution is to process the blocks in chuncks of two, which translates
to a throughput of 2/32 = 1/16 block/cycle (Figure 5.4). However, an additional
overhead of 16 cycles is encountered when the number of blocks to be processes is
odd, since the last iteration of the software pipeline dequantize a dummy block. In
the most disadvantageous case (38 blocks/slice for B frames in the popplen scene
– Table 5.1), this translates to the additional penalty of 8/38 = 0.21 cycles/block,
which is a good trade-off for the 2 cycles gained by this procedure.

88

RD
2x

WR
2x

2xLD 2xST

LATENCY = 39 cycles

SOFTWARE PIPELINE LOOP: 21−4+1 = 18 cycles

THROUGHPUT = 1 / 18 block/cycle

folded into the loop

1 2 9876543

folded into the software pipeline loop
back to Instruction 4

JUMP

2x
RD WR

2x
2xLD

2420 2928272625232221 3130 32 33 34 35 36 37 38 39

IQ−8

10 11 12 13 14 15 16 17 18 19

Figure 5.3: Schedule result for an IQ-8 unit having the latency of 18 and recov-
ery of 2 (LD stands for LOAD, RD for read, WR for write, and ST for STORE).

Due to the FPGA pin limitation problem, providing more raw hardware simul-
taneously with a larger number of I/O pins can be achieved by augmenting the
TriMedia core with multiple RFUs. Due to the need to issue instructions to both
RFUs, a larger utilization of the issue slots will be encountered over a solution with
a single FPGA having a large number of I/O pins.

Assuming that two RFUs are available, and each of such RFUs contains an
EP1K100 FPGA, two IQ-4 units can be used: IQ-4-a, and IQ-4-b, each having a
recovery of 2 cycles. This way, an IQ-4 unit with the recovery of 1 cycle is emu-
lated. Since the IQ-4 is re-entrant, each of the IQ-4 units should process a separate
block. That is, two blocks are processed in parallel, as depicted in Figure 5.5. In
this case, the issue-slot occupancy for two IQ-4 units, each having a recovery of 2
cycles is as follows:

• 32 double-slot IQ-4 operations (slot: 1+2) = 64 slots
• 32 single-slot LOAD operations (slot: 4 or 5) = 32 slots
• 32 single-slot STORE operations (slot: 4 or 5) = 32 slots
• 1 single-slot JUMP operations (slot: 3) = 1 slot
• cycling condition computation (slot: 3) = 3 slots
• some pointer arithmetic (slot: 3) = about 12 slots

Thus, the global occupancy figure is 144 out of 32 × 5 = 160 slots, which
means 4.50 out of 5 issue-slots are filled in with operations.

89

3
4

ba
ck

 t
o

In
st

ru
ct

io
n

4

JU
M

P

1
2

9
8

7
6

5

T
H

R
O

U
G

H
P

U
T

 =
 2

 /
32

 =
 1

/1
6

bl
oc

k/
cy

cl
e

fo
ld

ed
 in

to
 t

he
 s

of
tw

ar
e

pi
pe

lin
e

lo
op

L
A

T
E

N
C

Y
 =

 5
4

cy
cl

es
 f

or
 2

 b
lo

ck
s

SO
F

T
W

A
R

E
 P

IP
E

L
IN

E
 L

O
O

P
:

35
−4

+1
 =

 3
2

cy
cl

es

2x
W

R
R

D
2x

L
D

2x

2x
ST

2x
L

D
2x W

R

fo
ld

ed
 in

to
 t

he
 lo

op

2x R
D

17
16

15
14

13
10

11
12 IQ

−8

36
41

42
43

44
45

46
47

48
49

50
51

52
53

54
40

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

37
38

39

Fi
gu

re
5.

4:
Sc

he
du

le
re

su
lt

fo
r

an
IQ

-8
un

it
ha

vi
ng

th
e

la
te

nc
y

of
18

an
d

re
co

ve
ry

of
2.

T
w

o
8

×
8

bl
oc

ks
ar

e
pr

oc
es

se
d

pe
r

lo
op

it
er

at
io

n
(L

D
st

an
ds

fo
r
L
O
A
D,

R
D

fo
r

re
ad

,W
R

fo
r

w
ri

te
,a

nd
ST

fo
r
S
T
O
R
E)

.

90

R
D

2x

fo
ld

ed
 in

to
 t

he
 lo

op

W
R

2x
1x

L
D

1x
ST

fo
ld

ed
 in

to
 t

he
 s

of
tw

ar
e

pi
pe

lin
e

lo
op

3
4

5
6

7
8

9
2

1

2x
1x

L
D

R
D

W
R2x

SO
F

T
W

A
R

E
 P

IP
E

L
IN

E
 L

O
O

P
:

35
−4

+1
 =

 3
2

cy
cl

es

T
H

R
O

U
G

H
P

U
T

 =
 1

 /
32

 b
lo

ck
/c

yc
le

L
A

T
E

N
C

Y
 =

 5
5

cy
cl

es

JU
M

P

ba
ck

 t
o

In
st

ru
ct

io
n

4

1x
ST

fo
ld

ed
 in

to
 t

he
 s

of
tw

ar
e

pi
pe

lin
e

lo
op

1x
L

D
R

D
2x

fo
ld

ed
 in

to
 t

he
 lo

op

W
R

2x

42
41

28
40

29
30

39
38

37
31

36
32

33
34

35
46

53
52

51
50

49
48

47
54

55
45

44
43

IQ
−4

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

Fi
gu

re
5.

5:
Sc

he
du

le
re

su
lt

fo
r

tw
o

IQ
-4

un
it

s,
ea

ch
ha

vi
ng

th
e

la
te

nc
y

of
18

an
d

re
co

ve
ry

of
2

(L
D

st
an

ds
fo

r
L
O
A
D,

R
D

fo
r

re
ad

,W
R

fo
r

w
ri

te
,a

nd
ST

fo
r
S
T
O
R
E)

.

91

If a single block is to be dequantized per loop iteration, then non-re-entrant IQ
computing units are needed, since the mismatch has to be carried out in software.
However, assuming two units IQ-4-a, IQ-4-b, only IQ-4-a can process intra-coded
DC coefficients. Since the mismatch is carried out in software, the last pipeline
stage of the IQ computing unit is not needed any longer, and the latency of IQ-4
is 16 cycles instead of 18. However, the operation should return also mismatch
information in order to allow the mismatch operation to be carried out in software.
The syntax of the EXECUTE operations is:

EXECUTE <IQ-4-a> R QF, R W, R qs, R param → R F, R mismatch

EXECUTE <IQ-4-b> R QF, R W, R qs, R param → R F, R mismatch

The attempt to process a single block per iteration encounters the same problem
of achieving a throughput of only 1/18 block/cycle, as it can be easily observed in
Figure 5.6. In connection to this figure, we would like to mention the following
issues:

• Folding the loop at Cycles 3 and 19 in order to have a throughput of 1/16
blocks/cycle is not an easy task. Since the first IQ-4 operation still needs 3
cycles to complete, and since 16 cycles are needed to store the dequantized
information to memory, a total of 19 cycles should be folded into the 16-
cycle software pipeline loop. This is possible only if the STORE operations
are scheduled two loop iterations away from the moment of launching the
corresponding IQ-4 operations. Although this approach is indeed possible,
the higher complexity of the loop makes programming directly in assembly
difficult.

• In order to keep the complexity of the software pipeline loop at a level where
programming directly in assembly is feasible, we fold the loop at cycle 21,
thus 1+16 = 17 cycles are folded into the 18-cycle software pipeline loop.
This way, the throughput is 1/18 blocks/cycle.

• As a rule of thumb, in order to have a simple software pipeline and, therefore,
being able to program directly in assembly language, the length of the loop
should be greater than the latency of the FPGA-mapped operation. This con-
stitutes the rationale for an optimization effort aimed to reduce the latency
of the FPGA-mapped operation, as we already spent for the FPGA–based
1-D IDCT.

92

RD
2x

2x
WRRD1xLD

2x

RD1xLD
2x

1 2 9876543

SOFTWARE PIPELINE LOOP: 21−4+1 = 18 cycles

LATENCY = 39 cycles

THROUGHPUT = 1 / 18 block/cycle

folded into the software pipeline loop

folded into the loop

1xST1xLD
2x

WR

back to Instruction 4

JUMP
31302928272621 2522 2423 3632 33 34 35 37 38 39

IQ−4

14 20191817161513121110

Figure 5.6: Schedule result for two IQ-4 units, each having the latency of 18
and recovery of 2. A single 8 × 8 block is processed per loop iteration (LD
stands for LOAD, RD for read, WR for write, and ST for STORE).

The issue-slot occupancy for two IQ-4 units, each having a recovery of 2 is:

• 16 double-slot IQ-4 operations (slot: 1+2) = 32 slots

• 16 single-slot LOAD operations (slot: 4 or 5) = 16 slots

• 16 single-slot STORE operations (slot: 4 or 5) = 16 slots

• 1 single-slot JUMP operations (slot: 3) = 1 slot

• cycling condition computation (slot: 3) = 3 slots

• some pointer arithmetic (slot: 3) = about 6 slots

Thus, the global occupancy figure is 74 out of 18× 5 = 90 slots, which means
that 4.11 out of 5 issue-slots are filled in with operations.

93

In the last experiment we assume a hypothetical FPGA architecture on which
only circuitry having the clock frequency smaller or at most equal to one-quarter
than TriMedia frequency can be implemented. Thus, the recovery of any comput-
ing unit mapped on such FPGA is at least 4 cycles. In order to emulate an IQ-4
unit with recovery of 1 cycle, we also assume that four RFUs are available, on
each RFU an IQ-4 unit being configured: IQ-4-a, IQ-4-b, IQ-4-c, IQ-4-d. These
IQ operations are launched in four phases: a, b, c, d. An assembly code sample is
presented in Algorithm 3.

Algorithm 3 IQ-4 with four phases
...
(* cycle 4 *)

IF r(1) EXECUTE ->
<IQ_4_a> ->
nop,
nop,
IF r(1) ldd_h(32) r(5) -> r(9);

(* cycle 5 *)
nop,
IF r(1) std_h(8) r(5) -> r(7),
IF r(1) ldd_h(16) r(5) -> r(8);

(* cycle 6 *)
IF r(1) EXECUTE ->
<IQ_4_c> ->
nop,
nop,
IF r(1) ldd_h(8) r(5) -> r(7);

(* cycle 7 *)
IF r(1) EXECUTE ->
<IQ_4_d> ->
nop,
nop,
IF r(1) ldd_h(8) r(5) -> r(7);

(* cycle 8 *)
IF r(1) EXECUTE ->
<IQ_4_a> ->
nop,
nop,
IF r(1) ldd_h(8) r(5) -> r(7);

(* cycle 9 *)
IF r(1) EXECUTE ->
<IQ_4_b> ->
nop,
nop,

...

94

JUMP

WR
2x
RD

2x

folded into the loop
RD1xLD
2x

folded into the software pipeline loop

SOFTWARE PIPELINE LOOP: 23−4+1 = 20 cycles

THROUGHPUT = 1 / 20 block/cycle

1 2 9876543

LATENCY = 39 cycles

1xST1xLD

back to Instruction 4

27 3020 21 2322 2928262524 31 32 33 34 35 36 37 38 3915 191817161413121110

IQ−4

Figure 5.7: Schedule result for four IQ-4 units, each having the latency of 18
and recovery of 2 (LD stands for LOAD, RD for read, WR for write, and ST for
STORE).

Figure 5.7 presents the scheduling of the IQ routine when four IQ-4 units, each
having a recovery of 4 cycles, are mapped on reconfigurable array. Since the loop
is folded at Cycles 4 and 23, a throughput of 1/20 blocks/cycle is achieved. The
slot occupancy is as follows:

• 16 double-slot IQ-4 operations (slot: 1+2) = 32 slots
• 16 single-slot LOAD operations (slot: 4 or 5) = 16 slots
• 16 single-slot STORE operations (slot: 4 or 5) = 16 slots
• 1 single-slot JUMP operations (slot: 3) = 1 slot
• cycling condition computation (slot: 3) = 3 slots
• some pointer arithmetic (slot: 3) = about 6 slots

which translates to a global occupancy figure of 74 out of 20 × 5 = 100 slots,
which means that 3.70 out of 5 issue-slots are filled in with operations.

95

Ta
bl

e
5.

2:
P

er
fo

rm
an

ce
fig

ur
es

fo
r

IQ
.

Sc
en

e
B

lo
ck

W
or

kl
oa

d
P

ur
e

so
ft

w
ar

e
1

R
FU

@
10

0M
H

z
2

R
FU

s@
10

0M
H

z
4

R
FU

s@
50

M
H

z
(*

.m
2v

)
ty

pe
(b

lo
ck

s)
(c

yc
le

s)
(c

yc
le

s)
(c

yc
le

s)
(c

yc
le

s)
ba

tm
an

I
–

n/
a

n/
a

n/
a

n/
a

P
36

,9
43

1,
92

1,
03

6
1,

18
5,

63
2

59
5,

58
4

74
2,

31
6

B
25

,2
95

1,
31

5,
34

0
81

2,
03

2
40

8,
19

2
50

8,
49

2
To

ta
l

62
,2

38
3,

23
6,

37
6

1,
99

7,
66

4
1,

00
3,

77
6

1,
25

0,
80

8
Im

pr
ov

em
en

ts
–

n/
a

38
.3

%
69

.0
%

61
.6

%
po

pp
le

n
I

3,
96

0
15

4,
44

0
12

7,
08

0
63

,7
20

79
,5

60
P

3,
60

6
18

7,
51

2
11

6,
47

2
59

,2
24

73
,2

00
B

1,
14

5
59

,5
40

37
,3

60
19

,3
76

23
,6

20
To

ta
l

8,
71

1
40

1,
49

2
28

0,
91

2
14

2,
32

0
17

6,
38

0
Im

pr
ov

em
en

ts
–

n/
a

30
.0

%
64

.6
%

56
.1

%
sa

rn
of

f2
I

8,
10

0
31

5,
90

0
25

9,
92

0
13

0,
32

0
16

2,
72

0
P

5,
12

0
26

6,
24

0
16

4,
56

0
82

,8
96

10
3,

12
0

B
3,

64
5

18
9,

54
0

11
8,

08
0

60
,1

92
74

,3
40

To
ta

l
16

,8
65

77
1,

68
0

54
2,

56
0

27
3,

40
8

34
0,

18
0

Im
pr

ov
em

en
ts

–
n/

a
29

.7
%

64
.6

%
55

.9
%

te
nn

is
I

9,
50

4
37

0,
65

6
30

4,
99

2
15

2,
92

8
19

0,
94

4
P

17
,9

92
93

5,
58

4
57

8,
33

6
29

1,
42

4
36

2,
43

2
B

10
,2

50
53

3,
00

0
33

1,
45

6
16

8,
41

6
20

8,
45

6
To

ta
l

37
,7

46
1,

83
9,

24
0

1,
21

4,
78

4
61

2,
76

8
76

1,
83

2
Im

pr
ov

em
en

ts
–

n/
a

34
.0

%
66

.7
%

58
.6

%
ti

1c
he

er
I

7,
92

0
30

8,
88

0
25

4,
16

0
12

7,
44

0
15

9,
12

0
P

4,
48

1
23

3,
01

2
14

4,
08

8
72

,6
00

90
,3

16
B

5,
27

5
27

4,
30

0
17

0,
24

0
86

,2
72

10
6,

94
0

To
ta

l
17

,6
76

81
6,

19
2

56
8,

48
8

28
6,

31
2

35
6,

37
6

Im
pr

ov
em

en
ts

–
n/

a
30

.3
%

64
.9

%
56

.3
%

96

In Table 5.2 we present the computing performance reported in cycles for a
number of MPEG-conformance bit-strings (scenes). We also present the relative
improvement achieved on ρ–TriMedia over standard TriMedia–CPU64 for each of
the analysed scenarios. When a single RFU@100 MHz is available, the improve-
ment is about 32.5% in terms of cycles, which translates to a speed-up of 1.5×.
Assuming that two RFUs@100 MHz are available, the improvement increases to
about 66.0% (speed-up of 2.9×), while for four RFUs@50 MHz an improvement
slightly lower is achieved (57.7% or 2.4× speed-up).

In all the experiments we have not counted the cache misses. The rationale
behind this approach is as follows. Since the code is simple and symetrical, a
routine which contains the entire information needed to perform an 8 × 8 block
dequantization can be built. The benefic effect is that prefetch operations can be
scheduled, and so most of the cache misses can be avoided [116].

We would like to note that, as opposed to IDCT, each and every pixel can
processed independently in an IQ task. Thus, an IDCT-like true dependency is not
encountered in an IQ application. The immediate effect is that the number of DCT
coefficients that can be dequantized simultaneously is subject to FPGA size and
the number of issue slots. Considering a single FPGA–mapped IQ-4 unit having
a recovery of 2 cycles, we showed that only 3 out of 5 issue slots are filled in
with operations in the ρ–TriMedia implementation. As mentioned, when enough
raw hardware is available, two IQ-4 units can be configured on the reconfigurable
core. Assuming both units have a recovery of 2 cycles, an IQ unit with recovery
of 1 cycle can be emulated by calling the first IQ-4-a unit on even cycles, and the
second IQ-4-b unit on odd cycles, as depicted in Figures 5.5 and 5.6. This way, the
computing power is large enough to dequantize the coefficients at a rate close to
the transfer capability with the memory (throughput of 16 cycles/8 × 8 block for
2 LOAD/STORE units). However, in this case the issue-slot occupancy increases
from 3 to 4.5 out of 5 issue slots.

Finally, we would like to mention that any optimization which would make use
of the small number of non-zero coefficients (which ranges from 5 to 10 per block),
thus would reduce the number of IQ-related operations, is equally applicable to
pure-software and FPGA-based solutions. Thus, the percentage improvement is
likely to remain the same.

5.5 Conclusion

In this chapter we investigated inverse quantization, and proposed a reconfigurable
IQ design for ρ–TriMedia. Essentially, we implemented an IQ-4 unit on reconfig-

97

urable hardware, which can dequantize four elements per call. Assuming that a
single ACEX 1K device is available as raw hardware, by calling sixteen IQ-4 op-
erations in a row, an 8× 8 block is fully inverse quantized on ρ–TriMedia with the
average improvement of 32.5% in terms of cycles (speed-up of 1.5×) over standard
TriMedia–CPU64.

As an interesting remark, we note that only the pair issue-slot 1+2 is used to
launch the FPGA–mapped IQ operations, while the slots 4 and 5 are occupied with
LOAD and STORE operations. Thus, the Slot number 3 is available to carry out
additional computation, e.g., pointer arithmetic, condition evaluation for the JUMP
operation, etc. Moreover, since the issue slots are used for rather independent
tasks (slot pair 1+2 for IQ− 4, slots 4 and 5 for LOAD and STORE, slot 3 for extra
computation), there is an increasing interest to split the register file into two pieces,
with benefic effects in timing and silicon area. We leave this issue as an open
question for further work.

98

Chapter 6

Entropy Decoding

I
n Chapters 4 and 5 we showed that significant improvements had been achieved
on ρ–TriMedia over standard TriMedia-CPU64 for tasks that exhibited data-
and instruction-level parallelism. In this chapter, we assess the improvement

when the parallelism is not available, in particular for an Entropy Decoding task.

Entropy decoding consists of Variable-Length Decoding (VLD) [103, 70] fol-
lowed by a Run-Length Decoding (RLD), both VLD and RLD being sequential
tasks. Due to data dependency, entropy decoding is an intricate function on TriMe-
dia, since a VLIW architecture must benefit from instruction-level parallelism in
order to be efficient. For this reason, such a function is an ideal candidate to benefit
from reconfigurable hardware support.

In this chaper, we demonstrate that a significant improvement over a pure-
software solution is possible if a VLD computing unit is configured on FPGA.
In particular, we show that a VLD instruction that can return two symbols per
call (VLD-2) leads to the most efficient entropy decoder in terms of instruction
cycles. We also demonstrate that further improvements are still possible if part
of the functionality related to RLD, e.g., computing the absolute position of the
non-zero coefficients within the 8 × 8 matrix, is also mapped on FPGA.

The chapter is organized as follows. For background purpose, we briefly
present the most important theoretical issues related to entropy decoding in
Section 6.1. An entropy decoding pure-software solution is described in Sec-
tion 6.2. Implementation issues of the VLD-2 computing unit on FPGA are pre-
sented in Section 6.3. The execution scenario of the Entropy Decoder on the
FPGA-augmented TriMedia-CPU64, and experimental results are presented in
Sections 6.4, and 6.5, respectively. The final section completes the chapter with
some conclusions and closing remarks.

99

6.1 Theoretical background

As mentioned in Chapter 3, in MPEG the video data is essentially processed in
8 × 8-element blocks. For a lossless compression following the Discrete Cosine
Transform (DCT) and Quantization stages, the block is first transformed into a
vector by a zig-zag operation. This vector, which contains large series of zeros,
is then sent to an Entropy Coder that consists of a Run-Length Coder (RLC) and
a Variable-Length Coder (VLC). The RLC represents consecutive zeros by their
run lengths, and generates composite words, referred to as symbols. Thus, such a
symbol describes a run-level pair; the run value indicates the number of zeros by
which a (non-zero) DCT coefficient is preceeded, while the level value represents
the value of the DCT coefficient. When all the remaining coefficients in a vector are
zero, they are all coded by the special symbol end-of-block. Variable-length coding
is a mapping process between run-level /end-of-block symbols and variable-length
codewords, which is carried out according to a set of tables defined by the standard.
Not every run-level pair has a variable-length codeword to represent it, only the
frequent used ones do. For those rare combinations, an escape code is given. After
an escape code, the run- and level -value are coded using fixed-length codes.

In order to achieve maximum compression, the coded data does not contain
specific guard bits separating consecutive codewords. As a result, the decoding
procedure must recognize the symbol itself as well as its code-length. Before de-
coding the next symbol, the input data string has to be shifted by a number of bits
equal to the decoded code-length. We would like to note that these are recursive
operations that generate true-dependencies.

An Entropy Decoder consists of

B
ar

re
l−

sh
if

te
r

Feed−back path

Feed−forward path
Run

Level

Code−Length

Look−up
Table

Accumulator
acc_code_L

Bit parser

MPEG−compliant string

Figure 6.1: Variable-length decoding
principle.

a Variable-Length Decoder (VLD)
followed by a Run-Length Decoder
(RLD). The input to the VLD is the in-
coming bit stream, and the output is the
decoded symbols. As depicted in Fig-
ure 6.1, a VLD is a system with feed-
back, whose loop typically contains a
Look-Up Table (LUT) on the feed-for-
ward path and a bit parser on the feed-
back path. The LUT receives the var-
iable-length code itself as an address
[63] and outputs the decoded symbol
(run-level pair or end of block) and the codeword length, code length. In or-
der to determine the starting position of the next codeword, the code length is fed

100

back to an accumulator and added to the previous sum of codeword lengths, accu-
mulated code length, or acc code L. The bit parsing operation is completed by
the barrel-shifter (or funnel-shifter) which shifts out the decoded bits.

With respect to the hardware complexity, we would like to note that the
longest codeword excluding Escape has 17 bits. Therefore, the LUT size reaches
217 = 128 K words for a direct mapping of all possible codewords. Regarding the
performance of a variable-length decoder, it is worth mentioning that the through-
put of a VLD is bounded by a value inverse to the latency of the loop [65].

Conceptually, for each

L1 L2

0 1 2 3 4 5 6 7 8 9 10 63

R0=0
R1=3 R2=5

nz_coeff_pos_init = −1

nz_coeff_pos_0 = nz_coeff_pos_init+R0+1 = 0

nz_coeff_pos_1 = nz_coeff_pos_0+R1+1 = 4

nz_coeff_pos_2 = nz_coeff_pos_1+R2+1 = 10

L0

Figure 6.2: Run-length decoding principle.

run-level pair returned by
the VLD, the run-length de-
coder outputs the number of
zeros specified by the run
value and then pass the level
through. In a programmable
processor platform, a way to
optimize this process is to
fill in an empty vector with

level values at positions defined by run values, as depicted in Figure 6.2: the non-
zero coefficient position, nz coeff pos, is computed by adding the run value, R,
and an ’1’ to the position of the previous non-zero coefficient. This common strat-
egy has been used in previous work [74, 82, 96] and will be used subsequently,
too.

MPEG2–compliant Variable-Length Decoding. As we mentioned in the pre-
vious chapters, we mainly focus on MPEG2 decoding in this dissertation. Thus,
several elements particular to MPEG2 standard regarding variable-length decoding
are worth to be provided.

MPEG-2 defines four Variable- intra vlc format 0 1

I DC coefficient Y B12 B12
C B13 B13

AC coefficient B14 B15
NI 1st & subsequent B14 B14

coefficient

Table 6.1: Selection of VLC tables

Length Code (VLC) tables for encod-
ing the DCT coefficients: B12, B13,
B14, and B15 [74]. Which table is
used depends on the type of image – in-
tra (I) or non-intra (NI), luminance (Y)
or chrominance (C) – and a bit-field,
intra vlc format, in the macro-
block header, as shown in Table 6.1. In general, this means that a single stream
uses all tables, and the tables can be switched per macroblock and/or block.

101

The process of reconstructing an 8 × 8 block starting from an MPEG-2
string is exemplified in Figure 6.3 for an intra-coded chrominance block and
intra vlc format = 1. In this example, the level of the DC component is
-2. Then, four AC components are coded, the run-level pair having the values
4/+1, 0/-3, 5/-5 (which is coded as an Escape sequence), and 7/+1, respectively.
The last symbol of the block is the composite end-of-block.

00000000 0 00 0 0 0

4 zero−s

(Zig−Zag)
Inverse Scan

LEVEL

MATRIX
RESULTING

VECTOR
RESULTING

all zero−s7 zero−s5 zero−s

0000−5

04n/a 5

0000 . . .+1−3+1−2

EOB
+1−5−3+1−2

RUN 7

1111111111010001000 1STRING
MPEG−2

levelrun

0 01 10000100000 101111000110001001

ESCAPE

00

0

−5

−3+1−2

0

000

0 0 0

0000

0000

0 0 0

0

(4+1)(6+1)LENGTH
CODE−

(2+2) (6+6+12)

24 bits 4 bits8 bits5 bits7 bits4 bits

(7+1)

0

000000

0 0 0 0 0 0 0

0 0 0 0

0

0+1

0

000000 0

0 0 0 00 0 0 0

0

B15
Table

B15
Table

B15

Table
Table

B15
TableB13

Figure 6.3: MPEG2–compliant entropy decoding example.

For most of the DCT coefficients, the decoding follows the “normal” rule. The
maximum code-length is 16 bits plus a sign bit. The variable-length code deter-
mines the run and level values, while the sign bit indicates the sign of the level
value. Apart from this rule, there are a few exceptional cases to be dealt with:

1. The DC coefficient for intra macroblocks, which is encoded through the
B12/B13 tables, depending on the block type: luminance or chrominance.

2. The 6-bit Escape symbol, which is followed by the fixed-lengths 6-bit run
and 12-bit signed level.

3. The end-of-block symbol, which is coded with 2 or 4 bits, depending on the
intra vlc format bit.

In the next section we present an entropy decoder implementation on standard
TriMedia–CPU64.

102

6.2 Entropy decoder pure-software implementation

According to the reference implementation [82], the VLD is implemented as a re-
peated table-lookup. Each lookup analyzes a fixed size chunk of bits (for example,
LOOKUP ADDRESS WIDTH = 6 or 8) and determines if a valid code was encoun-
tered or some more bits need to be decoded. In any case, the number of consumed
bits ranging from the smallest variable-length code to the chunk size is generated.
In case of a valid decode, i.e., hit, a run-level pair is generated, or an escape or
end of block flag is set. If a miss is detected, i.e., more bits are needed for a
valid decode, an offset into the VLC table for a second- or third-level lookup,
table offset, is generated. This process of signaling an incomplete decode and gen-
erating a new offset may be repeated a number of times, depending on the largest
variable-length code and chunk size. The following basic stages can be discerned
in the reference implementation of the entropy decoder on TriMedia–CPU64:

1. Initializations.

2. Barrel-shift the VLC string according to the accumulated code-length value.

3. Table look-up (look-up address computation and the proper table look-up). The
table look-up returns a 32-bit word containing all the fields mentioned at Stage 4.

4. Field extraction: run, level, code length, valid decode, end of block,
escape, table offset.

5. Update (modulo-64) the accumulated code-length:
acc code length = acc code length + code length

If an overflow has been encountered, advance the VLC string by 64 bits.
6. Exit the loop if end of block has been encountered.

7. Handle escape if escape has been encountered.

8. Run-length decoding: inverse zig-zag process, followed by filling-in an empty 8×8
matrix.

9. Go to Stage 2.

The Stage 8 – run-length decoding – is folded into the loop, such that loop pipelin-
ing is employed [82]. That is, the run-length decoding for the previously decoded
symbol is carried out in the same iteration with the variable-length decoding of the
current symbol.

Updating the acc code length value is carried out modulo-64. The main idea is
to match this process with the bus width of TriMedia–CPU64. That is, a new chunk
of 64 bits of information to be decoded is read into register file on overflow. Also,
we would like to note that the VLC-related information is stored into the lookup
table in a packed format, as 32-bit unsigned integers, as depicted in Table 6.2. Thus,
a sequence of masking and shifting operations is needed to extract these fields.

103

Table 6.2: The original VLC table format.

end-of-block escape valid run level table offset code-length
(stop) decode

No. of bits 1 1 1 5 8 12 4
Position 31 30 29 28-24 23-16 15-4 3-0

To make the presentation self consistent, the reference implementation of the
entropy decoding routine is presented in Algorithm 4. All identifiers starting with
a capital letter are regarded as constants. The routine consists of a first for loop
(lines 3–41) cycling over all coded macroblocks in the MPEG string, a second
for loop (lines 4–40) cycling over all coded blocks in a macroblock, and an inner
(infinite) loop labeled loop (lines 10–39), cycling over all DCT coefficients in a
block. This inner loop is left when an end of block is encountered (lines 27–29).

The initializations for block-level decoding are performed at lines 5–8. The ta-
ble look-up, i.e., variable-length decoding, is carried out at lines 11–13. Lines 15–
18 implement run-length decoding, which has been folded into the loop to em-
ploy loop pipelining. Field extraction is performed at line 20. The barrel-shifting
(line 11) is done on an 128-bit field, by means of the TriMedia custom operation:

bitfunshift Rsrc 1 Rsrc 2 Rsrc 3 → Rdest 1 Rdest 2

where Rsrc 1 and Rsrc 2 are the two 64-bit registers storing the leading 128
bits of the VLC string to be shifted, the Rsrc 3 defines the shifting value, and
Rdest 1 and Rdest 2 are the two 64-bit registers storing the 128-bit shifted
string. Obviously, only the value stored into Rdest 1 register will be used for the
look-up procedure. It should be mentioned that since acc code length is updated
modulo-64 (lines 30–32), at least 47 bits are available in Rdest 1 for the next
decoding iteration in the worst case (this can be easily verified by assuming that
acc code length = 63 at line 34).

A particular optimization technique has been used in order to keep the most
likely iteration (that is when new incoming bits from the MPEG string are not
needed for continuing the decoding process, and none of the escape, end of block,
and error conditions is raised), as short as possible. According to this technique,
the escape flag is also set to ’1’ when any of the escape, end of block, or error con-
ditions occurs. In this way, a jump to the beginning of the inner loop is taken when
none of the above mentioned conditions is raised (lines 24–26). All the exceptional
cases are managed after this jump: end of block at lines 27–29, modulo-64 updat-

104

Algorithm 4 Entropy decoder routine – reference implementation
1: set-up the test-bench (store the VLC lookup table, read the VLC string into memory, etc.)
2:
3: for i = 1 to NO OF MACROBLOCKS do
4: for j = 1 to NO OF BLOCKS IN MACROBLOCK do
5: table offset ← FIRST TABLE OFFSET

6: nz coeff pos ZZ← 0
7: run ← 0
8: valid decode ← 0
9:

10: loop
11: barrel-shift the VLC string with acc code length positions
12: lookup address← the leading LOOKUP ADDRESS WIDTH bits from VLC string
13: lookup address← lookup address + table offset
14: retrieved 32 bit word← VLC table[lookup address]
15:
16: nz coeff pos ZZ← nz coeff pos ZZ + run
17: nz coeff pos← invZZ table[nz coeff pos ZZ]
18: 8× 8 matrix[nz coeff pos]← level
19: nz coeff pos ZZ← nz coeff pos ZZ + valid decode
20:
21: extract code length, run, level, table offset, escape, valid decode, end of block from

retrieved 32 bit word
22:
23: acc code length← acc code length + code length
24: if acc code length ≤ 64 and not(escape) then
25: continue {—————————-> go to loop}
26: end if
27: if end of block flag is raised then
28: break {——————————-> initiate the next for iteration (block-level)}
29: end if
30: if acc code length ≥ 64 then
31: advance the VLC string by 64 bits
32: acc code length← acc code length - 64
33: end if
34: if escape flag is raised then
35: run ← next 6 bits from VLC string
36: level ← next 12 bits from VLC string
37: acc code length← acc code length + 6 + 12
38: end if
39: end loop
40: end for
41: end for

ing and advancing the VLC string at lines 30–33, and escape at lines 34–38. It
should be mentioned that there is no flag to indicate an error condition. When an
error is encountered, end of block = 1 and valid decode = 0 simultaneously. Since

105

the end of block flag is set the loop is left. However, it is still the responsibility
of the entropy decoder calling routine to detect if a valid end of block has been
encountered or an error has occured.

Regarding the efficiency of the reference implementation, we would like to
mention that only variable-length decoding for the first DCT coefficient is carried
out during the first iteration of the loop loop (lines 10–39 in Algorithm 4), while the
code associated to run-length decoding performs a dummy action. That is, there is
an overhead of one iteration to fire-up the software pipeline. Since the number of
non-zero DCT coefficients in a block is small, ranging, for example, between 3.3
and 5.8 for non-intra macroblocks [82], the number of iterations per block is also
small. Consequently, this overhead can be significantly large.

To improve the performance of the pure-software entropy decoder, we propose
the following changes with respect to the reference implementation. For reasons
that will become relevant later in the chapter, only the decoding of non-intra mac-
roblocks is addressed. That is, the VLC Table B14 of the MPEG standard is as-
sumed if we do not state otherwise.

• The prologue of the pipelined loop [57] is exposed to the compiler. Since
the VLC table does not have “holes” in the region of short codewords (i.e.,
each and every entry in that region corresponds either to a short codeword
that is decoded in a single iteration, or to a long codeword that is decoded
in two or more iterations), there are no incoming bit combinations that do
not have a meaning within the prologue. Therefore, an error condition is
never raised within the prologue. Moreover, since an end of block symbol
is not allowed for the first coefficient in a block, an end of block condition is
never encountered within the prologue, too. Thus, testing the end of block
flag (lines 27–29 in Algorithm 4) within the prologue becomes superfluous,
and a simple code consisting of a first-level look-up, folowed by an extrac-
tion of the code length, run, level, lookup address width, table offset, es-
cape, valid decode (and, notable, no extraction of the end of block flag) can
efficiently fire-up the software pipeline.

• Barrel-shifting is carried out by means of an extended bitfunshift
TriMedia specific operations.

bitfunshift 3 Rsrc 1 Rsrc 2 Rsrc 3 Rsrc 4 → Rdest 1 Rdest 2

The main idea is to gain flexibility over the modulo-64 operation by perform-
ing the barrel-shift operation on 3 × 64 = 192 bits instead of 2 × 64 = 128
bits. In this way, the modulo-64 operation can be postponed, since additional
64 bits are available for decoding over the standard implementation.

106

• The lookup returns a 64-bit value instead of a 32-bit value. The fields
code length, run, level, lookup address width (which defines the chunk size
of the next look-up), table offset, escape, valid decode (which signals a hit),
and end-of-block fields are each stored within the boundaries of a byte (that
is, in an unpacked way instead of a packed one), as shown in Table 6.3. Since
extracting a byte from a 64-bit value takes only 1 cycle on TriMedia–CPU64,
our solution is faster than using a pair of masking and shifting operations
required by the 32-bit approach. The cost of such approach is a double-
size look-up table. It is still an open question which approach is better with
respect to a particular TriMedia cache size, as the cache misses may become
dominant when the evaluation is made for a complete MPEG decoder.

• The chunk size is variable, which leads to a more compact look-up table.
According to our experiments, there are enough empty slots in the TriMe-
dia VLIW instruction format for an entropy decoding task. Consequently, a
variable chunk size does not introduce real dependencies.

Table 6.3: The proposed VLC table format.

code run level table lookup address escape valid EOB
length offset width decode

No. of bits 8 8 8 8 8 8 8 8
Position 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

In connection to the Table 6.3, several comments should be provided. The
VLC table is an one-dimensional array of vectors, where each vector contains eight
unsigned bytes. In order to keep the number of instructions as low as possible, we
propose to store the sign bit of each and every codeword into the lookup table.
According to Table B14, the level value ranges between −40 · · ·+40. Thus, 7 bits
(less than 1 byte) are sufficient to represent all the values. However, precautions
have to be taken to convert level to a signed integer after extraction (Algorithm 5).

Algorithm 5 Converting the level from 8-bit unsigned to a 16-bit signed integer
#define LEVEL FIELD 5

int16 level;

retrieved vec64ub = VLC table[lookup address];

level = (int16) ub get(retrieved vec64ub, LEVEL FIELD);

level = (int16)((level� 24)� 24); /∗ 32-bit processing ∗/

107

The least significant byte has been allocated for end of block (EOB) flag.
Since the TriMedia C compiler recognizes expressions of the form (E1&1), the
least significant bit of this byte is set to ‘1’ when an end of block condition is
raised. This way, the condition for leaving the loop can be written as follows:

Algorithm 6 TriMedia-specific code for testing the end-of-block condition
#define END OF BLOCK FIELD 0

uint8 end of block;

for (;;) {
retrieved vec64ub = VLC table[lookup address];

end of block = ub get(retrieved vec64ub, END OF BLOCK FIELD);

if (end of block & 1)

break;

}

The table offset field defines the partitioning of the B14 into smaller lookup
tables. The B14 table has been splitted in eight tables (first, second, third, forth,
fifth, sixth, seventh, eighth) which are presented subsequently. In order to improve
the readness, we preserved the order of the rows as in the MPEG standard.

All eight tables are stored into memory concatenated. The number of address
bits for each table corresponds to the maximum code-length of the symbols that
the table is able to decode. That is, Tables first and second have each 8 address
bits, Table sixth has 7 address bits, Tables third and forth have each 4 address bits,
and Tables fifth, seventh, and eighth have each 5 address bits. The total size is 768
(64-bit) words, which means 6 KB.

Table 6.4: Number of address lines, size, and offset for each VLC table.

Table No. of address lines Size table offset
(lookup address width) (64-bit words)

first 8 28 = 256 0
second 8 28 = 256 0x100
third 4 24 = 16 0x200
forth 4 24 = 16 0x210
fifth 5 25 = 32 0x220
sixth 7 27 = 128 0x240
seventh 5 25 = 32 0x2c0
eighth 5 25 = 32 0x2e0

108

Table 6.5: First VLC partition

VL code Run Level

1s 0 1
011s 1 1
0100 s 0 2
0101 s 2 1
0010 1s 0 3
0011 1s 3 1
0011 0s 4 1
0001 10s 1 2
0001 11s 5 1
0001 01s 6 1
0001 00s 7 1
0000 110s 0 4
0000 100s 2 2
0000 111s 8 1
0000 101s 9 1
0000 01 Escape

Table 6.6: Second VLC partition

VL code Run Level

10 End of Block
11s 0 1
011s 1 1
0100 s 0 2
0101 s 2 1
0010 1s 0 3
0011 1s 3 1
0011 0s 4 1
0001 10s 1 2
0001 11s 5 1
0001 01s 6 1
0001 00s 7 1
0000 110s 0 4
0000 100s 2 2
0000 111s 8 1
0000 101s 9 1
0000 01 Escape

Table 6.7: Third VLC partition

1st prefix VL code Run Level

0010 0 110 s 0 5
001 s 0 6
101 s 1 3
100 s 3 2
111 s 10 1
011 s 11 1
010 s 12 1
000 s 13 1

Table 6.8: Forth VLC partition

1st prefix VL code Run Level

0000 001 0 10s 0 7
1 00s 1 4
0 11s 2 3
1 11s 4 2
0 01s 5 2
1 10s 14 1
1 01s 15 1
0 00s 16 1

Table 6.9: Fifth VLC partition

1st prefix VL code Run Level

0000 0001 1101 s 0 8
1000 s 0 9
0011 s 0 10
0000 s 0 11
1011 s 1 5
0100 s 2 4
1100 s 3 3
0010 s 4 3
1110 s 6 2
0101 s 7 2
0001 s 8 2
1111 s 17 1
1010 s 18 1
1001 s 19 1
0111 s 20 1
0110 s 21 1

109

Table 6.10: Sixth VLC partition

1st prefix VL code Run Level

0000 0000 1101 0s 0 12
1100 1s 0 13
1100 0s 0 14
1011 1s 0 15
1011 0s 1 6
1010 1s 1 7
1010 0s 2 5
1001 1s 3 4
1001 0s 5 3
1000 1s 9 2
1000 0s 10 2
1111 1s 22 1
1111 0s 23 1
1110 1s 24 1
1110 0s 25 1
1101 1s 26 1
0111 11s 0 16
0111 10s 0 17
0111 01s 0 18
0111 00s 0 19
0110 11s 0 20
0110 10s 0 21
0110 01s 0 22
0110 00s 0 23
0101 11s 0 24
0101 10s 0 25
0101 01s 0 26
0101 00s 0 27
0100 11s 0 28
0100 10s 0 29
0100 01s 0 30
0100 00s 0 31

Table 6.11: Seventh VLC partition

1st prefix 2nd prefix VL code Run Level

0000 0000 001 1 000s 0 32
0 111s 0 33
0 110s 0 34
0 101s 0 35
0 100s 0 36
0 011s 0 37
0 010s 0 38
0 001s 0 39
0 000s 0 40
1 111s 1 8
1 110s 1 9
1 101s 1 10
1 100s 1 11
1 011s 1 12
1 010s 1 13
1 001s 1 14

Table 6.12: Eighth VLC partition

1st prefix 2nd prefix VL code Run Level

0000 0000 0001 0011 s 1 15
0010 s 1 16
0001 s 1 17
0000 s 1 18
0100 s 6 3
1010 s 11 2
1001 s 12 2
1000 s 13 2
0111 s 14 2
0110 s 15 2
0101 s 16 2
1111 s 27 1
1110 s 28 1
1101 s 29 1
1100 s 30 1
1011 s 31 1

110

The decoding procedure can be exemplified on Figure 6.4. Let us suppose
that the following string is to be decoded: 10000000000011000110.... The
Table Offset is initialized to 0, that is the first table is being pointed to. Also,
Lookup Address Width is initialized to 8, which means that the first 8 bits of the
string, i.e., 10000000, will be regarded as address into the first table. The fol-
lowing values are retrieved: code length = 2, run = 0, level = 1, table offset =
0x100, and lookup address width = 8. Which means that the second table will
be accessed during the second iteration.

After shifting out the two bits decoded at the previous iteration, the lead-
ing eight bits, i.e., 00000000, will be regarded as address, this time into the
second table. By looking-up, code length = 8, table offset = 0x240, and
lookup address width = 7. That is, the sixth table will be accessed. No valid
run-level pair has been detected.

At this moment the accumulated code length is 10. Therefore, the leading
10 bits have to be shifted out from the input string. Then, the next seven bits, i.e.,
0011000, are regarded as address into the sixth table. Again, no valid run-level pair
is detected. The code length = 3, table offset = 0x2c0, lookup address width =
5. That is, the seventh table will be accessed.

After incrementation, the accumulated-code-length = 13. After shifting out the
leading 13 bits, the next five bits, i.e., 10001 are the address into the seventh table.
The look-up procedure retrieves the following values: code length = 5, run = 0,
level = -32, lookup address width = 8, table offset = 0x100 bypassing the first
table. That is, all subsequent coefficients of the 8×8 block will use only the Tables
second - eighth.

Finally, the accumulated-code-length is 18. The next eight bits to be sent as
address to the second table are: 10xxxxxx. An end of block symbol is detected,
and the table-offset = 0; that is, the first table is to be accessed for decoding of a
new block.

The entropy decoder implementation we propose is presented in Algorithm 7.
As it can be observed, the prologue of the inner (infinite) loop (lines 17–47) is
exposed to the compiler (lines 4–15). Since an end of block or error condition
will never occur on first table lookup (line 7), testing of the end of block condition
during the prologue becomes superfluous and, therefore, has been eliminated.

111

E
O

B
!

1st

2nd

th

O
R

th6 th 5

th

4th5 3E
R

R
O

R

4

...

5th

N
O 6

C
L

R
/L

th

...
5 5

0
0
0
0

s

rd

A
dd

re
ss

O
ff

se
t

0
x
1
0

0
x
1
0

L
oo

k−
up

 T
ab

le

...

3

...

...

8

...

th

C
L

R
/L

5

...

0
0
0
0

s

1
1
1
1

s

0
x
1
0

0
x
1
0

O
ff

se
t

L
oo

k−
up

 T
ab

le

A
dd

re
ss

6th

1
1
1
1

s

8th 7th

...

...

...

4th

rd

C
L

R
/L

4 4

0

0
0
s

1

1
1
s

A
dd

re
ss

...

0
x
1
0

0
x
1
0

L
oo

k−
up

 T
ab

le

...

...

...

3

5

C
L

R
/L

4 4

0

0
0
s

1

1
1
s

A
dd

re
ss

0
x
1
0

0
x
1
0

O
ff

se
t

L
oo

k−
up

 T
ab

le

...

...

...

7th

O
ff

se
t

C
L

R
/L

5 5

0

0
0
0
s

1

1
1
1
s

A
dd

re
ss

O
ff

se
t

L
oo

k−
up

 T
ab

le

0
x
1
0

0
x
1
0

...

......

2nd

2nd

1st
2nd

2ndrd

0
1
1
s

x
x
x
x

0
1
0
X

s
x
x
x

0
0
1
1

X
s
x
x

0
0
1
0

1
s
x
x

0
0
1
0

0
x
x
x

0
0
0
1

X
X
s
x

0
0
0
0

1
X
X
s

0
0
0
0

0
1
x
x

0
0
0
0

0
0
1
x

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

C
L 8 8 7 6 8 7 6 5 6 5 4 3

R
/L

1
1
s
x

x
x
x
x

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
2
0

0
x
2
1

0
x
2
2

0
x
2
4

O
ff

se
t

1
0
x
x

x
x
x
x

0

0
1
1
s

x
x
x
x

0
1
0
X

s
x
x
x

0
0
1
1

X
s
x
x

0
0
1
0

1
s
x
x

0
0
1
0

0
x
x
x

0
0
0
1

X
X
s
x

0
0
0
0

1
X
X
s

0
0
0
0

0
1
x
x

0
0
0
0

0
0
1
x

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

C
L 8 8 7 6 8 7 6 5 6 5 4 2

R
/L

1
s
x
x

x
x
x
x

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
2
0

0
x
2
1

0
x
2
2

0
x
2
4

O
ff

se
t

A
dd

re
ss

A
dd

re
ss

L
oo

k−
up

 T
ab

le

L
oo

k−
up

 T
ab

le

C
L

n/
a

R
/L

0
0
1
x

x
x
x

0
0
0
1

x
x
x

0
0
0
0

x
x
x

4 3
0
1
X
X

X
X
s

7
1
X
X
X

X
s
x

6

n/
a

O
ff

se
t

L
oo

k−
up

 T
ab

le

n/
a

0
x
2
c

0
x
2
e

0
x
1
0

0
x
1
0

A
dd

re
ss

E
R

R
O

R

E
O

B
2

E
SCn/
a

n/
a

n/
a

E
SCn/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

Fi
gu

re
6.

4:
T

he
flo

w
ch

ar
t

of
th

e
va

ri
ab

le
-l

en
gt

h
de

co
di

ng
pr

oc
ed

ur
e.

112

Special considerations have to be provided with respect to modulo-64 oper-
ation. As me already mentioned, since the extended bitfunshift TriMedia-
specific operation is used, more flexibility in postponing the modulo-64 opera-
tion is gained. Indeed, there is no such operation within the prologue. However,
from the MPEG syntax point of view this is not entirely correct. Assuming that
acc code length is 63 at line 36, it will become 81 at line 45. Considering that an
end of block is encountered, then acc code length = 83. If this situation occurs
during the decoding of the first block in a macroblock, and if the subsequent five
coded blocks in the same macroblock include each an escape sequence followed
by an end of block, then acc code length = 83 + 5 × 24 + 5 × 2 = 213, that is
more than the limit of 192 bits. Fortunately, this case is not statistically relevant
(we did verify it on all MPEG2–conformance strings mentioned in the subsequent
section). Fortunately, this exceptional situation can be overcomed without much
penalty by augmenting the escape handling code within the prologue (lines 11–15)
with a modulo-64 operation.

The same strategy of exposing the prologue of the loop to the compiler can be
applied for decoding of intra blocks, since an end-of-block can never occur during
the decoding of an DC coefficient. However, special precautions have to be taken
in order to deal with errors.

Finally, it should be mentioned that it is difficult to use standard optimization
techniques such as loop unrolling or grafting [3], because awkward escape code
and/or funnel-shifting processing would be introduced.

6.3 Variable-length decoding in FPGA

Due to data dependencies, both VLD and RLD are sequential tasks. Consequently,
entropy decoding is an intricate function on TriMedia, since a VLIW processor
must benefit from instruction-level parallelism in order to be efficient. For this
reason, such function is an ideal candidate to benefit from reconfigurable hardware
support. Since RLD is mostly a memory-dominant task, essentially only a VLD
computing unit is mapped on FPGA.

Referring to the conceptual scheme of variable-length decoding presented in
Figure 6.1, we would like to mention that arbitrary-size barrel-shifting can be
achieved in one cycle by means of a matrix of transfer gates [18]. Since tri-state
logic is not available on an ACEX 1K FPGA, the only possibility to implement a
barrel-shifter on such FPGA is by means of cascaded multiplexers selecting fixed-
size shifting by 1, 2, 4, 8, . . . , respectively. Therefore, such approach is likely to
exhibit high latency and large reconfigurable hardware utilization. For example,

113

Algorithm 7 Entropy decoder routine with the prologue exposed to compiler
1: for i = 1 to NO OF MACROBLOCKS do
2: for j = 1 to NO OF BLOCKS IN MACROBLOCK do
3: nz coeff pos ZZ← 0
4: barrel-shifting the VLC string
5: lookup address← the leading FIRST LOOKUP ADDRESS WIDTH bits from VLC string
6: lookup address← lookup address + (FIRST TABLE OFFSET� 4)
7: retrieved vec64ub← VLC table[lookup address]
8:
9: extract code length, run, level, table offset, lookup address width, escape, valid decode

from retrieved vec64ub {end of block field is not extracted!}
10: acc code length← acc code length + code length
11: if escape flag is raised then
12: run ← next 6 bits from VLC string
13: level ← next 12 bits from VLC string
14: acc code length← acc code length + 6 + 12
15: end if
16:
17: loop
18: barrel-shift the VLC string
19: lookup address← the leading lookup address width bits from VLC string
20: lookup address← lookup address + table offset
21: retrieved vec64ub← VLC table[lookup address]
22:
23: nz coeff pos ZZ← nz coeff pos ZZ + Run
24: nz coeff pos← invZZ table[nz coeff pos ZZ]
25: 8× 8 matrix[nz coeff pos]← Level
26: nz coeff pos ZZ← nz coeff pos ZZ + valid decode
27:
28: extract code length, run, level, table offset, lookup address width, escape,

valid decode, end of block from retrieved vec64ub
29: acc code length← acc code length + code length
30: if acc code length ≤ 64 and not(escape) then
31: continue {—————————-> go to loop}
32: end if
33: if end of block flag is raised then
34: break {——————————-> initiate the next for iteration (block-level)}
35: end if
36: if acc code length ≥ 64 then
37: advance the VLC string by 64 bits
38: acc code length← acc code length - 64
39: end if
40: if escape flag is raised then
41: run ← next 6 bits from VLC string
42: level ← next 12 bits from VLC string
43: acc code length← acc code length + 6 + 12
44: end if
45: end loop
46: end for
47: end for

114

considering that the longest code-length is 24 bit, we determined that a barrel-shift
of 2:1 (longest) codewords, i.e., 48:24 bits, has a latency which ranges between
10.2 ÷ 11.9 ns, depending of the mapping and routing options. Similarly, the la-
tency of a 3:1 (longest) codewords barrel-shift (72:24 bits) ranges between 11.9 ÷
13.2 ns, and the latency of a 4:2 codewords barrel-shift (96:48 bits) ranges between
16.2 ÷ 15.0 ns. Considering a TriMedia@200 MHz, these figures translates to 2
÷ 3 TriMedia cycles, while the latency of the hardwired barrel-shifter operation is
only 1 TriMedia cycle.

For this reason, we implement in FPGA only the forward path of the VLD, i.e.,
the path that computes the run-level pair and the code-length, while the feedback
path, i.e., accumulating the code-length and barrel-shifting will be implemented in
standard TriMedia by means of hardwired operations. However, such architectural
decision has to be reanalyzed if full-custom hardwired VLD is addressed.

Subsequently, we first present an MPEG2–compliant VLD which can return
one symbol per call. Then, we will propose a strategy to break the data dependency
between successive symbols, and propose VLD-2 and VLD-3 computing resources
which can return 2, respectively 3 symbols per call.

VLD-1. VLD-1 is an FPGA–based VLD which can decode one symbol per ex-
ecution. Since the latency of an RFU-configured computing resource should be
known at compile time, only a constant-output-rate architecture [63, 104, 103] can
be considered for VLD. An ACEX 1K FPGA–based VLD-1 which is MPEG2 com-
pliant has been presented in [96, 97]. The main idea of this design is to compute
the run-level pair by looking-up into the EABs of an ACEX 1K FPGA, while the
code-length and control information are computed into FPGA logic cells. Since
the EABs are essentialy random-access memories with 8 inputs, while the code-
length ranges between 2 and 17 (excluding escape sequences), we partitioned the
Tables B14 and B15 into Groups and Classes [98], such that by bypassing a so-
called header common to all codewords in a group, the number of remaining bits
to be decoded for each and every codeword in the group (and, therefore, the result-
ing address length for looking-up into EAB) is 8 or less.

In Table 6.13 we present the partitioning of VLC Tables B14 and B15. To
overcome the slightly higher difficulty of having a large number of codewords
starting with a ‘1’ in Table B15, the codewords starting with ”10” or ”01” have been
allocated to Group 0, while the codewords starting with ”00” or ”11” have been
allocated to Group 1. This way, each class in the Group 1 can be uniquely identified
by the second most-significant bit. Thus, the first of the two most-significant bits
can be bypassed as being the header of the Group 1.

115

Table 6.13: Partitioning of the Tables B14 and B15 into groups and classes.

Table B14
Group name No. of symbols Class prefix Code length Group header Effective EAB

in the class address length
Group 0 2 1 1 + s – n.a.

NI-1st coeff.
End-of-block 1 10 2 – n.a.

Group 0 2 11 2 + s – n.a.
AC coeff.

Escape MPEG-2 1 0000 01 6 + 18 – n.a.
(MPEG-1) 6 + (14,22)

2 011 3 + s 3
4 010 4 + s 4

Group 1 4 0011 5 + s 5
2 0010 1 5 + s 0 5

(implemented 8 0001 6 + s 6
into EABs) 8 0000 1 7 + s 7

16 0010 0 8 + s 8
Group 2 16 0000 001 10 + s 5

(implemented 32 0000 0001 12 + s 0000 00 7
into EABs) 32 0000 0000 1 13 + s 8

Group 3 32 0000 0000 01 14 + s 6
(implemented 32 0000 0000 001 15 + s 0000 0000 0 7

into EABs) 32 0000 0000 0001 16 + s 8

Table B15
Group name No. of symbols Class prefix Code length Group header Effective EAB

in the class address length
End-of-block 1 0110 4 – n.a.

2 10 2 + s – n.a.
Group 0 2 010 3 + s – n.a.

2 0111 4 + s – n.a.
Escape MPEG-2 1 0000 01 6 + 18 – n.a.

4 0011 5 + s 5
2 0010 1 5 + s 5
8 0001 6 + s 0 6

Group 1 8 0000 1 7 + s 7
16 0010 0 8 + s 8
2 110 3 + s 3
4 1110 5 + s 5

(implemented 8 1111 0 7 + s 1 7
into EABs) 2 1111 100 7 + s 7

8 1111 11 8 + s 8
4 1111 101 8 + s 8
2 0000 0010 9 + s 4

Group 2 4 0000 0011 1 9 + s 4
4 0000 0011 0 10 + s 0000 00 5

(implemented 20 0000 0001 12 + s 7
into EABs) 24 0000 0000 1 13 + s 8

Group 3 32 0000 0000 01 14 + s 6
(implemented 32 0000 0000 001 15 + s 0000 0000 0 7

into EABs) 32 0000 0000 0001 16 + s 8

116

In connection to the Table 6.13 we would like to mention that only the large
groups, i.e., 1, 2, and 3, are implemented into EABs. The small groups, i.e.,, Group
0, escape, and end-of-block, as well Tables B12 and B13 are implemented into the
FPGA logic cells. With such partitioning in groups, the run and level for each and
every group were decoded in parallel, as the valid symbol would belong to that
group. Then, a selection of the proper run-level pair is carried out according to the
code-length, as depicted in Figure 6.5. For completeness, we also present the de-
tailed implementation of the VLD-1 in Figure 6.6 (only intra vlc format = 0
is considered, however).

2 x EAB
Group 2

2 x EAB
Group 3

8

8

8

decoder
DC Intra3

[0 ... 20]

Selection

MUX
7:1

code_L

Controller(dc_ac, I_NI, y_c, MPEG_1_2)

2 x EAB

Group
detector

and
code length
estimator

[0 ... 2]

[1 ... 8]

[6 ... 13]

[9 ... 16]

12

[0 ... 11] 5

Group 03

Group 1

decoder

6

12

6

12

6

12

6

12

6

12

6

12

[6 ... 28]
Escape

EOB

22
decoder

6

12
level

run

"decoder"

6

12

Decoding parameters
error

exit_flag

valid_decode

EOB

VLC string

Figure 6.5: The conceptual VLD-1 implementation on FPGA.

Six EABs an EP1K100 device (the largest FPGA in the Altera’s ACEX family)
are needed to implement the Tables B14 and B15, an ACEX EP1K100 device have
been used to implement the rest of the VLD-1. By simulation with Altera tools, we
found that the VLD-1 latency is equal to 7 TriMedia cycles.

Since the next variable-length codeword can be decoded only after the current
one has been decoded, VLD is a strictly sequential task. Subsequently, we will
propose a strategy to increase the parallelism by breaking the explicit dependency
between successive codewords, and will present a variable-length decoder which
can decode 2 symbols per call.

117

le
ve

l

L R
[0

...
2]

3

E
A

B
G

ro
up

 1
le

ve
l

de
co

de
r

E
A

B
G

ro
up

 1
ru

n
de

co
de

r

12 6

L R
[1

...
8]

de
co

de
r

Si
ze

12 6
S

E
L

E
C

T
O

R

12 6
D

C
G

ro
up

 0

de
co

de
r

le
ve

l

L R
[0

...
1]

2

12 6
A

C
G

ro
up

 0

8

G
ro

up
 3

ru
n

de
co

de
r

12 6

L R
[9

...
16

]
8

612
E

SC
A

PE
L R

Se
le

ct
io

n
si

gn
al

s

L R

E
A

B

E
A

B
G

ro
up

 2
le

ve
l

de
co

de
r

E
A

B
G

ro
up

 2
ru

n
de

co
de

r

12 6

L R
[6

...
13

]
8

E
A

B
G

ro
up

 3
le

ve
l

de
co

de
r

4

de
te

ct
or

de
te

ct
or

G
ro

up
 3

S
E

L
E

C
T

O
R

18
E

sc
ap

e
de

co
de

r
M

PE
G

−
2

[6
...

23
]

12 6 5
24

612
2:

1
M

U
X

6

G
ro

up
 2

G
ro

up
 1

de
te

ct
or

5

[0
...

11
]

5

C
L

C
L

5 4
Si

ze

D
C

 Y
Si

ze &
C

od
e

L
en

gt
h

es
tim

at
or

D
C

 C
b,

 C
r

Si
ze &

C
od

e
L

en
gt

h
es

tim
at

or

5

12

de
co

de
r

E
sc

ap
e

M
PE

G
−

1
[6

...
27

]22

E
SC

A
P

E
 D

ec
od

er

512

9 10

[0
...

8]

[0
...

9]

In
tr

a
D

C
C

od
e

L
en

gt
h

es
tim

at
or

M
U

X
2:

1
4

E
SC

_C
L

[6
...

27
]

A
nt

et
de

co
de

r

G
ro

up
_3

_C
L

G
ro

up
_2

_C
L

G
ro

up
_1

_C
L

E
SC

_C
L

D
C

_G
ro

up
_0

_C
L

E
O

B
_C

L

A
C

_G
ro

up
_0

_C
L

In
tr

a_
D

C
_C

L

A
n
t
e
t
_
0
0
0
0
_
0
0
0
0
_
0
0
0
1

A
n
t
e
t
_
1
1

A
n
t
e
t
_
1
0
_
E
O
B

A
n
t
e
t
_
0
0
0
0
_
0
1
_
E
S
C

A
n
t
e
t
_
0
1
1

A
n
t
e
t
_
0
1
0

A
n
t
e
t
_
1

A
n
t
e
t
_
0
0
1
1

A
n
t
e
t
_
0
0
1
0
_
1

A
n
t
e
t
_
0
0
0
1

A
n
t
e
t
_
0
0
0
0
_
1

A
n
t
e
t
_
0
0
1
0
_
0

A
n
t
e
t
_
0
0
0
0
_
0
0
1

A
n
t
e
t
_
0
0
0
0
_
0
0
0
1

A
n
t
e
t
_
0
0
0
0
_
0
0
0
0
_
1

A
n
t
e
t
_
0
0
0
0
_
0
0
0
0
_
0
1

A
n
t
e
t
_
0
0
0
0
_
0
0
0
0
_
0
0
1

V
L

C
 s

tr
in

g

V
L

C
 s

tr
in

g

V
L

C
 s

tr
in

g

V
L

C
 s

tr
in

g

In
tr

a_
D

C
_S

iz
e

C
od

e
L

en
gt

h

G
ro

up
 1

G
ro

up
_E

SC

G
ro

up
_E

O
B

5

RL C
L

C
LL R

E
SC

_L

E
SC

_R

y_
c

m
pe

g_
s

m
pe

g_
s

5
2

C
od

e
L

en
gt

h
"d

ec
od

er
"

E
O

B

5
2

A
C

 G
ro

up
_0

C
od

e
L

en
gt

h
"d

ec
od

er
"

D
C

 G
ro

up
_0

C
od

e
L

en
gt

h
"d

ec
od

er
"

5

C
od

e
L

en
gt

h
de

co
de

r

G
ro

up
_1

C
od

e
L

en
gt

h
de

co
de

r

G
ro

up
_2

3

G
ro

up
_3

C
od

e
L

en
gt

h
de

co
de

r

D
C

_G
ro

up
_0

612
L R

es
tim

at
or

L
ev

el
D

C
 C

b,
 C

r

V
L

C
 s

tr
in

g

V
L

C
 s

tr
in

g

In
tr

a_
D

C
_S

iz
e

V
al

id
_d

ec
od

e

E
nd

−o
f−

B
lo

ck

E
rr

or

E
xi

t_
fl

ag

C
on

tr
ol

le
r

612
L R

es
tim

at
or

L
ev

el

D
C

 Y

2:
1

M
U

X

[0
...

8]

[0
...

9]

9 10

4 4

y_
c

m
pe

g_
s

In
tr

a_
D

C
_S

iz
e

612

25
5

"d
ec

od
er

"
E

O
B

L R

V
L

C
 s

tr
in

g

V
L

C
 s

tr
in

g

V
L

C
 s

tr
in

g

V
L

C
 s

tr
in

g

A
C

_G
ro

up
_0

G
ro

up
 3

G
ro

up
 2

Se
le

ct
io

n
si

gn
al

s

dc
_a

c

in
tr

a_
pb

V
L

C
 s

tr
in

g

G
ro

up
 3

in
tr

a_
pb

dc
_a

c

612

G
ro

up
 2

E
SC

_L

E
SC

_R

R
un

L
ev

el

D
C

_G
ro

up
_0

A
C

_G
ro

up
_0

G
ro

up
_E

O
B

G
ro

up
_E

SC

G
ro

up
 1

Fi
gu

re
6.

6:
T

he
de

ta
ile

d
V

L
D

-1
im

pl
em

en
ta

ti
on

on
F

P
G

A
.

118

VLD-2. Since VLD is a strictly sequential algorithm, trully two codewords at a
time can be achieved only if a huge look-up table of 28 + 28 = 56 inputs (256

word memory!) for MPEG-1, and 24 + 24 = 48 inputs (248 word memory!) for
MPEG-2 is employed. Even by excluding the ESCAPE codes, a look-up memory
with 17 + 17 = 34 inputs, which means 234 ≈ 10 Gwords is still needed! Several
architectures have been proposed to overcome the need for such a large memory.

• The decoder proposed by Park [76] finds the run, level, and code-length of
the first symbol, then barrel-shifts the VLC string according to the code-
length, and finally finds the run, level, and code-length of the subsequent
symbol. Since it is difficult to implemented a barrel-shifter on FPGA, the
Park’s architecture is not appropriate for our case.

• The decoders described in [66], [61] employ advance computation tech-
niques. For the first bit of the VLC string, the symbol is fully decoded,
i.e., run, level, and code-length are determined. In parallel, for all possi-
ble starting bit positions for the next symbol, runs, levels, code-lengths are
also generated. Finally, only a selection based on the code-length of the
first decoded symbol is carried out. The major drawback of this approach is
the huge complexity of the decoder, as decoding look-up tables have to be
provided for the first symbol, and also for all possible second symbols.

In order to overcome the drawbacks of the above mentioned architectures, we
propose to decode run, level, and code-length of a first symbol, and to determine
only the code-length for the second symbol by means of advance computation tech-
niques. The computation of the run-level pair of the second symbol is postponed
to the next VLD call. In parallel, the run-level pair of the previous codeword is
determined. In this way, with the exception of a firing-up call which decodes only
a single symbol, trully two-symbol decoding is achieved for all subsequent VLD
calls. The complexity of the VLD-2 remains resonable low since only a small
number of look-up tables have to be provided. As mentioned, barrel-shifting will
be carried out in software, in the standard TriMedia–CPU64 instruction set.

Several aspects regarding the terminology have to be discussed. The codeword
corresponding to the first bit of the VLC string is referred to as current codeword.
The second symbol is referred to as next codeword, and a codeword whose code-
length was determined during the previous VLD-2 call is referred to as previous
codeword. The acronyms related to the current codeword get the suffix c, those re-
lated to next codeword get the suffix n, and those related to the previous codeword
get the suffix p. Therefore, the acronyms run c, level c, code L c, code L n,
run p, level p, etc, are valid.

119

The conceptual FPGA–based implementation of the VLD-2 core is presented
in Figure 6.7. As it can be observed, decoding the code-length of the next codeword
is carried out in parallel with decoding of the run-level pair of the current codeword
(and also of the previous codeword). Therefore, the critical path of the VLD-2 is
approximately the same with the critical path of the VLD-1. For VLD-2, the same
methodology used in VLD 1 has been employed, i.e., run and level for all the
Groups in the decoding tables are decoded in parallel, then only a selection of the
proper result is carried out. In order to easily quit the entropy decoder calling
routine once an end-of-block or an error has been detected for either of the current
or previous codeword, a global exit flag is provided.

All 12 EABs and 51% of the

code−length

level

run

Input level

run

U
M

X

run

level

code−length

level

run
previous

next

current

code−length

code−length

code−length

code−length

VLD−2

. .
 .

VLD−1

VLD−1

stream

Figure 6.7: The FPGA–based VLD-2.

logic cells of an ACEX EP1K100
device have been used to im-
plement an MPEG-2–compliant
VLD-2. By writing VHDL code,
followed by compiling, mapping,
and simulation with Altera devel-
opment tools, we found that the
VLD-2 latency ranges between
7-8 TriMedia cycles, depending
on the computing of additional
values which may prove use-
ful at the entropy decoding rou-
tine level, e.g., nz coeff pos,
end of macro block, etc, as we

will discuss in the next section.

VLD-3 The VLD-2 principle is scalable and can be extended to VLD-x (x ≥ 3),
subject to the FPGA size. In a VLD-3, two next/previous codewords are consid-
ered. Unfortunately, VLD-x (x ≥ 3) seems not to be feasible. In VLD-2, the selec-
tion of the proper code L n can be completed in about the same time with run-level
decoding for the current (and also previous) codeword(s). In VLD-3, for example,
the computation of the code-lengths for the next two codewords is on the critical
path. Therefore, longer latencies are to be expected for VLD-x (x ≥ 3), while
VLD-2 has about the same latency with VLD-1. By simulation with Altera tools,
we found that decoding the code-lengths of the current and two next codewords
can take up to 50 ns on an ACEX 1K FPGA, which is 10 TriMedia@200 MHz cy-
cles. Considering the extra read and write-back cycles, the latency of the VLD-3
is 12 TriMedia cycles.

120

Another difficulty in mapping a VLD-3 is the need for two EP1K100 FP-
GAs. Moreover, there are also limitations connected with TriMedia–CPU64 super-
operation format, which strongly discourages using VLD-x (x ≥ 3), as we will
describe later this chapter.

In entropy decoding on FPGA-augmented TriMedia, the VLD benefits from
reconfigurable hardware support, while the processor still carries out the inverse
zig-zag and matrix reconstruction, i.e., the RLD. In Section 6.4, we will describe
three entropy decoders on FPGA-augmented TriMedia.

6.4 Entropy decoder implementation on ρ–TriMedia

Let us assume that the incoming bit-string is resident into main memory or
Memory-Mapped Input/Output (MMIO) registers [2]. Since the TriMedia–CPU64
datapath is 64 bit wide, the bit-string will be downloaded into the VLIW core in
chunks of 64 bits. Classical optimization techniques [77, 3] have been used for bit
parsing operations. In particular, to avoid memory references, local copies of the
input and output global variables are used. Since the compiler allocates the local
copies to registers, the leading 64-bit chuncks are stored into register file.

As described in Section 6.1, the accumulated code-length, acc code L, stores
the sum of the code-lengths of the previously decoded codewords. Before each
VLD call, the input stream has to be shifted by acc code L positions in order to
discard the decoded bits. As we established in Section 6.3, the shifting procedure
will be performed in standard TriMedia, for which a dedicated bitwise funnel-shift
double-slot operation is provided:

[if Rguard]
bitfunshift Rsrc LDW, Rsrc RDW, Rshift → Rdest LDW, Rdest RDW

where Rsrc LDW, Rsrc RDW, Rdest LDW, Rdest RDW are 64-bit unsigned integers
defining the Left and Right Double Words (LDW, RDW) of the input, respectively
the output. Rshift is considered to be a 32-bit unsigned integers defining the
shifting value, and Rguard is the guarding register. The (original) funnel-shift
operation on standard TriMedia is presented as shaded area in Figure 6.8.

The bit parsing should be done with caution, since enough bits for variable-
length decoding have to be available after barrel-shifting. A strategy which guar-
antees that at least 1 + 64 = 65 bits are available for the subsequent VLD calls is
as follows [82]. The acc code L is incremented modulo-64 with the code-length
of each newly decoded codeword. On overflow, a new chunk of 64 bits from the

121

64 bits 64 bits 64 bits

64 bits64 bitsacc_code_L 64

all zero for orig. bitfunshift

Rsrc_RDWRsrc_LDW

Rsrc_CDW Rsrc_RDW
extended bitfunshift: 192−bit input string

original bitfunshift: 128−bit input string

already decoded

Rsrc_LDW

Rdest_LDW Rdest_RDW
output string

Figure 6.8: The ’original bitfunshift’ and ’extended bitfunshift’ operations.

MPEG string is downloaded from main memory into TriMedia core, as depicted in
Figure 6.9. This way, the actual input bitstream is accessed only when the number
of bits required is greater than the number of bits left in the register file.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Memory access:

into register file
loading a 64−bit value

acc_code_L 64

acc_code_L 64

already decodedalready decoded

already decoded

64−bit register 64−bit64−bit register

Left (most significant) double−word
Right (least significant) double−word

Right (least significant) double−word
Left (most significant) double−word

Figure 6.9: Updating the ’register’ copy of the leading (most significant) 64-bit
chunks of the VLC bit-string.

We would like to mention that the incrementation modulo-64 is emulated by
plain incrementation followed by a conditional jump which bypasses a subtraction
with 64 if acc code L < 64. Since the longest (MPEG-1) code-length is 28 bit,
which means that two codewords can be at most 56 bit long, those 65 bits guar-
anteed by the strategy presented in Figure 6.9 allows for a slight optimization: a
plain incrementation can be used instead of an incrementation modulo-64 any other
single symbol variable-length decoding, provided that acc code L < 64 at the be-
ginning of the algorithm. In this way, one of two conditional jumps is eliminated,
with significant benefits in TriMedia-based entropy decoder implementations.

122

Since the double-slot operation format accepts four input registers, further im-
provements are still possible. We propose to extend the original funnel-shifting
operation such that the barrel-shifting is done over three 64-bit chunks instead of
two. The extended funnel-shift operations is depicted in the same Figure 6.9. The
sintax of the new operation is:

[if Rguard]
bitfunshift 3 Rsrc LDW, Rsrc CDW, Rsrc RDW, Rshift →

Rdest LDW, Rdest RDW

where Rsrc CDW is the Central Double Word of the input string, all the other reg-
isters having the same meaning as in the original operation. After acc code L
is incremented modulo-64, the extended funnel-shift operation guarantees that at
least 1 + 128 = 129 bits are available for subsequent VLD calls, provided that
acc code L < 64 at the beginning of the algorithm. Consequently, at least five
MPEG-2 codewords can be decoded before the acc code L is updated modulo-64.
This approach may have a lot of benefits in optimizing the entropy decoder routine,
especially when multiple-symbol VLDs are employed. We will come back to this
issue later this chapter.

Finally, we would like to note that the extended funnel-shift operation having
64 ≤ acc code L < 128 is identic with standard funnel-shift operation having
acc code L ≥ 0. Also, the Figure 6.9 showing the updating process of the VLC
string should be augmented in order to include three 64-bit words: Rsrc LDW,
Rsrc CDW, Rsrc RDW. However, this is not presented here.

Subsequently, we will focus on three entropy decoder classes: VLD-1–based,
VLD-2–based and VLD-3–based. We will describe their implementation concepts
and will present the optimizations thatv are likely to be the most effective in terms
of instruction cycles.

VLD-1–based entropy decoder. The main idea of an FPGA-based solution is
to replace the awkward table look-ups and escape handling code used in the pure
software decoder [82, 99], by a single RFU call. In this paragraph, we assume that a
VLD-1 computing resource which can decode one symbol per call is configured on
FPGA. Thus, the entropy decoder routine includes calls to VLD-1. We would like
to remind that a VLD-1 call is actually performed by launching an EXECUTE super-
operation having a pointer to VLD-1 as RFU− OP− ID, as described in Chapter 3.
The following stages can be discerned in the implementation of the VLD-1–based
entropy decoder:

123

1. Initializations (SET VLD-1 computing resource, Initialize VLD-1, update
acc code L, etc.).

2. VLD-1 call (≡ EXECUTE call)

3. Field extraction: run, level, code L, exit flag.

4. Updating the accumulated code-length:

acc code L+ = code L (modulo 64)

5. Updating the register copy of the leading (most significant) 64-bit chunks of
the VLC string.

6. Exit if an exit condition (end-of-block, error, etc.) has been encountered.

7. Run-length decoding (calculating nz coeff pos followed up by filling-in the non-
zero coefficient into the 8 × 8 matrix) and additional computations associated
with MPEG (de-zig-zag, inverse quantization, etc.).

8. Barrel-shifting the VLC string in order to discard the already decoded bits.

9. Looping: GOTO step 2.

Stages 7 (run-length decoding) and 8 (barrel-shifting) can be folded into the
loop, such that loop pipelining is employed. In this way, the run-length decoding
for the previous VL decoded symbol is carried out simultaneously with variable-
length decoding of the current symbol. The penalty of such approach is that only
variable-length decoding for the first DCT coefficient will be performed during
the first iteration, since the software pipeline has to be fired-up. To reduce this
overhead, we propose to expose the prologue of the loop [57] to the compiler. The
dataflow of the entropy decoder routine with the prologue exposed to the compiler
is presented in Figure 6.10–a.

In connection to the bit parsing operation, we would like to comment that, in
order to increase the instruction level parallelism, software pipelining techniques
are also employed. That is, barrel-shift operation is scheduled before both the
modulus operation and VLC-string updating. As we established at the beginning
of this section, this strategy will never rise problems even when standard funnel-
shift is used, since even in the worst case there are enough bits left to decode
an additional. Moreover, if extended funnel-shift is used, the conditional jump
associated to modulus operation is no longer needed for variable-length decoding
of any other single symbol. Therefore, the code can be replicated following a
standard grafting optimization technique [3], as depicted in Figure 6.10–b. Based
on the same observation, only a plain incrementation instead of a modulo-64 one
during the prologue suffices.

124

Error

acc_code_L += code_L

<> 64

acc_code_L >= 64

Updating VLC string
acc_code_L %= 64

acc_code_L < 64

PROLOGUE

acc_code_L += code_L

<> 64

acc_code_L >= 64

acc_code_L %= 64

acc_code_L < 64

LOOP

Error or EOB

Error or EOB

(b)

<> 64

acc_code_L >= 64

Updating VLC string
acc_code_L %= 64

acc_code_L < 64

acc_code_L += code_L

Barrel−shifting

. . .

(a)

VLD1 −

VLD1 − current

current

VLD1 − current

acc_code_L += code_L

Barrel−shifting

VLD1 − current

Init

Exit
Exit

RLD − previous

RLD − previousRLD − previous

Exit Exit

Exit

Updating VLC string

Exit

Barrel−shifting

Error or EOB

GRAFTING...

PROLOGUE

GRAFTED LOOP

Init

Figure 6.10: The dataflow of the VLD-1–based entropy decoder: (a) – without
grafting; (b) – with grafting.

At the end of this paragraph, we would like to comment a little about the Exit
test during the prologue. Since an end-of-block can never be encountered during
the decoding of a DC/1st DCT coefficient, the Exit branch in prologue is taken only
if an error is encountered. Since for the time being is hard to figure out whether
dealing with error concealment may or may not be subject for further optimizations
at a complete MPEG decoder level, the best we can do is to be conservative and
consider that an error is processed immediately after it is encountered. Therefore,
the penalty of the prologue Exit branch is taken into consideration in the subse-
quent experiments.

125

VLD-2–based entropy decoder. The VLD-2–based entropy decoder is a direct
extension of the VLD-1–based one. The routine includes calls to VLD-2. The fol-
lowing stages can be discerned in the implementation of the VLD-2–based entropy
decoder:

1. Initializations (SET VLD-2 computing resource, Initialize VLD-2, update
acc code L, etc.).

2. VLD-2 call (≡ EXECUTE call)

3. Field extraction: run p, level p, code L n, run c, level c, code L c,
exit flag.

4. Updating the accumulated code-length:

acc code L+ = code L c (modulo 64)

5. Barrel-shifting the VLC string in order to compute VLC string - previous.

6. Updating the accumulated code-length:

acc code L+ = code L n (modulo 64)

7. Updating the register copy of the leading (most significant) 64-bit chunks of
the VLC string.

8. Exit if an exit condition (end-of-block, error, etc.) has been encountered.

9. Run-length decoding for previous symbol (updating nz coeff pos p followed up
by filling-in the non-zero coefficient into the 8 × 8 matrix) and additional compu-
tations associated with MPEG (de-zig-zag, inverse quantization, etc.).

10. Run-length decoding for current symbol (updating nz coeff pos c followed up
by filling-in the non-zero coefficient into the 8 × 8 matrix) and additional compu-
tations associated with MPEG (de-zig-zag, inverse quantization, etc.).

11. Barrel-shifting the VLC string in order to compute VLC string - current, next.

12. Looping: GOTO step 2.

Following the same strategy used for VLD-1–based entropy decoder, either the
Stage 10 or both Stages 10 and 9 can be folded into the loop. As it can be easily
observed, the complexity of the entropy decoding loop is significantly higher than
that of its VLD-1–based counterpart. For this reason, the overhead associated with
firing-up the loop may become significant and even cancel the efficiency provided
by VLD-2. The same technique of exposing the prologue can be applied. Since
the VLD-2–based entropy decoder routine is actually double-pipelined (once at the
VLD level and once at the entropy decoder itself level), two entropy decoder itera-
tions (the prologue and the 1st one) are needed to completely fire-up the pipeline.
This is shown in Figure 6.11.

126

1 iterationst

2 iterationnd

3 iterationrd

nextcurrentpreviousnextcurrentprevious

VLD−2 RLD

prologue

half fired−up

full fired−up

. . .

4 iterationth

.

full fired−up

full fired−up

Figure 6.11: The firing-up process of the entropy decoder software pipeline.

In VLD-2–based entropy decoder, grafting should be used with caution, since
not even the extended funnel-shift operation can provide enough bits to be de-
coded in the worst case. Fortunately, this worst case is extremely very unlikely
to be encountered. By running the grafted VLD-2–based entropy decoder rou-
tine over MPEG-conformance scenes, we determined that the maximum value of
acc code L which has been encountered before the adjustment modulo-64 is 137
from a total of 192, provided that extended funnel-shift operation is used. Thus,
additional precautions regarding variable-length decoding are worthless.

VLD-3–based entropy decoder. VLD-2–based entropy decoder can be extended
to an VLD-x–based (x ≥ 3) entropy decoder. Unfortunately, three major issues
limit the utilization of a VLD-x (x ≥ 3) computing resource:

• The overhead associated with firing-up the loop becomes larger and larger,
which turns into a highly inefficient VLD-x–based (x ≥ 3) entropy decoder.

• The grafting technique is no longer as efficient as in the VLD-2–based en-
tropy decoder. Since even the extended funnel-shift operation is not able
to provide enough bits for variable-length decoding within an entropy de-
coding loop iteration, the conditional jump associated with the adjustment
modulo-64 cannot be eliminated at the grafting point any more.

• There are also limitations related with TriMedia super-operation format.

We will come back to these issues and present more details as well as experimental
figures regarding VLD-3–based entropy decoder in Section 6.5.

With VLD-1, VLD-2, and VLD-3, different tests have been carried out. We
will present them subsequently along with experimental results.

127

6.5 Experimental results

For all experiments described subsequently, the MPEG-compliant bit string is as-
sumed to be entirely resident into the main memory. In this way, side effects asso-
ciated with bit string acquisition such as asynchronous interrupts, trashing routines,
or other operating system related tasks, do not have to be counted. Moreover, sav-
ing the reconstructed 8×8 matrices into memory, as well as zeroing these matrices
in order to initialize a new entropy decoding task are equally not considered. Since
both procedures can be considered parts of adjacent tasks, such as IDCT or motion
compensation, they are subject to further optimizations at the complete MPEG de-
coder level. Thus, in our experiments, the run-length decoder will overwrite the
same 8 × 8 matrices again and again. With these assumptions, the only relevant
metric is the number of instruction cycles required to perform strictly entropy de-
coding. Therefore, the main goal was to minimize this number.

Two experiment classes have been considered: End-of-Block (EOB) and End-
of-Macro-Block (EOMB). In the first (EOB) class, VLD-1, VLD-2 and VLD-3
generate an exit condition if an end-of-block has been encountered. This way, the
entropy decoding loop is left after the 8 × 8 block has been fully reconstructed.
As mentioned in Section 6.3, only a single codeword is decoded during the first
VLD-x (x ≥ 2) call. Since the average number of codewords per block is quite
small, ranging between 4.3 and 6.8 for non-intra macroblocks (Table 6.14), the
inefficiency of the first VLD-x (x ≥ 2) is quite large. For example, 3 VLD-2
calls instead of the ideal 2.5 are needed to decode 5 coefficients (20% “overhead”),
while 4 VLD-2 calls instead of the ideal 3 are needed to decode 6 coefficients (25%
“overhead”).

In the second (EOMB) experiment class, VLD-2 and VLD-3 generate an exit
condition if an end-of-macro-block has been encountered, and the entropy decod-
ing loop is left only after the entire macroblock has been reconstructed. There are
at least 13.5 codewords per block for non-intra macroblocks, as evidenced in Ta-
ble 6.14. Considering VLD-2, 8 instead of the ideal 7.5 VLD-2 calls are needed
to decode a macroblock with 15 coefficients. Thus, the first iteration “overhead” is
much lower, decreasing to only 7%. We have to note that there is no end-of-macro-
block symbol. An end-of-macro-block condition is raised when the end-of-block
is encountered during the decoding of the last block in the current macroblock.

For both experiment classes, the performance of the entropy decoders have
been evaluated according to two scenarios. In the first scenario, the VLD unit
returns the run value as defined by the MPEG standard, while the position of the
non-zero coefficient, nz coeff pos, (see Section 6.1) is carried out in software.

128

Table 6.14: Intrinsic MPEG-2 stream statistics – excerpt from Appendix A.

Intra (B14 + B15)
Scene coefficients blocks macroblocks coeff. / block coeff. / macroblock
batman 172,745 23,298 3,883 7.4 44.5
popplen 47,003 4,572 762 10.3 61.7
sarnoff2 80,563 8,418 1,403 9.6 57.4
tennis 133,099 12,222 2,037 10.9 65.3
ti1cheer 80,818 8,244 1,374 9.8 58.8

Non-Intra
Scene coefficients blocks macroblocks coeff. / block coeff. / macroblock
batman 266,485 38,940 7,437 6.8 35.8
popplen 28,069 4,139 1,206 6.8 23.3
sarnoff2 36,408 8,447 2,673 4.3 13.6
tennis 137,756 25,524 8,454 5.4 16.3
ti1cheer 51,680 9,432 2,717 5.5 19.0

In addition, based on the coded block pattern value defined by MPEG standards
[51, 53], the index of the block being decoded within the current macroblock,
block index, is also returned by the VLD unit. In the second scenario, the
nz coeff pos within a macroblock is computed inside FPGA and returned by
the VLD call. In this later case, the block index information is redundant.

In connection to the FPGA–based computation of the nz coeff pos, several
comments are worth to be provided. As depicted in Figure 6.12, the format of
the nz coeff pos-relative-to-a-macroblock integer consists of two fields: (1) the ta-
ble index, and (2) nz coeff pos-relative-to-a-block. When accumulating the run
values in order to generate the nz coeff pos-relative-to-a-block (as in Figure 6.2),
a carry over the sixth position will never occur. This assertion is true for there are
64 elements in a 8 × 8 block. In addition, since the table index is uniquely deter-
mined from coded block pattern, it can be computed in parallel with nz coeff pos.
Without going into further details, we would like to mention that computing the
nz coeff pos relative to a macroblock does not significantly increase the length
of the VLD critical path. The latency of the VLD-2 unit in the second scenario
remains 8 TriMedia@200 MHz cycles.

No. of bits 3 6
Field name table index nz coeff pos relative to a block

Figure 6.12: The format of the nz coeff pos relative to a macroblock.

129

The VLD-x instructions are presented subsequently. For all VLD-1, VLD-2,
VLD-3 computing units, an initialization stage is managed by the instruction:

EXECUTE 2 <INIT> Rinit → (void)

where the Register Rinit contains the initial values that are required by the de-
coding procedure at (macro)block level: coded block pattern, intra non-intra, lu-
minance chrominance, and intra vlc format. Regarding the proper variable-length
decoding task, the syntax of the VLD-1 and VLD-2 instructions are quite similar:

EXECUTE 2 <VLD 1> Ry → Rz, Rw

EXECUTE 2 <VLD 2> Ry, Ryy → Rz, Rw

The registers Ry and Ryy contain the incoming coded string which has been
aligned to start with the current, respectively previous codeword. Their common
format is disclosed in Table 6.15. The run (or alternatively, nz coeff pos), and
the level for both current and previous codeword are each represented on a 16-bit
signed integer, and stored together as a four 16-bit signed integer vector in the Rz
register, as presented in Table 6.17. Even though run (or nz coeff pos) is always
a positive number that can be represented on 6 bits (10 bits for nz coeff pos), our
solution is more effective since it avoids type casting for splitting the Rz vector into
its components. Indeed, a single TriMedia–CPU64 cycle is needed to extract an el-
ement from a vector. The register Rw is an eight 8-bit unsigned integer vector and
contains the code-lengths of the current and next codewords, block index-es as-
sociated to current and previous codewords, as well as control information for the
previous and current codewords (Table 6.18). We decided to provide for redundant
control information such as error, valid decode, and EOB flags, in order to help
the entropy decoder’s calling routine to deal with error concealment [53, 70, 44].
A global exit flag which is set up when any exit condition is encountered is also
provided.

130

Ta
bl

e
6.

15
:

V
L

D
-2

–
T

he
fo

rm
at

of
th

e
fir

st
ar

gu
m

en
t

re
gi

st
er

–
R

y
(u
i
n
t
6
4)

.

Fi
el

d
na

m
e

A
cr

on
ym

W
id

th
Po

si
tio

n
Ty

pe
R

an
ge

D
es

cr
ip

tio
n

(b
it)

(b
it)

(T
ri

M
ed

ia
)

V
L

C
st

ri
ng

–
64

6
3

..
.0

u
i
n
t
6
4

n.
a.

T
he

V
L

C
st

ri
ng

fo
r

th
e

cu
rr

en
t

an
d

ne
xt

co
de

w
or

ds

Ta
bl

e
6.

16
:

V
L

D
-2

–
T

he
fo

rm
at

of
th

e
se

co
nd

ar
gu

m
en

t
re

gi
st

er
–

R
yy

(u
i
n
t
6
4)

.

Fi
el

d
na

m
e

A
cr

on
ym

W
id

th
Po

si
tio

n
Ty

pe
R

an
ge

D
es

cr
ip

tio
n

(b
it)

(b
it)

(T
ri

M
ed

ia
)

V
L

C
st

ri
ng

–
64

6
3

..
.0

u
i
n
t
6
4

n.
a.

T
he

V
L

C
st

ri
ng

fo
r

th
e

pr
ev

io
us

co
de

w
or

d

Ta
bl

e
6.

17
:

V
L

D
-2

–
T

he
fo

rm
at

of
th

e
re

zu
lt

re
gi

st
er

R
z

(v
e
c
6
4
s
h)

.

Fi
el

d
na

m
e

A
cr

on
ym

W
id

th
Po

si
tio

n
Ty

pe
R

an
ge

D
es

cr
ip

tio
n

(b
it)

(b
its

)
(T

ri
M

ed
ia

)

le
ve

l
of

th
e

l
e
v
e
l
p

1
6

6
3

..
.4

8
i
n
t
1
6

...
pr

ev
io

us
co

de
w

or
d

ru
n

or
r
u
n
p

1
6

4
7

..
.3

2
i
n
t
1
6

0
..

.6
3

N
eg

at
iv

e
va

lu
es

,e
.g

.,
-6

5,
53

6,
ca

n
be

us
ed

nz
co

ef
f

po
s

of
th

e
n
z
c
o
e
f
f
p
o
s
p

fo
r

si
gn

al
in

g
sp

ec
ia

lc
on

di
tio

ns
pr

ev
io

us
co

de
w

or
d

0
..

.3
8
3

le
ve

l
of

th
e

l
e
v
e
l
c

1
6

3
1

..
.1

6
i
n
t
1
6

cu
rr

en
tc

od
ew

or
d

ru
n

or
r
u
n
c

1
6

4
7

..
.3

2
i
n
t
1
6

0
..

.6
3

N
eg

at
iv

e
va

lu
es

,e
.g

.,
-6

5,
53

6,
ca

n
be

us
ed

nz
co

ef
f

po
s

of
th

e
n
z
c
o
e
f
f
p
o
s
c

fo
r

si
gn

al
in

g
sp

ec
ia

lc
on

di
tio

ns
cu

rr
en

tc
od

ew
or

d
0

..
.3

8
3

131

Ta
bl

e
6.

18
:

V
L

D
-2

–
T

he
fo

rm
at

of
th

e
re

zu
lt

re
gi

st
er

R
w

(v
e
c
6
4
u
b)

.

Fi
el

d
na

m
e

A
cr

on
ym

W
id

th
Po

si
tio

n
Ty

pe
R

an
ge

D
es

cr
ip

tio
n

(b
it)

(b
it)

(T
ri

M
ed

ia
)

co
de

le
ng

th
of

c
o
d
e
L
c

8
6
3

..
.5

6
u
i
n
t
8

n.
a.

H
ig

h
va

lu
es

(2
55

,2
54

,.
..)

co
ul

d
be

us
ed

th
e

cu
rr

en
tc

od
ew

or
d

fo
r

si
gn

al
in

g
sp

ec
ia

lc
on

di
tio

ns

co
de

le
ng

th
of

c
o
d
e
L
n

8
5
5

..
.4

8
u
i
n
t
8

n.
a.

H
ig

h
va

lu
es

(2
55

,2
54

,.
..)

co
ul

d
be

us
ed

th
e

ne
xt

co
de

w
or

d
fo

r
si

gn
al

in
g

sp
ec

ia
lc

on
di

tio
ns

ta
bl

e
in

de
x

of
t
a
b
l
e
i
n
d
e
x
p

8
4
7

..
.4

0
u
i
n
t
8

n.
a.

H
ig

h
va

lu
es

(2
55

,2
54

,.
..)

co
ul

d
be

us
ed

th
e

pr
ev

io
us

co
de

w
or

d
fo

r
si

gn
al

in
g

sp
ec

ia
lc

on
di

tio
ns

ta
bl

e
in

de
x

of
t
a
b
l
e
i
n
d
e
x
c

8
3
9

..
.3

2
u
i
n
t
8

n.
a.

H
ig

h
va

lu
es

(2
55

,2
54

,.
..)

co
ul

d
be

us
ed

th
e

cu
rr

en
tc

od
ew

or
d

fo
r

si
gn

al
in

g
sp

ec
ia

lc
on

di
tio

ns

N
ot

us
ed

–
8

3
1

..
.2

4
u
i
n
t
8

n.
a.

E
x
i
t

co
nt

ro
ls

c
–

8
2
3

..
.1

6
u
i
n
t
8

va
lid

de
co

de
v
a
l
i
d
d
e
c
o
d
e
c

1
1
9

b
i
t

{0
,1
}

V
al

id
de

co
de

fo
r

th
e

cu
rr

en
t

co
de

w
or

d

er
ro

r
e
r
r
o
r
c

1
1
8

b
i
t

{0
,1
}

E
rr

or
fo

r
th

e
cu

rr
en

t
co

de
w

or
d

E
O

B
E
O
B
c

1
1
7

b
i
t

{0
,1
}

E
nd

-o
f-

bl
oc

k
fo

r
th

e
cu

rr
en

t
co

de
w

or
d

ex
it

fla
g

e
x
i
t
f
l
a
g
c

1
1
6

b
i
t

{0
,1
}

E
xi

tfl
ag

fo
r

th
e

cu
rr

en
t

co
de

w
or

d

E
x
i
t

co
nt

ro
ls

p
–

8
1
5

..
.8

u
i
n
t
8

va
lid

de
co

de
v
a
l
i
d
d
e
c
o
d
e
p

1
1
1

b
i
t

{0
,1
}

V
al

id
de

co
de

fo
r

th
e

pr
ev

io
us

co
de

w
or

d

er
ro

r
e
r
r
o
r
p

1
1
0

b
i
t

{0
,1
}

E
rr

or
fo

r
th

e
pr

ev
io

us
co

de
w

or
d

E
O

B
E
O
B
p

1
9

b
i
t

{0
,1
}

E
nd

-o
f-

bl
oc

k
fo

r
th

e
pr

ev
io

us
co

de
w

or
d

ex
it

fla
g

e
x
i
t
f
l
a
g
p
1

1
8

b
i
t

{0
,1
}

E
xi

tfl
ag

fo
r

th
e

pr
ev

io
us

co
de

w
or

d

G
l
o
b
a
l
E
x
i
t

fla
g

–
8

7
..

.0
u
i
n
t
8

{0
,1
}

Si
gn

al
s

ex
it

co
nd

iti
on

.
It

s
le

as
t-

si
gn

ifi
ca

nt

po
si

tio
n

al
lo

w
s

it
to

be
us

ed
as

gu
ar

di
ng

gl
ob

al
ex

it
fla

g
g
l
o
b
a
l
e
x
i
t

1
1

b
i
t

{0
,1
}

132

The same strategy to pack run/nz coeff pos and level values into a four 16-bit
signed integer vector is no longer possible in the VLD-3. Since there are too many
values which have to be returned by the VLD-3 call (three runs/nz coeff pos, three
levels, three code-lengths, three block indexes for the EOMB class, as well as the
control information), the only possible solution to pack them in a 64-bit word is to
cross the boundaries between bytes. Thus, field extraction will be performed by a
sequence of mask, shift and OR operations. Consequently, at least three TriMedia–
CPU64 cycles instead of a single one will be needed.

As mentioned, the reference for evaluating the performance of FPGA–based
VLDs is a pure software entropy decoder [99]. In order to decrease the number
of instruction cycles needed for entropy decoding, quite large look-up tables are
used for this reference implementation. For example, a 211-entry table is used for
decoding an Intra DC coefficient; that is, an Intra DC coefficient is decoded in a
single memory access. However, the performance evaluation of the pure software
entropy decoder has been done assuming that, despide of the large look-up tables
which are stored into memory, the standard TriMedia–CPU64 will never cope with
a cache miss. In other words, we compare the FPGA-augmented TriMedia with an
“ideal-cache” standard TriMedia–CPU64. It is worth mentioning here that only an
end-of-block exit condition can be generated by looking-up into memory. Thus,
this reference implementation will generate figures only for the EOB class.

By running our pure software entropy decoder on a TriMedia–CPU64 cycle
accurate simulator over a set of MPEG-conformance bit-streams, we determined
that 16.9 cycles/coefficient instead of 21.3 cycles/coefficient claimed by Pol [82]
are needed to decode a symbol. Moreover, 4 out of 5 issue slots are filled in with
operations (by comparison, we mention that 2.9 out of 5 issue slots are filled in
with operations in Pol’s implementation). This result that updates our initial as-
sumption about the efficiency of the pure software implementation [96] is indeed a
challenging reference for TriMedia–CPU64+FPGA hybrid.

The testing database for our entropy decoder consists of a number of pre-
processed MPEG–conformance strings, or scenes, from which all the data not rep-
resenting DCT coefficients have been removed. Therefore, such strings include
only run-level and end-of-block symbols. All pure software, VLD-1–, VLD-2–,
and VLD-3–based entropy decoders were run on the TriMedia–CPU64 cycle accu-
rate simulator over each of the modified MPEG string. The best results for each en-
tropy decoder with respect to all experimental classes and strategies are presented
in Table 6.19. The figures indicate the number of instruction cycles needed to de-
code the pre-processed MPEG string. The last column of the table specifies the
relative improvement of the most performant FPGA–based entropy decoder, i.e.,
VLD-2–based entropy decoder with grafting, over its pure software counterpart.

133

Ta
bl

e
6.

19
:

E
nt

ro
py

de
co

di
ng

ex
pe

ri
m

en
ta

lr
es

ul
ts

.

Sc
en

e
B

lo
ck

W
or

kl
oa

d
P

ur
e

so
ft

w
ar

e
V

L
D

-1
–b

as
ed

V
L

D
-2

–b
as

ed
V

L
D

-2
–b

as
ed

V
L

D
-3

–b
as

ed
A

bs
ol

ut
e

Im
pr

ov
em

en
t

ty
pe

(t
he

re
fe

re
nc

e)
w

/o
gr

af
tin

g
w

/o
gr

af
tin

g
w

it
h

gr
af

ti
ng

w
/o

gr
af

tin
g

pe
rf

or
m

an
ce

ve
rs

us
pu

re

(*
.m

2v
)

(c
oe

f.
)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
/c

oe
ff

.)
so

ft
w

ar
e

ba
tm

an
I

(B
15

)
17

2,
74

5
2,

84
3,

37
6

2,
05

0,
69

3
1,

61
8,

65
6

1,
38

2,
21

7
1,

79
9,

03
2

8.
0

52
.2

%

N
I

26
6,

48
5

4,
59

2,
35

8
3,

11
2,

24
9

2,
53

4,
07

2
2,

17
1,

24
5

2,
76

8,
63

8
8.

1

po
pp

le
n

I
(B

15
)

47
,0

03
77

7,
55

3
54

6,
24

3
43

5,
11

4
36

8,
81

3
47

4,
28

1
7.

8
51

.3
%

N
I

28
,0

69
47

5,
32

6
37

9,
46

6
27

5,
75

3
24

0,
80

1
30

1,
55

2
8.

6

sa
rn

of
f2

I
(B

14
)

80
,5

63
1,

38
7,

48
9

94
6,

53
8

74
8,

84
4

63
5,

64
6

82
2,

25
3

7.
9

50
.5

%

N
I

36
,4

08
57

7,
38

8
48

5,
58

5
37

5,
55

8
33

7,
39

3
41

2,
65

9
9.

3

te
nn

is
I

(B
14

)
12

,3
45

21
0,

01
1

14
9,

36
6

11
8,

94
3

10
3,

05
2

13
1,

28
4

8.
3

51
.1

%

I
(B

15
)

12
0,

75
4

1,
93

7,
80

8
1,

42
1,

49
8

1,
10

9,
46

6
93

7,
62

5
1,

24
8,

81
5

7.
8

N
I

13
7,

75
6

2,
52

7,
39

5
1,

79
5,

62
8

1,
41

6,
23

4
1,

24
7,

30
1

1,
59

7,
22

9
9.

1

ti
1c

he
er

I
(B

15
)

80
,8

18
1,

31
1,

68
7

97
0,

90
4

74
9,

38
6

63
6,

66
1

82
3,

35
0

7.
9

49
.3

%

N
I

51
,6

80
83

6,
08

2
66

7,
41

7
51

2,
38

9
45

2,
26

7
57

3,
79

9
8.

8

134

The main conclusion that one can draw from Table 6.19 is that a VLD-2 com-
puting resource leads to the most efficient entropy decoding in terms of instruction
cycles, the relative improvement being greater than 50%. According to our sim-
ulations, a more complex VLD, specifically VLD-3, does not lead to further im-
provements, and actually it diminishes the overall efficiency of the entropy decoder.
Another interesting conclusion is that grafting is a very effective optimization tech-
nique, accounting for about 8 out of the total 50 percent of the improvement. Other
implementation tricks, such as excluding the accumulator from the critical path of
the VLD feedback as proposed by Sun [102], provides only a small improvement
(less than 0.5%); therefore, such techniques will not be considered any more.

Comparing the figures of the EOB experiment class with the figures of EOMB
class is a little unfair from the EOMB point of view, for more functionality is
considered in the later class. Since the entropy decoder delivers the entire mac-
roblock on completion in the EOMB class, and only an 8 × 8 block in EOB class,
macroblock reconstruction is not carried out in EOB experiment class. Since this
extra functionality for managing macroblock reconstruction is subject to optimiza-
tions at a complete MPEG decoder level, this is the best we can do for the time
being. Therefore, we proceed to a conservative evaluation, accept this unfair com-
parison, and claim that the FPGA-augmented TriMedia–CPU64 can perform en-
tropy decoding 50% faster than the standard TriMedia–CPU64. Given the fact that
TriMedia–CPU64 is a 5 issue-slot VLIW processor with 64-bit datapaths and a
very rich multimedia instruction set, such an improvement within the target media
processing domain indicates that the hybrid TriMedia–CPU64 + FPGA is a feasible
approach for entropy decoding.

It is also worth mentioning that the absolute performance of the VLD-2–based
entropy decoder ranges between 7.8 ÷ 9.1 cycles/coefficient. This is a very good
result with respect to 33 cycles/coefficient needed for variable-length decoding on
a Pentium processor with MultiMedia eXtension (MMX) claimed by Ishii et. al
[55], and 26.0 cycles/coefficient achieved on a TMS320C80 media video processor
by Bonomini et. al [12].

In the last experiment, we assume that the VLD-2 computing unit is imple-
mented on dedicated hardware instead of FPGA. Since the delay on the FPGA
interconnection network does not exist in an hardwired circuitry, we make a con-
servative assumption that the latency of the hardwired VLD-2 is half of the FPGA–
based VLD-2. That is, 6/2 = 3 TriMedia@200 MHz cycles is the VLD-2 delay
on dedicated hardware. By adding one cycle for each of the read-in and write-back
stages mentioned in Chapter 3, the hardwired VLD-2 latency ranges between 4 and
5 TriMedia@200 MHz cycles.

135

Ta
bl

e
6.

20
:

R
el

at
iv

e
ef

fic
ie

nc
y

of
a

ha
rd

w
ir

ed
V

L
D

-2
.

Sc
en

e
B

lo
ck

W
or

kl
oa

d
F

P
G

A
H

ar
dw

ir
ed

A
bs

ol
ut

e
Im

pr
ov

em
en

t
H

ar
dw

ir
ed

A
bs

ol
ut

e
Im

pr
ov

em
en

t

ty
pe

V
L

D
-2

–b
as

ed
V

L
D

-2
–b

as
ed

pe
rf

or
m

an
ce

ve
rs

us
FP

G
A

V
L

D
-2

–b
as

ed
pe

rf
or

m
an

ce
ve

rs
us

FP
G

A

(l
at

en
cy

=
8)

(l
at

en
cy

=
5)

(l
at

en
cy

=
4)

(*
.m

2v
)

(c
oe

f.
)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
/c

oe
ff

.)
(c

yc
le

s)
(c

yc
le

/c
oe

ff
.)

ba
tm

an
I

(B
15

)
17

2,
74

5
1,

38
2,

21
7

1,
10

8,
57

3
6.

4
19

.7
%

1,
01

9,
33

8
5.

9
26

.1
%

N
I

26
6,

48
5

2,
17

1,
24

5
1,

74
3,

67
0

6.
5

1,
60

4,
95

8
6.

0

po
pp

le
n

I
(B

15
)

47
,0

03
36

8,
81

3
29

5,
65

4
6.

3
19

.7
%

27
1,

60
7

5.
8

26
.2

%

N
I

28
,0

69
24

0,
80

1
19

3,
68

9
6.

9
17

8,
49

5
6.

4

sa
rn

of
f2

I
(B

14
)

80
,5

63
63

5,
64

6
50

9,
55

1
6.

3
19

.7
%

46
8,

26
6

5.
8

26
.0

%

N
I

36
,4

08
33

7,
39

3
27

2,
22

8
7.

5
25

1,
75

8
6.

9

te
nn

is
I

(B
14

)
12

,3
45

10
3,

05
2

82
,9

03
6.

7
19

.5
%

76
,3

95
6.

2
25

.8
%

I
(B

15
)

12
0,

75
4

93
7,

62
5

75
0,

87
3

6.
2

68
9,

37
4

5.
7

N
I

13
7,

75
6

1,
24

7,
30

1
93

1,
28

7
6.

8
1,

59
7,

22
9

9.
1

ti
1c

he
er

I
(B

15
)

80
,8

18
63

6,
66

1
51

0,
22

5
6.

3
19

.7
%

46
8,

78
2

5.
8

26
.1

%

N
I

51
,6

80
45

2,
26

7
36

4,
08

7
7.

0
33

6,
00

9
6.

5

136

The experimental results for the hardwired VLD-2–based entropy decoder are
presented in Table 6.20. As it can be observed, the improvement of the hardwired
VLD-2–based solution over FPGA–based solution is rather small, being about
19.6% for a VLD-2 latency of 5, and 26.0% for a VLD-2 latency of 4 TriMe-
dia@200 MHz cycles. We have to note that such a small improvement is not a
good trade-off for loosing the flexibility provided by the reconfigurable hardware.

6.6 Conclusion

In this chapter we investigated Entropy Decoding, and proposed a reconfigurable
design for this function on ρ–TriMedia. Essentially, we proposed a strategy to par-
tially break the data dependency related to variable-length decoding, and showed
that a VLD-2 operation that returns two variable-length symbols per call leads to
the most efficient entropy decoder in terms of instruction cycles.

In particular, we described an implementation of the VLD-2 computing unit
on the reconfigurable hardware. We showed that, with the exception of a firing-up
call, trully two-symbol decoding can be achieved for the subsequent calls, while
the VLD-2 complexity remains resonable low. By writing VHDL code, followed
by placement and routing, we determined that the VLD-2 computing unit has a
latency of 8 TriMedia@200 MHz cycles, and occupies all electronic-array blocks
and 51% of the logic cells of an ACEX EP1K100 FPGA.

A significant effort has also been made to improve the pure-software entropy
decoder. The result of 16.9 cycles/symbol is, to the best of our knowledge, is better
than those claimed in the literature. By configuring the VLD-2 computing unit on
the reconfigurable hardware, and by unrolling the software pipeline loop calling
VLD-2, the performance of the reconfigurable entropy decoder ranges from 7.8
to 9.1 cycles/symbol, which translates to a 50% improvement in terms of instruc-
tion cycles. That is, a 2× speed-up with respect to the pure-software solution is
achieved on ρ–TriMedia.

As a final remark we would like to emphasize that our results are particularly
important since both VLD and RLD are sequential tasks. Due to data dependency,
entropy decoding is an intricate function on TriMedia–CPU64, since a VLIW ar-
chitecture must benefit from instruction-level paralellism in order to be efficient.

In the chapter to follow we will bring together the IDCT, IQ, and Entropy
Decoder reconfigurable designs, and establish the gains in performance for a pel
reconstruction application.

137

138

Chapter 7

Pel Reconstruction

P
el reconstruction represents the joined task of header parsing, entropy de-
coding, inverse quantization, and IDCT. In this chapter, we show that signif-
icant improvement over a pure-software solution is possible on ρ–TriMedia

for this application. Essentially, we assume that each of the reconfigurable designs
proposed in the previous three chapters is configured on a different FPGA context,
and the contexts are activated during computation as needed. With such reconfig-
urable hardware support, we establish the gain in performance when performing
MPEG2-compliant pel reconstruction.

The chapter is organized as follows. For background purpose, we present the
most important issues related to pel reconstruction in Section 7.1. Section 7.2
describes the execution scenario of the pel reconstruction task, which is the most
appropriate on a TriMedia–based computing platform. Experimental results are
presented in Section 7.3. Section 7.4 completes the chapter with some conclusions
and closing remarks.

7.1 Pel reconstruction theoretical background

As mentioned, we focus on MPEG decoding in this dissertation. In particular, we
aim to speed-up parts of the MPEG decoding task that are computing intensive.
Several details of the MPEG standard that are important in the economy of this
chapter are provided subsequently.

From the syntax point of view, an MPEG video sequence is an ordered stream
of bits, which is structured hierarchically on layers. Each layer provides a wrapper
around the encompassed layer, which is defined within a bit-field referred to as

139

header. A video sequence includes a series of Groups of Pictures (GOP’s). A GOP
is divided into a series of pictures (frames), which always begins with an Intra-
coded picture (I-picture) followed by an arrangement of Forward Predictive-coded
pictures (P-pictures), and Bidirectionally Predicted pictures (B-pictures). A pic-
ture is further subdivided into slices, which is the smallest MPEG unit that can be
independently decoded. A slice is composed of a series of macroblocks, and a mac-
roblock is composed of 6 or fewer blocks (4 for luminance and 2 for chrominance1)
and possibly motion vectors.

From a semantics point of view, five major stages can be distinguished in
the MPEG decoding process: header parsing, Entropy Decoding (which is com-
posed of Variable-Length Decoding, inverse zig-zag, and Run-Length Decoding),
Inverse Quantization, IDCT, and motion compensation. In essence, header pars-
ing searches for particular bit patterns in the incoming MPEG string, and then
extracts different fields of the MPEG strings according to these bit patterns. Thus,
header parsing is a control-dominant task, and is to be executed within the standard
TriMedia instruction set. On the other hand, motion compensation is basically a
memory-dominant task, the required arithmetic being a simple 16-bit signed ad-
dition per pixel. Consequently, it is also likely not to be subject for acceleration
by means of reconfigurable logic. Thus, all the above mentioned stages but motion
compensation are considered during the subsequent experiment. The joined task of
these stages is generally referred to as Pel Reconstruction [70], which is outlined
subsequently.

The pel reconstruction process is depicted in Figure 7.1. First, the headers at
video sequence layer downto macroblock layer are decoded and various symbols
are extracted: decoding parameters (e.g., macroblock address increment, quan-
tizer scale code, intra dc precision), and motion values. The motion values are
used by the motion compensation process which is not considered here. However,
since these values are decoded during header parsing, the overhead associated with
the decoding of the motion values will be taken into consideration in the subse-
quent experiment. After header parsing, the MPEG string still contains composite
symbols (run/level pairs and end of block), which are decoded by the Variable-
Length Decoder (VLD). Then, the Run-Length Decoder (RLD) recreates the 8× 8
matrices that include DCT quantized coefficients. Next, using a quantization table
and a quantizer scale, an inverse quantization (IQ) is performed on each DCT co-
efficients. Finally, after the DC prediction unit reconstructs the DC coefficient in
intra-coded macroblocks, an IDCT is carried out.

1Luminance is the monochrome reprezentation of the signal, while chrominance provides the
color information for the video.

140

����
����
����
����
����
����

����
����
����
����
����
����

Intra select

DCT

quantizer_scale_code
quantization table AC coefficients

reconstruction
8x8 matrix

Run−Length Decoder)
(Inverse Zig−Zag,

quantized
coeff.

motion values

Pel reconstruction
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

DC
coef.

DC
pred.

���
���
���
���
���
���

���
���
���
���
���
���

macroblock_address_increment

IDCTInv
Q

Controller

Variable−Length
Decoder

string

of pels
8x8 blocks

MPEG

Figure 7.1: Pel reconstruction conceptual diagram – adapted from [70].

In connection with Figure 7.1 and the subsequent experiment, we would like to
mention that the variable-length decoder, inverse quantizer, and IDCT (which are
marked with gray in the figure) benefit from reconfigurable hardware support, each
being configured on an FPGA context. In the next section we will analyse the pel
reconstruction execution scenario.

7.2 Pel reconstruction implementation on ρ–TriMedia

In order to determine the potential impact on performance provided by the
multiple-context reconfigurable core, we will consider the MPEG2 Pel Reconstruc-
tion as benchmark. As mentioned in Section 7.1, it consists of Entropy Decoding,
Inverse Quantization, 1-D IDCT, and some extra tasts (header parsing, decoding of
motion vectors, etc.). Our experiment includes two approaches: pure software and
FPGA-based. Regarding the first approach, we would like to remind that a DCT
coefficient can be decoded in 16.9 cycles [99]. Also, a pure software implemen-
tation of the 2-D IDCT can be scheduled in 56 cycles [113]. Inverse quantization
takes 39 cycles per intra block and 52 cycles per non-intra block.

In the FPGA-based approach, the VLD, IQ, and IDCT functions benefit from
reconfigurable hardware support. As depicted in Figure 7.2, each and every of the
mentioned functions is replaced by a group of three instructions: SET CONTEXT,
ACTIVATE CONTEXT, and EXECUTE. Due to the large off-chip reconfiguration pe-
nality, all the contexts of the RFU are configured at application load time, i.e.,
a number of SET CONTEXT instructions are scheduled on the top of the program
code. During the program execution, the VLD-2, IQ-4, and 1-D IDCT computing
units are activated by ACTIVATE CONTEXT instructions as needed. As mentioned
in Chapter 3, the context switching penality is 100 cycles.

141

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

SET_CONTEXT VLD

. . .

. . .

Quantization

SET_CONTEXT IQ

. . .

2−D IDCT

SET_CONTEXT 1−D IDCT

Inverse

SET_CONTEXT IQ
ACTIVATE_CONTEXT IQ
EXECUTE (IQ)

SET_CONTEXT 1−D IDCT
ACTIVATE_CONTEXT 1−D IDCT
EXECUTE (1−D IDCT)

ACTIVATE_CONTEXT VLD
EXECUTE (VLD)

SET_CONTEXT VLD

. . .

ACTIVATE_CONTEXT VLD

. . .

ACTIVATE_CONTEXT 1−D IDCT

Entropy

. . .

Decoder
Entropy

Decoder

Quantization
Inverse

. . .

2−D IDCT

. . .

ACTIVATE_CONTEXT IQ

SW IQ

SW VLD

SW 1−D IDCT EXECUTE (1−D IDCT)

EXECUTE (IQ)

EXECUTE (VLD)

Figure 7.2: The pieces of code that benefit from FPGA support.

An MPEG-compliant program has been written in C, and compiled with Tri-
Media development tools. The performance evaluation has been done assuming
that, despite of the large VLC tables that are stored into memory, the standard Tri-
Media will never encounter a cache miss when accessing these tables. In other
words, we compare a multiple-context FPGA-augmented TriMedia with an “ideal-
cache” standard TriMedia (considered from the VLC look-up perspective, since
compulsory and trashing cache misses are still counted for both systems).

The testing database for our entropy decoder consists of a number of five Main
Profile - Main Level (MP@ML) MPEG-2 conformance bit strings. For all experi-
ments, the incoming string is assumed to be entirely resident into the main memory.
In this way, side effects associated with string acquisition (such as asynchronous
interrupts, trashing routines, or other operating system related tasks) do not have
to be counted. With this assumption, the only relevant metric is the number of the
instruction cycles required to perform MPEG decoding plus the overhead that will
be discussed subsequently. Thus, the main goal is to minimize this number.

In the previous section, we outlined a reconfigurable Entropy Decoder that can
decode a DCT coefficient in 8 ÷ 9 cycles, a reconfigurable Inverse Quantizer and
a 2-D IDCT, each of them having a throughput of one 8× 8 block every 32 cycles.
With these reconfigurable designs, different implementations of the pel reconstruc-
tion task can be envisioned. The efficiency of each implementation has to be eval-
uated against the overhead of firing-up and flushing the IQ and IDCT pipelines, the
compulsory cache misses, and the FPGA context-switching penalty. Processing
large batches of blocks translates into a low pipeline firing-up/flushing overhead
and low context-switching penalty but high cache-miss penalty. A way to vary the

142

batch size while the MPEG decoding syncronization is ensured is to carry out the
decoding process at different levels: macroblock, slice, and picture/frame. Thus,
to assess the performance for different batch sizes, the pel reconstruction task has
been analysed according to three computing scenarios, as depicted in Figure 7.3:

COMPLETED ?

YES

NO

MB

P/F
S YES

COMPLETED ?

Entropy
Decoding Quantization

Inverse

Computing scenario selector: macroblock (MB), slice (S), or picture/frame (P/F)

MB

P/F
S YES

NO

COMPLETED ?

MB

P/F
S

NO

8x8 IDCT

Figure 7.3: Three possible computing scenarios of pel reconstruction.

That is, the variable-length decoding is performed till an entire mac-
roblock/slice/picture is fully extracted, and only then the IQ and IDCT are carried
out for all blocks in the macroblock/slice/picture, respectively.

Assuming that pel reconstruction is carried out at macroblock level, the av-
erage number of blocks per macroblock is 3.1 for B-type pictures, 4.3 for P-type
pictures, and 6.0 for I-type pictures (Table 7.1). For example, given the fact that the
overhead to fire-up the 2-D IDCT software pipeline is 20 cycles, as we presented
in Chapter 4), 84 + 2 × 64 = 212 cycles are needed to compute 2-D IDCT for
an entire intra-coded macroblock, which translates to an average of 212/6 = 35.5
cycles/block (11% performance degradation versus the ideal 32 cycles/block). The
performance degrades even further for non-intra-coded macroblocks. When the
number of blocks is odd, the last 2-D IDCT completes in 45 cycles instead of 32,
giving a total of 84+45 = 129 cycles for the average of 3 blocks in a B-coded mac-
roblock. This translates to 43 cycles/block (34% performance degradation versus
the ideal 32 cycles/block).

On the other side, processing a very large number of blocks to minimize the
overhead associated to firing-up the pipelines implies that trashing cache misses
are encountered when the blocks are read from and written back to the main mem-
ory. Even for the smallest average number of blocks per frame, which is equal to
573 in the popplen scene (Table 7.1), a data cache of 573 × 64 × 2 = 72 KB is
needed to avoid trashing cache misses after entropy decoding. Such a data cache is
much larger than the current TriMedia cache (16 KB or 32 KB). Thus, assuming a
medium penalty of 11 cycles per cache miss, an overhead of 16 words×11 cycles =
176 cycles for reading a block is generated, and, therefore, all the performance im-
provement provided by the reconfigurable design is lost.

143

Ta
bl

e
7.

1:
M

P
E

G
-2

st
at

is
ti

cs
fo

r
se

ve
ra

lc
on

fo
rm

an
ce

bi
t-

st
ri

ng
s

–
ex

ce
rp

t
fr

om
T

ab
le

A
.2

.

Sc
en

e
B

lo
ck

s/
m

ac
ro

bl
oc

k
B

lo
ck

s/
sl

ic
e

B
lo

ck
s/
{p

ic
tu

re
,f

ra
m

e}
M

ac
ro

bl
oc

ks
w

ith
bl

oc
ks

/s
lic

e
C

od
ed

m
ac

ro
bl

oc
ks

/s
lic

e
Sl

ic
es

/{
pi

ct
ur

e,
fr

am
e}

I
P

B
I

P
B

I
P

B
I

P
B

I
P

B
I

P
B

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
µ

µ
ba

tm
an

–
–

5.
7

0.
2

5.
2

0.
3

–
–

25
7

9
23

4
14

–
–

92
36

23
6

84
32

25
8

–
–

45
0

45
0

–
–

45
0

45
0

–
36

36
po

pp
le

n
6.

0
0

3.
7

0.
9

3.
1

1.
4

26
4

0
80

33
38

27
39

60
0

12
02

19
8

57
3

93
44

0
22

8
11

5
44

0
44

0
42

5
15

15
15

sa
rn

of
f2

6.
0

0
4.

1
0.

5
2.

4
0.

4
27

0
0

17
1

26
61

23
81

00
0

51
20

0
18

23
26

45
0

42
3

24
7

45
0

44
1

45
1

30
30

30
te

nn
is

6.
0

0
4.

0
0.

4
2.

2
0.

5
26

4
0

16
7

27
71

32
95

04
0

59
97

22
1

25
63

71
8

44
0

41
5

31
10

44
0

43
3

44
1

36
36

36
ti

1c
he

er
6.

0
0

4.
1

0.
7

2.
8

0.
7

26
4

0
15

5
56

88
45

79
20

0
44

81
0

13
24

62
44

0
36

11
29

11
44

0
38

10
34

11
30

30
15

A
ve

ra
ge

6.
0

–
4.

3
–

3.
1

–
26

6
–

16
6

–
98

–
n/

a
–

n/
a

–
n/

a
–

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

Ta
bl

e
7.

2:
T

ot
al

nu
m

be
r

of
bl

oc
ks

,m
ac

ro
bl

oc
ks

,s
lic

es
,a

nd
pi

ct
ur

es
/f

ra
m

es
fo

r
se

ve
ra

lM
P

E
G

-2
co

nf
or

m
an

ce
sc

en
es

–
ex

ce
rp

t
fr

om
T

ab
le

A
.1

.

Sc
en

e
B

lo
ck

s
M

ac
ro

bl
oc

ks
w

ith
bl

oc
ks

C
od

ed
m

ac
ro

bl
oc

ks
Sl

ic
es

{P
ic

tu
re

s,
Fr

am
es
}

I
P

B
To

ta
l

I
P

B
To

ta
l

I
P

B
To

ta
l

IP
B

IP
B

ba
tm

an
0

36
,9

43
25

,2
95

62
,2

38
0

6,
47

3
4,

84
7

11
,3

20
0

6,
48

0
4,

86
0

11
,3

40
25

2
7

(7
+

0)
po

pp
le

n
3,

96
0

3,
60

6
1,

14
5

8,
71

1
66

0
97

0
33

8
1,

96
8

66
0

1,
98

0
1,

24
7

3,
88

7
90

3
(0

+
6)

sa
rn

of
f2

8,
10

0
5,

12
0

3,
64

5
16

,8
65

1,
35

0
1,

25
8

1,
46

8
4,

07
6

1,
35

0
1,

33
2

2,
67

1
5,

35
3

12
0

4
(4

+
0)

te
nn

is
9,

50
4

17
,9

92
10

,2
50

37
,7

46
1,

58
4

4,
45

7
4,

45
0

10
,4

91
1,

58
4

4,
62

5
6,

30
5

12
,5

14
28

8
8

(8
+

0)
ti

1c
he

er
7,

92
0

4,
48

1
5,

27
5

17
,6

76
1,

32
0

1,
04

9
1,

72
2

4,
09

1
1,

32
0

1,
10

6
2,

04
5

4,
47

1
12

0
4

(2
+

4)

144

Ta
bl

e
7.

3:
C

ac
he

m
is

s
pe

na
lt

y,
F

P
G

A
co

nt
ex

t
sw

it
ch

in
g

ov
er

he
ad

,a
nd

pi
pe

lin
e

fir
e-

up
+

flu
sh

in
g

ov
er

he
ad

fo
r

di
ff

er
-

en
tc

om
pu

ti
ng

sc
en

ar
io

s.

Sc
en

e
M

ac
ro

bl
oc

k
le

ve
l

Sl
ic

e
le

ve
l–

16
K

B
D

at
a

ca
ch

e
(D

$)
Sl

ic
e

le
ve

l–
32

K
B

D
at

a
ca

ch
e

(D
$)

Pi
ct

ur
e/

Fr
am

e
le

ve
l

D
$

m
is

se
s

FP
G

A
pi

pe
lin

e
To

ta
l

D
$

m
is

se
s

FP
G

A
pi

pe
lin

e
To

ta
l

D
$

m
is

se
s

FP
G

A
pi

pe
lin

e
To

ta
l

D
$

m
is

se
s

FP
G

A
pi

pe
lin

e
To

ta
l

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

ba
tm

an
1,

36
9,

23
6

3,
39

6,
00

0
41

2,
62

4
5,

17
7,

86
0

2,
68

8,
44

4
75

,6
00

8,
88

0
2,

77
2,

92
4

1,
39

5,
02

0
75

,6
00

8,
88

0
1,

47
9,

50
0

4,
10

7,
70

8
2,

10
0

26
8

4,
11

0,
07

6
po

pp
le

n
19

1,
64

2
59

0,
40

0
58

,4
06

84
0,

44
8

28
5,

05
4

27
,0

00
3,

36
8

31
5,

42
2

19
6,

92
2

27
,0

00
3,

36
8

22
7,

29
0

57
4,

92
6

1,
80

0
21

6
57

6,
94

2
sa

rn
of

f2
37

1,
03

0
1,

22
2,

80
0

10
4,

33
6

1,
69

8,
16

6
61

7,
16

6
36

,0
00

3,
77

6
65

6,
94

2
38

9,
51

0
36

,0
00

3,
77

6
42

9,
28

6
1,

11
3,

09
0

1,
20

0
11

2
1,

11
4,

40
2

te
nn

is
83

0,
41

2
3,

14
7,

30
0

23
8,

30
0

3,
38

5,
60

0
1,

23
8,

86
4

86
,4

00
9,

60
0

1,
33

4,
86

4
84

3,
08

4
86

,4
00

9,
60

0
93

9,
08

4
2,

49
1,

23
6

2,
40

0
28

8
2,

49
3,

92
4

ti
1c

he
er

38
8,

87
2

1,
22

7,
30

0
12

9,
26

0
1,

35
6,

56
0

62
5,

98
8

36
,0

00
3,

60
0

66
5,

58
8

39
9,

43
2

36
,0

00
3,

60
0

43
9,

03
2

1,
16

6,
61

6
1,

80
0

18
4

38
9,

23
6

Ta
bl

e
7.

4:
P

el
re

co
ns

tr
uc

ti
on

ex
pe

ri
m

en
ta

lr
es

ul
ts

fo
r

th
e

w
in

ni
ng

co
m

pu
ti

ng
sc

en
ar

io
.

R
ou

tin
e

E
xt

ra
ta

sk
s:

he
ad

er
pa

rs
in

g,
2-

D
ID

C
T

E
nt

ro
py

D
ec

od
in

g
In

ve
rs

e
Q

ua
nt

iz
at

io
n

Pe
na

lti
es

P
el

re
co

ns
tr

uc
ti

on
m

ot
io

n
ve

ct
or

s
de

co
di

ng
,.

..
(1

-D
ID

C
T

on
FP

G
A

)
(V

L
D

-2
on

FP
G

A
)

(I
Q

on
FP

G
A

)
ca

ch
e

FP
G

A
Sc

en
e

T
M

&
T

M
+

FP
G

A
T

M
T

M
+

FP
G

A
T

M
T

M
+

FP
G

A
T

M
T

M
+

FP
G

A
T

M
&

T
M

+
FP

G
A

T
M

+
FP

G
A

T
M

T
M

+
FP

G
A

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

(c
yc

le
s)

ba
tm

an
7,

12
2,

56
9

3,
48

5,
32

8
2,

00
0,

49
6

7,
43

5,
73

4
3,

55
3,

46
2

3,
23

6,
37

6
1,

99
7,

66
4

1,
39

5,
02

0
84

,4
80

22
,6

75
,0

27
16

,1
53

,6
91

po
pp

le
n

1,
32

8,
09

4
48

7,
81

6
28

2,
12

0
1,

25
2,

87
9

60
9,

61
4

40
1,

49
2

28
0,

91
2

19
6,

92
2

30
,3

68
3,

66
7,

20
3

2,
72

8,
03

0
sa

rn
of

f2
2,

15
3,

50
8

94
4,

44
0

54
3,

45
6

1,
96

4,
87

7
97

3,
03

9
77

1,
68

0
54

2,
56

0
38

9,
51

0
39

,7
76

6,
22

4,
01

5
4,

64
1,

84
9

te
nn

is
4,

49
5,

54
6

2,
11

3,
77

6
1,

21
7,

47
2

4,
67

5,
21

4
2,

28
7,

97
8

1,
83

9,
24

0
1,

21
4,

78
4

84
3,

08
4

96
,0

00
13

,9
66

,8
60

10
,1

54
,8

64
ti

1c
he

er
1,

70
8,

08
2

98
9,

85
6

56
9,

29
2

2,
14

7,
76

9
1,

08
8,

92
8

81
6,

19
2

56
8,

48
8

39
9,

43
2

39
,6

00
6,

06
1,

33
1

4,
37

3,
82

2

145

For each iteration that reconstructs a number of pixels, the FPGA context is
switched three times to succesively activate VLD-2, IQ-4, and 1-D IDCT. As men-
tioned, each switching takes 100 cycles. Based on the total number of macroblocks,
slices, and {pictures,frames} in an MPEG string (Table 7.2), we can determine the
penalty associated to FPGA context-switching in all three considered computing
scenarios. For example, there are 288 slices in the tennis scene; when the de-
coding is carried out at slice level, there are 3 context switches per slice, which
translates to 288×3×10 = 8, 640 cycles. A complete list of penalties is presented
in Table 7.3.

Two data cache sizes have been considered: 16 KB and 32 KB. As it can be
observed, the lowest cumulated penalty is achieved for decoding at slice level. This
winning computing scenario is presented in extenso in Figure 7.4. For each slice,
the variable-length decoding of all macroblocks (headers and DCT coefficients ex-
traction) is first performed. By software pipelining, run-length decoding is carried
out in parallel to recreate the 8 × 8 matrices. Then, all the blocks in the slice are
inverse quantized, and DC coefficient prediction for intra-coded macroblocks is
carried out. Finally, a burst of 2-D IDCTs is launched in order to complete the
reconstruction of the initial matrices of pels.

In connection with the cache miss penalty that is encountered at slice-level
decoding, we would like to mention that the number of trashing cache misses ap-
proaches to zero if a 32 KB data cache is available. The remaining penalty, e.g.,
1,395,020 cycles for the batman scene, is mostly due to the compulsory cache
misses that are encountered during entropy decoding. Assuming a data cache of
only 16 KB, a possible strategy to keep the number of trashing cache misses at low
level is to split the slice-level processing into sub-parts. This way, the decoding
will be carried out at sub-slice level. Since this issue is somehow beyond the paper
scope, we will not go into further details.

7.3 Experimental results

The experimental results for the winning computing scenario are presented in Ta-
ble 7.4. The figures indicate the number of instruction cycles needed to pro-
cess the MPEG string and the associated overhead. It has to be mentioned
that the overhead for setting-up three FPGA contexts at application load time is
3 × 1, 671, 360 = 5, 014, 080 cycles, which corresponds to about 25 miliseconds
on a TriMedia@200MHz. Since long MPEG strings (minutes, hours) are to be
decoded on FPGA-augmented TriMedia, this overhead has not been taken into
consideration.

146

START

SET VLD−2 context

SET IQ−4 context

Preprocessing

NEW SLICE
AVAILABLE ?NO

YES

(sequence & picture
header extraction, ...)

PEL RECONSTRUCTION

DC Prediction

extraction
macroblock header

NO

Entropy
Decoding

RLD

VLD−2 YES

SLICE COMPLETED ?

1−D IDCT

Transposition

YES

NO

ACTIVATE 1−D IDCT contextInverse
Quantization IQ−4

SLICE COMPLETED ?

YES

NO

ACTIVATE IQ context

8x8 IDCT

Intra Non−Intra

Motion
compensation

SET 1−D IDCT context

extraction
slice header

Our experiment:

Motion Compensation
without
Pel Reconstruction

ACTIVATE VLD−2 context

SLICE COMPLETED ?

Figure 7.4: The winning computing scenario of pel reconstruction.

In Table 7.5, the relative improvement of the FPGA-augmented TriMedia ver-
sus standard TriMedia with respect to the number of cycles is shown. For each
function that benefit from FPGA support, i.e., entropy decoding, inverse quantiza-
tion, and IDCT, only the number of instruction cycles needed to perform strictly
that particular function are considered (which is similar to assume zero overhead).
For the entire pel reconstruction task, all the overhead assuming a 32 KB data
cache is included. As it can be observed, the FPGA-augmented TriMedia can per-
form MPEG2-compliant pel reconstruction with the average improvement of 27%
in terms of cycles over the standard TriMedia.

The speed-up figures achieved on FPGA-augmented TriMedia are presented in
Figure 7.5. When VLD-2, IQ-4, and 1-D IDCT are each configured on a different
FPGA context, pel reconstruction can be computed with the average speed-up of
1.4×. Assuming that only a single-context FPGA is available, then VLD-2, IQ-
4, exclusive-or 1-D IDCT can benefit from reconfigurable hardware support. The
speed-up decreases to 1.1× when either IQ-4 or 1-D IDCT are configured on the
RFU, and to 1.2× when only VLD-2 is configured on the RFU.

147

Table 7.5: Pel reconstruction relative improvement.

Scene ba
tm

an

po
pp

le
n

sa
rn

of
f2

te
nn

is

ti1
ch

ee
r

Entropy Decoding 52.2% 51.3% 50.5% 51.1% 49.3%
(VLD-2 on FPGA)

Inverse Quantization 38.3% 30.0% 29.7% 34.0% 30.3%
(IQ-4 on FPGA)

2-D IDCT 42.6% 42.2% 42.5% 42.4% 42.5%
(1-D IDCT on FPGA)

Pel reconstruction
(VLD-2, IQ-4, 1-D IDCT on FPGA) 28.8% 25.6% 25.4% 27.3% 27.8%

1.1 x

1.2 x

1.3 x

ti1cheer
tennis

sarnoff2

popplen
scenes

1 x

1.4 x

Pel reconstruction speed−up

1−D IDCT only

IQ−4 only

VLD−2 only

VLD−2, IQ−4,
and 1−D IDCT

on FPGA:

1.34 x
1.40 x 1.39 x

batm
an
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

1.38 x1.35 x

Figure 7.5: ρ–TriMedia versus standard TriMedia speed-up.

At the end, we would like to emphasize that TriMedia is a 5-issue slot VLIW
processor with a 64-bit datapath and a very rich multimedia-oriented instruction
set [113], and such improvements have been obtained within TriMedia target me-
dia processing domain [88]. For each function that benefited from FPGA support, a
high-performance pure-software design constitutes the reference implementation:
4 out of 5 issue slots are filled in with operations in the pure-software entropy de-
coder [99], and more that 4.5 out of 5 issue slots are occupied in the pure-software
IQ and 2-D IDCT. Given the fact that additional operations per cycle cannot be
issued, providing more hardwired functional units (however, with the exception of
a hardwired 1-D IDCT) is not likely to lead to computational improvement.

Another possibility would be to eliminate existing hardwired functional units
from the processor to make extra room for the RFU. Since the host processor has
to provide for fast pointer arithmetic, a complete removal of the hardwired func-
tional units is not likely to be a viable solution. Consequently, a 32-bit adder, for

148

example, will exist almost for sure in any future processor implementation. There-
fore, a SIMD adder is also likely to exist, since a 16-bit (2-way) SIMD addition,
for example, can be implemented on a 32-bit adder by simply breaking the carry
path in the middle. However, this is still an open question and, therefore, subject
to future work.

7.4 Conclusion

In this chapter we addressed pel reconstruction and proposed a reconfigurable pel
reconstruction design for ρ–TriMedia. In particular, we analyzed pel reconstruction
according to three computing scenarios: each of the Entropy Decoding, IQ, and
IDCT routines returns only after an entire (1) macroblock, (2) slice, and (3) pic-
ture/frame is fully processed. The experimental results carried out on a TriMedia–
CPU64 cycle-accurate simulator indicated that the second scenario, i.e., processing
at slice level, is the winner. By configuring each of the VLD-2, IQ-4, and 1-D IDCT
computing units on a different FPGA context, and by activating each context once
per slice, pel reconstruction can be performed on ρ–TriMedia with a speed-up of
40% over the TriMedia-CPU64.

Since motion compensation is a memory-dominant task, the required arith-
metic being a simple addition per pixel, it is likely not to be subject to reconfig-
urable hardware support. However, this leaves the following general open question:

1. Can a memory-dominant task benefit from reconfigurable hardware support?

2. Can a control-dominant task benefit from reconfigurable hardware support?

As a final remark we would like to emphasize that our results are important
since, due to the removal of the redundancy in the signal during coding, a decoding
process is essentially a sequential task. For this reason, a decoding process is
typically an intricate function on TriMedia–CPU64, since a VLIW architecture
must benefit from instruction-level paralellism in order to be efficient.

In the next chapter we will address color space conversion. We would like to
mention that this function is not part of the MPEG decoding process. However, it
is usually carried out at the end of MPEG decoding if the video information is to
be displayed on a monitor.

149

150

Chapter 8

YCC-to-RGB Color Space Conversion

T
he back-end stage of MPEG decoding consists of a color space conversion
task, which transforms the video data representation from a luminance (Y)
and two chrominance (C) components to three color components (RGB)

usually supported by any video display. Traditionally, color space conversion has
been implemented in hardware, as a coprocessor next to a general-purpose comput-
ing engine, or in software in media-domain processors. In this chapter, we describe
a reconfigurable YCC-to-RGB design for ρ–TriMedia, and demonstrate that signif-
icant speed-up for Y ′CbCr-to-R′G′B′ color space conversion can be achieved on
FPGA-augmented TriMedia–CPU64 over standard TriMedia–CPU64.

Essentially, Y ′CbCr-to-R′G′B′ color space conversion is a linear transform
from Y ′CbCr color space to R′G′B′ color space. As we describ subsequently,
this transform exhibits large data and instruction-level parallelisms, and thus it
can be implemented on TriMedia–CPU64 with a very high efficiency. Obtaining
improvements for a task having a computational pattern which TriMedia–CPU64
has been optimised for, is a challenging task.

The chapter is organized as follows. For background purpose, we present the
most important issues related to color space conversion in Section 8.1. A pure-
software implementation of the color space conversion task is outlined in Sec-
tion 8.2. An FPGA-mapped computing unit that can perform color space conver-
sion for four pixels per call is presented in Section 8.3. The execution scenario
of the Y ′CbCr-to-R′G′B′ conversion on ρ–TriMedia, as well as experimental re-
sults are presented in Section 8.4. Section 8.5 completes the chapter with some
conclusions and closing remarks.

151

8.1 Theoretical background

According to the Trichromatic Theory, it is possible to match all of the colors in
the visible spectrum by appropriate mixing of three primary colors. Which primary
colors are used is not important as long as mixing two of them does not produce
the third. For display systems that emit light, the Red-Green-Blue (RGB) primary
system is used.

A color space is a mathematical representation of a set of colors. In this section,
we present two color spaces: R′G′B′ and Y ′CbCr.

R�G�B� color space. Film, video, and computer-generated imagery all start
with red, green, and blue intensity components. In video and computer graphics,
the nonlinearity of the CRT monitor is compensated by applying a nonlinear trans-
fer function to RGB intensities to form Gamma–Corrected Red, Green, and Blue
(R′G′B′). The gamma-corrected red, green, blue are defined on a relative scale
from 0 to 1.0, chosen such that shades of gray are produced when E′

R = E′
G = E′

B ,
where E′· denotes the analog gamma–pre-corrected signal associated with the pri-
mary X color.

In digital video, the analog signal is uniformly-quantized on 8 bits, so that 256
equally spaced quantization levels are specified. Coding range in computing has a
de facto standard excursion, 0 to 255. Studio video provides footroom below the
black code, and headroom above the white code; its range is standardized from 16
to 235. However, values less than 16 and greater than 235 are allowed in order to
accomodate the transients that result from filtering.

Y �CbCr color space. The data capacity related to color information in a video
signal can be reduced as follows. First, R′G′B′ is transformed into luminance-
related quantity called luma (Y ′), and two color difference components called
chroma (Cb, Cr) [83]. Since the human visual system has poor color acuity, the
color detail can then be reduced by subsampling (lowpass filtering) without the
viewer noticing.

The Y ′CbCr color space was developed as part of ITU-R Recommendation
BT.601 [52]. All components are represented as 8-bit unsigned integers. Y′ is
defined to have a nominal range of 16 to 235; Cb and Cr are defined to have a
range of 16 to 240, with 128 equal to zero. It is Y ′, Cb, Cr values that is coded
inside an MPEG string. It is worth mentioning that during the MPEG decoding
process, Y ′, Cb, Cr are each represented on a 16-bit signed integer after motion
compensation.

152

Y �CbCr-to-R�G�B� conversion. If the gamma-corrected RGB data has a
range of 0 to 255, as is commonly found in computer systems, the following equa-
tions describe the R′G′B′-to-Y ′CbCr conversion:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R′ = 1.164(Y ′ − 16) + 1.596(Cr − 128)
G′ = 1.164(Y ′ − 16) − 0.813(Cr − 128)

− 0.391(Cb − 128)
B′ = 1.164(Y ′ − 16) + 2.018(Cb − 128)

(8.1)

Even though Y ′ is defined to have a range from 16 to 235, while Cb and Cr
have a range of 16 to 240, sample values outside the above mentioned ranges may
occasionally occur at the output of the MPEG-2 decoding process according to
ITU-T Recommendation H.262 [53]. Thus, R′G′B′ values must be saturated at
the 0 and 255 levels after conversion to prevent any overflow and underflow errors.

With connection to the subsequent experiment, we would like to mention that
the mapping defined by Equation set 8.1 will benefit from configurable hardware
support.

Y �CbCr sampling format conversion. As mentioned, since the eye is less sen-
sitive to color information than brightness, the chroma channels can have a lower
sampling rate that the luma channel without a dramatic degradation of the per-
ceptual quality. In MPEG, 2:1 horizontal downsampling with 2:1 vertical down-
sampling is employed. That is, the Cb and Cr pixels lie between the Y′ pixels on
every other pixel on both the horizontal and vertical lines. Thus, a two-dimensional
2-fold upsampling has to be carried out before the proper color space conversion.

The simplest upsampling method

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

Figure 8.1: Two–dimensional 2–fold
upsampling by replication.

employs a zero-order hold. That is,
each and every pixel is replicated to
East, South-East, and South, as de-
picted in Figure 8.1. Consequently,
no additional processing is needed for
upsampling at the expense of a poor
frequency response characteristic. In-
deed, since the zero-order hold does
not possess a sharp cutoff–frequency
response characteristic, it is a poor

anti-image filter, and it passes undesirable image components [111].

153

The filtering process is beyond the chapter scope. Thus, we will consider that
a zero-order hold is used, although this solution does usually not provide satis-
factory image quality. Synthesizing, the following stages have to be performed in
the process of color space conversion carried out at the end of MPEG decoding:
(1) chroma upsampling, and (2) Y ′CbCr-to-R′G′B′ linear transform.

In the next section, we will present several considerations about performing
color space conversion in software. We will mainly focus on the routine orga-
nization emphasizing the optimization techniques that expose to the compiler the
available parallelism inside the color space conversion task.

8.2 YCC-to-RGB pure-software implementation

As evidenced in Algorithm 8, the pure-software color space converter consists of
three imbricated loops. The first loop iterates over the number of frames in an
MPEG scene. Since the outer loop can include additional MPEG-related code, e.g.,
motion compensation, it is subject for further optimization when an entire MPEG
decoding process is considered. Since such optimization is beyond the scope of the
chapter, it is not considered any longer.

Algorithm 8 Color space conversion – pure software solution.
1: for i = 1 to NO OF FRAMES do
2: for j = 1 to IMAGE VERTICAL SIZE step 2 do
3: for k = 1 to IMAGE HORIZONTAL SIZE step 2 do
4: READ vec64sh Y top left, vec64sh Y top right, vec64sh Y bottom left,

vec64sh Y bottom right, vec64sh Cb, vec64sh Cr
5:
6: Color space conversion (4-way SIMD style) according to Equations 8.1
7:
8: WRITE vec64ub R top, vec64ub R bottom, vec64ub G top,

vec64ub G bottom, vec64ub B top, vec64ub B bottom
9: end for

10: end for
11: end for

The inner loops iterate over the vertical, and horizontal size of the image, re-
spectively. Since the loop iterating over the vertical size include the loop iterating
over the horizontal size, while the Contor j is incremented by two each iteration,
two image rows are processed at a time. In addition, the Contor k of the inner loop
is also incremented by two each iteration. The main idea of this approach is to
avoid any interlocks across the iteration boundaries together with minimizing the
number of read-in operations with respect to the number of pixels to be converted.

154

Four luminance and two chrominance vectors, each containing four 16-bit
signed integers, are read in from memory at the beginning of the inner iteration.
With these values, two vectors for Red, two for Green, and two for Blue color, each
of them containing eight 8-bit unsigned integers, can be uniquely computed. That
is, from 4 × 4 + 4 + 4 = 24 16-bit signed integers corresponding to 16 pixels of
the image represented in the Y ′CbCr format, 2 × 8 + 2 × 8 + 2 × 8 = 48 8-bit
unsigned integers corresponding to the same 16 pixels represented in the R′G′B′

format are generated. This process is summarized in Figure 8.2.

In addition, four pix-

BGR

Cr

Cb

Color space conversion

. . .

. . .

64 bits

.

V
E

R
T

IC
A

L
_S

IZ
E

. .
. . .

. . .

HORIZONTAL_SIZE

64 bits

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.

. . .

. . .

. . .
.

. . .

Y

. . .

. . .
.

. . .

. . .

. . .

. . .
.

Figure 8.2: Color space conversion strategy for the
inner loop.

els are processed simul-
taneously by means of 4-
way SIMD-style opera-
tions. With this strat-
egy, 4.8 out of 5 is-
sue slots are filled in
with operations. That
is, the TriMedia–CPU64
runs close to its full pro-
cessing power, making
from the pure-software
implementation a chal-
lenging reference for the
reconfigurable design.

8.3 YCC-to-RGB implementation on FPGA

Since three values (red, green, and blue) are to be computed for each pixel, we pro-
pose to provide configurable-hardware support for a 3-slot CSC operation which
reads the Y ′CbCr triplet and returns the R′G′B′ triplet:

CSC Y �, Cb, Cr −→ R�, G�, B�

where Y ′, Cb,Cr,R′, G′, B′ are all 64-bit registers. Subject of the FPGA logic
capacity and the number of FPGA I/O pins, a different number of pixels can be
processed in parallel. Given the fact that the luma and chroma are represented as
16-bit signed integers, and gamma-corrected red, green, and blue are represented
as 8-bit unsigned integers, at most four pixels can be processed in parallel. Indeed,

155

the CSC is a 4-way SIMD operation which transforms three 16-bit signed integer
vectors (Y ′, Cb,Cr) into three 8-bit unsigned integer vectors (R′, G′, B′). This
translates to a number of 3 × 4 × 16 + 3 × 4 × 8 = 288 I/O pins, which is
acceptable for most FPGAs in general, and ACEX EP1K100 device in particular.

For the TriMedia–CPU64 simulator does not support super-operations on more
than 2 slots for the time being, our 3-slot CSC operation has to be emulated by
sequences of 1- and/or 2-slot operations. Thus, we define two 2-slot CSC instruc-
tions: CSC R, which performs the proper color space conversion and returns only
the red information, and CSC GB, which returns the green and blue information:

CSC R Y �, Cb, Cr −→ R�

CSC GB −→ G�, B�

We have to emphasize that this approach is carried out only for experimental
purpose. Fortunately, our choice does not generate overhead, since it is easier to
schedule a single 3-slot instruction than multiple 1- and/or 2-slot instructions.

The FPGA–based CSC unit implementing the Equation set 8.1, is presented in
Figure 8.3 (the Roman numerals indicate the pipeline stages). By writing RTL-
level VHDL code, we succeeded to identify a four-stage pipelined implementation
which can run at 100 MHz on ACEX EP1K100 device. Adding the penalty of
the extra read and write back cycles for an RFU–based operation, the CSC unit
has a latency of 10 and recovery of 2 cycles if a ρ–TriMedia instance with a core
TriMedia@200MHz and an FPGA@100MHz (i.e., an FPGA which circuits run-
ning at a frequency of maximum 100MHz can be mapped on) is considered. For
an FPGA@50MHz, two pipelines stages can be merged into one, which translates
into a CSC having the latency of 10 and recovery of 4.

8.4 YCC-to-RGB implementation on ρ–TriMedia

Summarizing the previous section, for the first ρ–TriMedia instance, a CSC com-
puting unit having the latency of 10 and recovery of 2 cycles is configured on the
FPGA@100MHz, while two CSC computing units with the latency of 10 and re-
covery of 4 cycles is configured on the FPGA@50MHz in the second ρ–TriMedia
instance. That is, a lower pipeline frequency at the expenses of a double size FPGA
is the trade-off of the second instance.

To perform color space conversion for an image, calls to CSC are issued within
a software loop. The scheduled code when the FPGA@100MHz is considered

156

unsigned

19

unsigned

(= 1.164)4a8h
11

unsigned
8

unsigned

19

unsigned

10

unsigned

unsigned

10

8

8

unsigned

17

unsigned

(= 0.813)341h
10

unsigned
8

unsigned

18

unsigned

(= 1.596)662h
11

unsigned

unsigned

10

10

unsigned

unsigned

10

+ +
unsigned

10

+

−
−

10
unsigned

unsigned
10

unsigned

unsigned

12

signed

115h

11

(= 136)

+ 12

signed

+

088h

12
unsigned

(= 223)

12

signed

+ B’

unsigned

8

G’

unsigned

8

R’8

unsigned

Clipping

Clipping

IV

Clipping

III

(= 277)

−

+

signed

16
Clipping

Cr

signed

16

Y’

signed

16

Clipping

Clipping

unsigned

8

(= 0.391)190h
9

Cb

−

0dfh

11
unsigned

unsigned

11

signed

12

unsigned

11

(= 2.018)812h
12

unsigned
20

unsigned

&
Quantization

Rounding

II

Rounding

I

&
Quantization

Rounding

&
Quantization

Rounding

&
Quantization

Rounding

&
Quantization

Figure 8.3: The color space converter implementation on FPGA.

is presented in Figure 8.4. First, LOAD operations are issued to fetch the pixels
in Y ′CbCr format from memory. Then, pairs of CSC R + CSC GB operations are
launched to perform color space conversion, four pixels per call. After eight pixels
have been converted, PACK operations reorganize the R′G′B′ information in 8-bit
unsigned integer vectors. Finally, STORE operations send the results to a display
FIFO.

According to Figure 8.4, 16 pixels can be processed with the latency 25 cycles.
In order to keep the pipeline full, back-to-back CSC R operation is needed. That is,
a new CSC R instruction has to be issued every two cycles (or, every four cycles
in the FPGA@50MHz–based ρ–TriMedia instance). This way, color space con-
version can be performed with a throughput of 2 pixels/cycle. Unfortunately, this
figure corresponds to the ideal case of infinite loop unrolling, which can never be
achieved in practice. For a finite loop unrolling, the overhead associated to firing-
up and flushing the CSC pipeline has to be taken into consideration. As a rule
of thumb, the throughput drops to N/(latency/16 + (N − 1)/ideal throughput),
where N is the number of times which the loop is unrolled. For example, the
ideal throughput drops to 1.3 pixels/cycle for 4× loop unrolling, and to 0.64 pix-
els/cycle for a loop which is fully rolled. The same judgement can be carried out
for the FPGA@50MHz–based ρ–TriMedia instance. Since the results are pretty
much the same, we will not go into details.

157

Load Cr

Load Cr

Load Cr

Load Cb

Load Y’1

Load Y’2

Load Y’3

Load Y’4

Load Cb

Load Y’1

Load Y’2

Load Cb

Load Y’1

Load Y’2

Load Y’3

Load Y’4

1 3 4 5 6 7 8 92

LATENCY
25 cycles for 16 pixels

16 / 8 = 2 pixel/cycle
THROUGHPUT

CSC_R Y’1,Cb,Cr −> R’ms
CSC_GB −> G’ms,B’ms

CSC_R Y’2,Cb,Cr −> R’ls
CSC_GB −> G’ls,B’ls
PACK R’ms,R’ls −> R’

CSC_R Y’3,Cb,Cr −> R’ms
CSC_GB −> G’ms,B’ms

CSC_R Y’4,Cb,Cr −> R’ls
CSC_GB −> G’ls,B’ls
PACK R’ms,R’ls −> R’

PACK G’ms,G’ls −> G’
PACK B’ms,B’ls −> B’

STORE R’

STORE B’
STORE G’

CSC_R Y’1,Cb,Cr −> R’ms
CSC_GB −> G’ms,B’ms

CSC_R Y’2,Cb,Cr −> R’ls

CSC_R Y’1,Cb,Cr −> R’ms
CSC_GB −> G’ms,B’ms

CSC_R Y’2,Cb,Cr −> R’ls
CSC_GB −> G’ls,B’ls
PACK R’ms,R’ls −> R’

CSC_R Y’3,Cb,Cr −> R’ms
CSC_GB −> G’ms,B’ms

CSC_R Y’4,Cb,Cr −> R’ls
CSC_GB −> G’ls,B’ls
PACK R’ms,R’ls −> R’

PACK G’ms,G’ls −> G’
PACK B’ms,B’ls −> B’

STORE R’

STORE B’
STORE G’

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

PACK G’ms,G’ls −> G’
PACK B’ms,B’ls −> B’

STORE R’

STORE B’
STORE G’

PACK G’ms,G’ls −> G’
PACK B’ms,B’ls −> B’

STORE R’

STORE B’
STORE G’

. .
 .

Figure 8.4: Scheduling result for a CSC unit having the latency of 10 and
recovery of 2.

158

The testing database for both pure-software and FPGA-based color space
converters consists of a stream of two 256 × 256 pixel images, for which
the Y ′, Cb, Cr components are stored in separate tables in the main mem-
ory. The data is organized as 16-bit signed integer vectors as resulted
from motion compensation. The Y ′CbCr-to-R′G′B′ conversion is done
in an SIMD fashion, by sequentially processing four triplets of Y′, Cb,
Cr values at a time. As mentioned, chroma 2-fold upsampling is per-
formed by means of a zero-order hold; this way, no additional processing is
needed. Then, the linear mapping defined by Equation set 8.1 is carried out, and
the result is sent to a display FIFO.

Since all the input data is stored into memory, the very first access to it
(which is actually the single access in our application) will generate so called
compulsory read cache misses. The sum of the data cache stalls and the instruc-
tion cycles needed to perform the proper color space conversion translates to a
worst case scenario, which provides the lower bound of the performance im-
provements. We will also present the results according to the best case scenario,
in which all cache misses are counted as part of the motion compensation pro-
cess. That is, improvements in terms of instruction cycles required to perform
strictly color space conversion will be reported.

The reference for evaluating the performance of the color space conversion
carried out on FPGA-augmented TriMedia is a pure-software implementation on
standard TriMedia [94]. The reference color space converter is implemented as a
loop, where each iteration processes 16 pixels. Since this pure-software implemen-
tation is beyond the chapter scope, we will not go into further details. However,
we still mention that by running our pure-software color space converter on a Tri-
Media cycle accurate simulator, we determined that an iteration which processes
16 pixels can be scheduled into 24 cycles, which translates into 0.66 pixels/cycle.
It is also worth mentioning that 4.8 of 5 issue slots are filled in with operations in
the pure-software implementation. This result is indeed a challenging reference for
the TriMedia+FPGA hybrid.

Therefore, our experiment includes two approaches: pure software and FPGA-
based. As mentioned, 0.66 pixels/cycle are decoded in the pure software approach,
while 2 pixels/cycle can be decoded in the FPGA-based approach if the loop is
unrolled an infinite number of times. The configuration of the RFU is carried out
at application load time.

The Y ′CbCr-to-R′G′B′ performance evaluation has been carried out con-
sidering the two mentioned FPGA-augmented TriMedia instances: TriMedia +
FPGA@100MHz and TriMedia + (double-size) FPGA@50MHz. A program has

159

been written in C, and further compiled and scheduled with TriMedia development
tools. To overcome the penalty associated to firing-up and flushing the pipeline,
two techniques can be employed: (1) loop unrolling, and (2) software pipelining.
Since the TriMedia scheduler uses the decision tree as a scheduling unit [50], all
operations return their results in the same decision tree that they are issued, even
though the TriMedia architecture does not forbid the contrary. This is the major
limiting factor in generating deep software pipelined loops which contains long-
latency operations starting from a C-level description. Since programming in as-
sembly seems to be too complex for color space converision, only loop unrolling
technique is considered subsequently.

The loop calling the CSC instruction has been manually unrolled a different
number of times. The best results which corresponds to 4× unrolling are pre-
sented in Table 8.1. We would like to mention that a 2× unrolling does not suffice,
since the firing-up and flushing overhead is still too large. At the same time, an
8× unrolling generates long decision trees, which in turn translates into reduced
performance due to register spilling. Also, unrolling does not provide a signifi-
cant improvement in the pure-software approach, since 4.8 out of 5 issue slots are
filled in with operations in this case. As it can be easily observed, about the same
performance figures are obtained for each FPGA-augmented TriMedia instances.
The speed-up is 0.66−0.47

0.47 × 100 ≈ 40% according to the worst-case scenario, and
1.22−0.66

0.66 × 100 ≈ 85% according to the best-case scenario.

Table 8.1: Performance figures for Y �CbCr-to-R�G�B� conversion.

Experiment 1 CSC on FPGA@100MHz 2 CSCs on FPGA @50MHz
pure SW FPGA-CSC4 FPGA-CSC4 FPGA-CSC4 FPGA-CSC4

(rolled) rolled unrolled 4× rolled unrolled 4×
Instruction cycles 190,771 190,240 107,821 192,972 109,358
Instruction cycles / pixel 1.46 1.45 0.82 1.47 0.83
Pixels / instruction cycle 0.66 0.69 1.22 0.68 1.20

Instruction-cache stalls 937 697 1,342 702 1,368
Read data-cache stalls 90,112 90,112 90,112 90,112 90,112
Issues / cycle 4.81 3.47 3.84 3.35 3.95

I cycles + read D$ stalls 280,883 280,352 197,933 283,084 199,470
Instruction cycles / pixel 2.14 2.14 1.51 2.16 1.52
Pixels / instruction cycle 0.47 0.47 0.66 0.46 0.66

Finally, we would like to mention that a more realistic average-case scenario
will assume a memory access pattern for reducing the number of read cache misses.
However, this is subject to optimization at a complete MPEG decoder level, and

160

therefore, beyond the chapter scope. Thus, we do not have statistically relevand
data for the time being. Since we are not able to make a reliable estimation ac-
cording to the average-case scenario, we proceed to a conservative evaluation by
taking into account the entire number of read cache misses (worst-case scenario),
and claim that the FPGA-augmented TriMedia–CPU64 can perform color space
conversion 40% faster than the standard TriMedia–CPU64. Given the fact that the
experimental TriMedia is a 5 issue-slot VLIW processor with 64-bit datapaths and
a very rich multimedia instruction set [113], such an improvement within the target
media processing domain indicates that the TriMedia + FPGA hybrid shows clear
benefits for doing color space conversion.

Now since our experiments are done, we would like to make several consider-
ations in connection to the penalty induced by the FPGA core area. According to
DeHon, an additional area of 500,000 to 1,000,000 λ2 per LUT is needed by the
reconfigurable core [30]. For the ACEX EP1K100 device that includes about 5,000
LUTs, this figure translates to an average area of 30 mm2 in a 0.18 µm technology.
Giving the fact that TriMedia–CPU64 occupies about 35 mm2 in the same tech-
nology, the FPGA augmentation with an EP1K100 device leads to an area increase
of the processor area of 85%. However, this increase is not a major concern, since
TriMedia was initially envisioned to be embedded on the same die with a set of
coprocessors, which also required additional area. For example, in the Viper chip
[32], the MPEG video decoder and video coprocessor occupy together an area of
about 18 mm2. Since such coprocessors cannot be used for any other task they have
been designed for, trading-off hardwired coprocessors for a reconfigurable core is
a good approach.

8.5 Conclusion

In this chapter we demonstrated that significant speed-up for Y′CbCr-to-R′G′B′

color space conversion can be achieved on FPGA-enhanced TriMedia over stan-
dard TriMedia. The main idea is to configure a pipelined Color Space Converter
(CSC) on FPGA and to unroll the software loop issuing an CSC operation such
that the penalty associated to firing-up and flushing the CSC pipeline is reduced.
In particular, we provide configurable-hardware support for a CSC operation which
can process four pixels per call. When mapped on an ACEX EP1K100 FPGA from
Altera, the computing unit performing the CSC operation has a latency of 10 and
recovery of 2 TriMedia@200 MHz cycles, and occupies 57% of the device. The
simulations carried out on a TriMedia cycle accurate simulator indicate that by
configuring the CSC unit on FPGA at application load-time, Y ′CbCr-to-R′G′B′

161

color space conversion can be computed on extended TriMedia 40% faster over the
standard TriMedia.

162

Chapter 9

Conclusions

W
e have addressed the augmentation of the TriMedia–CPU64 processor
with a field-programmable gate array, and assessed the potential gain in
performance such hybrid achieves when performing MPEG2 decoding.

In essence, we have proposed an extension of the TriMedia–CPU64 instruction
set architecture that incorporates support for the reconfigurable core. Our exten-
sion can be easily embedded into the TriMedia–CPU64 development tools since
it requires only minor changes of the compiler, scheduler, and assembler. Then,
we focused on a number of multimedia-oriented kernels: Inverse Discrete Cosine
Transform (IDCT), Inverse Quantization (IQ), Entropy Decoder, Pel Reconstruc-
tion, and YCC-to-RGB Color Space Converter. The research activity called for
a reimplementation of these kernels, and so included algorithm research, high-
level architecture design, and VHDL design. A significant effort has been made
to design FPGA-based computing units. Overall, we have shown that the aug-
mentation of the TriMedia–CPU64 processor with a reconfigurable core results in
performance-wise advantages at the expenses of a medium-size FPGA on the order
of 5,000 LUTs and twelve 8-input 16-output RAMs.

This chapter summarizes our overall investigations and achievements. It is or-
ganized in three sections. Section 9.1 discusses the overall conclusions. Section 9.2
presents the major contributions. Section 9.3 proposes further research directions.

9.1 Summary

In this dissertation, we considered and solved a number of issues associated with
reconfigurable computing technology. Our overall achievements can be summa-
rized by the following.

163

In Chapter 2 we provided for a brief survey of the reconfigurable computing
domain and proposed a taxonomy of Field-programmable Custom Computing Ma-
chines (FCCM). Since the programmer observes only the architecture of a comput-
ing machine, the previous classifications using implementation-based criteria do
not seize well the implications of the new reconfigurable computing paradigm as
perceived by the user. For this reason, we classified the FCCMs according to archi-
tectural criteria. In order to analyze the phenomena inside FCCMs, yet without ref-
erence to a particular instruction set, we introduce a formalism based on microcode,
in which any task (operation) performed by a field-programmable computing facil-
ity is executed as a microprogram with two basic stages: SET CONFIGURATION, and
EXECUTE CUSTOM OPERATION. Two classification criteria have been considered:

• The verticality/horizontality of the microcode.

• The explicit availability of a SET instruction.

Our approach is particularly important since it allows a view on an FCCM at the
the architectural level, decoupled from lower implementation and realization hier-
archical levels.

In Chapter 3 we described the arhitecture of the ρ–TriMedia processor con-
sisting of a standard TriMedia–CPU64 core augmented with an FPGA–based Re-
configurable Functional Unit (RFU). In order to use the RFU, TriMedia–CPU64
instruction set is augmented with a kernel of new instructions: SET CONTEXT,
ACTIVATE CONTEXT, and EXECUTE. Loading context information into RFU config-
uration memory is performed under the command of a SET CONTEXT instruction,
while the ACTIVATE CONTEXT instruction swaps the active configuration with one
of the idle on-chip configuration. EXECUTE instructions launch the operations per-
formed by the FPGA-mapped computing units. With these new instructions, the
user is given the freedom to define and use any computing facility subject to the
FPGA size and TriMedia organization.

In the same chapter, we also proposed to use the subsequent opcode fields,
which are currently set NOPs in a hardwired super-operation, as an argument for
the RFU OPCODE. In this way, a large number of RFU-specific operations can be
encoded, while only a single entry for the generic EXECUTE instruction needs to be
allocated in the opcode space. We would like to mention that all the opcode fields in
the 5-slot VLIW instruction are decoded separately, but only when the first opcode
field specifies an EXECUTE instruction the subsequent opcodes are interpreted as
an argument of the RFU OPCODE, and thus decoded locally at the RFU. This
way, the generic EXECUTE instruction does not create pressure on the instruction
decoder, neatly fits in the existing instruction format, fits the existing connectivity
structure to the register file, and hence requires very little hardware overhead.

164

To demonstrate the effectiveness of ρ–TriMedia, we addressed MPEG decod-
ing and proposed a reconfigurable design for each of the following multimedia
kernels: IDCT, Entropy Decoder, IQ, Pel Reconstruction, and YCC-to-RGB Color
Space Converter.

In Chapter 4 we described the computation of the 8×8 (2-D) IDCT on such
extended TriMedia and propose a scheme to implement the 1-D IDCT operation
on the RFU. When mapped on an ACEX EP1K100 FPGA, the proposed 1-D IDCT
exhibits a latency of 16 and a recovery of 2 TriMedia@200 MHz cycles, and occu-
pies 45% of the logic cells of the device. By configuring the 1-D IDCT computing
facility on an RFU context, an IEEE-compliant 2-D IDCT can be computed with
the throughput of 1/32 IDCT/cycle. This is an improvement of about 75% in terms
of throughput over the standard TriMedia–CPU64.

In Chapter 5 we described an IQ-4 FPGA-based computing unit that
can inverse quantize four DCT coefficients per call. When mapped on an
ACEX EP1K100 FPGA, the proposed IQ-4 exhibits a latency of 18 and a recovery
of 2 TriMedia@200 MHz cycles, and occupies 43% of the logic cells of the device.
By configuring the IQ-4 computing facility on an RFU context, an 8 × 8 block of
DCT coefficients can be inverse quantized with the throughput of 1/32 IDCT/cycle.
This is an improvement of about 55% in terms of throughput over the standard
TriMedia–CPU64.

In Chapter 6 we addressed entropy decoding and proposed a strategy to par-
tially break the data dependency related to variable-length decoding. Three VLDs
(VLD-1, VLD-2, VLD-3) instructions that can return 1, 2, or 3 symbols per call,
respectively, were analyzed. We determined that VLD-2 instruction leads to the
most efficient entropy decoding in terms of instruction cycles and FPGA area. The
FPGA-based implementation of VLD-2 computing unit was also described in de-
tail. When mapped on an ACEX EP1K100 FPGA, VLD-2 exhibits a latency of
8 TriMedia@200 MHz cycles, and uses all the Electronic Array Blocks and 51%
of the logic cells of the device. The simulation results indicated that the VLD-2–
based entropy decoder is more than 50% faster than its pure-software counterpart.

Chapter 7 combines the previously described reconfigurable designs for En-
tropy Decoder, Inverse Quantization, and Inverse Discrete Cosine Transform, and
assesses the performance gain such extensions have when performing MPEG2-
compliant Pel Reconstruction. Experimental results indicate that by configuring
each of the VLD-2, IQ-4, and 1-D IDCT computing facilities on a different FPGA
context, and by activating the contexts as needed, the FPGA-augmented TriMedia
can perform MPEG2-compliant pel reconstruction with a speed-up of 1.4× over
the standard TriMedia.

165

In Chapter 8 we addressed Color Space Conversion (CSC), analyzed a CSC-4
instruction processing four pixels per call, and proposed a scheme to implement a
CSC-4 unit on RFU. When mapped on an ACEX EP1K100 FPGA, the CSC-4 ex-
hibits a latency of 10 and a recovery of 2 TriMedia@200 MHz cycles, and occupies
57% of the device. By configuring the CSC-4 facility on one RFU context at ap-
plication load-time, color space conversion can be computed on FPGA-augmented
TriMedia with a speed-up ranging from 1.4× to 1.85× over the standard TriMedia.

9.2 Contributions

The major contributions of this study can be summarized as follows.

• We have proposed a taxonomy of field-programmable custom computing
machines using a formalism based on microcode. Two architectural issues
have been used as classification criteria:

– The verticality/horizontality of the microcode.

– The explicit availability of a SET instruction.

• We have proposed an extension of TriMedia–CPU64 instruction set archi-
tecture that incorporates support for the reconfigurable array. The architec-
tural extension consists of a kernel of three new instructions: SET CONTEXT,
ACTIVATE CONTEXT, and EXECUTE.

• In order to provide architectural support for the reconfigurable core, we pro-
posed to use the subsequent opcode fields, which are currently set NOPs in
a hardwired super-operation, as an argument for the RFU OPCODE. In this
way, a large number of RFU-specific operations can be encoded, while only
a single entry for the generic EXECUTE instruction needs to be allocated in
the opcode space. In the same time, the EXECUTE instruction neatly fits in
the existing instruction format, too.

• We have proposed a programming methodology for FPGA-augmented
TriMedia–CPU64 consisting of a C-level programming model and ACEX
EP1K100 FPGA recommended mapping strategies.

• We have addressed the computation of 8 × 8 (2-D) IDCT on FPGA-
augmented TriMedia–CPU64 and proposed a scheme to implement a 1-
D IDCT computing unit on FPGA. We have determined that by configur-
ing the 1-D IDCT on an RFU context, the 8 × 8 (2-D) IDCT can be com-

166

puted on FPGA-augmented TriMedia–CPU64 75% faster than on the stan-
dard TriMedia–CPU64.

• We have proposed an FPGA-based IQ-4 computing unit that can inverse
quantize four DCT coefficients per call. We have determined that by config-
uring the IQ-4 on an RFU context, an 8×8 block of DCT coefficients can be
inverse quantized on FPGA-augmented TriMedia–CPU64 55% faster than
on the standard TriMedia–CPU64.

• We have addressed Entropy Decoding and proposed a strategy to partially
break the data dependency related to variable-length decoding. We also pro-
posed an FPGA-based implementation of a VLD-2 unit that can decode two
variable-length symbols per call. We have determined that VLD-2–based
entropy decoder is 50% faster than its pure-software counterpart.

• We have combined the previous three reconfigurable designs and determined
that by configuring each of the VLD-2, IQ-4, and 1-D IDCT computing fa-
cilities on a different RFU context, and by activating the contexts as needed,
the FPGA-augmented TriMedia can perform MPEG2-compliant pel recon-
struction 40% faster that standard TriMedia.

• We have proposed an FPGA-based CSC-4 computing unit that can perform
YCC-to-RGB color space conversion for four pixels per call. We have deter-
mined that by configuring the CSC-4 on an RFU context, YCC-to-RGB color
space conversion can be performed on FPGA-augmented TriMedia–CPU64
40–85% faster than on the standard TriMedia–CPU64.

• Overall, we showed that significant improvement on FPGA-augmented
TriMedia–CPU64 over standard TriMedia–CPU64 can be achieved with a
medium-size (multiple-context) FPGA on the order of 5,000 4-input LUTs
and 12 8-input 16-output RAMs. Given the fact that TriMedia–CPU64 is a
5-issue slot VLIW processor with 64-bit datapaths and a very rich multime-
dia instruction set, such an improvement within its target media processing
domain indicates that ρ–TriMedia is a promising approach.

9.3 Proposed research directions

As a continuation of the research we suggest the following.

• In this dissertation we addressed only computing-dominant tasks. An inter-
esting research area is to investigate whether the reconfigurable computing

167

paradigm can provide improvements for control-dominant tasks, e.g., MPEG
header extraction, or memory-dominant tasks, e.g., motion compensation.

• Since standard TriMedia provides a good support for transposition, the cir-
cuitry mapped on FPGA was essentially feed-forward. Thus, a rich 2-D–
oriented interconnection network is actually not needed. Since 90% of the
silicon area is used by the interconnection network in the current FPGAs, an
interesting research direction would be to investigate a new FPGA architec-
ture with only an 1-D–oriented interconnection network.

• A 2-D–oriented convolution is typically carried out by decomposing it into
1-D–oriented (vertical and horizontal) subtasks with a transposition stage in
between. Thus, a 2-D–oriented convolution is a symmetrical tasks that does
not require a 5-port register file. For this reason, a possible research direction
would be to investigate a partitioned register file.

• In this dissertation we addressed basically video decompression tasks. As
future work, it would be interesting to investigate more complex tasks, such
as vector quantization and pattern recognition.

• One of the major problems of the multiple-context FPGAs is the large power
consumption during a context switch. Thus, a new research direction would
be to investigate strategies to reduce the power consumption in multiple-
context FPGAs.

• In order to reduce the size of the reconfiguration information and thus make
launching SET efficient at run-time, we suggest to investigate an FPGA ar-
chitecture that supports partial reconfiguration. We would like to remind that
in this dissertation we assumed that SET is launched at application load-time.

168

Appendix A

MPEG2 Statistics

Table A.1: Total number of variable-length symbols (DCT coefficients and
end-of-block), blocks, macroblocks, slices, and pictures/frames for several
MPEG-2 conformance bit-strings.

Scene ba
tm

an

po
pp

le
n

sa
rn

of
f2

te
nn

is

ti
1c

he
er

Statistics

Variable-length symbols I (B14) 0 0 80,563 12,345 0
(DCT coefficients and I (B15) 172,745 47,003 0 120,754 80,818
end-of-block) NI (P & B) 266,485 28,069 36,408 137,756 51,680

Blocks I 0 3,960 8,100 9,504 7,920
P 36,943 3,606 5,120 17,992 4,481
B 25,295 1,145 3,645 10,250 5,275
Total 62,238 8,711 16,865 37,746 17,676

Macroblocks I 0 660 1,350 1,584 1,320
with blocks P 6,473 970 1,258 4,457 1,049

B 4,847 338 1,468 4,450 1,722
Total 11,320 1,968 4,076 10,491 4,091

Coded I 0 660 1,350 1,584 1,320
macroblocks P 6,480 1,980 1,332 4,625 1,106

B 4,860 1,247 2,671 6,305 2,045
Total 11,340 3,887 5,353 12,514 4,471

Slices IPB 252 90 120 288 120

Pictures IPB 7 3 4 8 4
(Frames) (7+0) (0+6) (4+0) (8+0) (2+4)

169

Table A.2: MPEG-2 statistics for several conformance bit-strings.

Scene ba
tm

an

po
pp

le
n

sa
rn

of
f2

te
nn

is

ti1
ch

ee
r

A
ve

ra
ge

Statistics

Blocks/macroblock I µ – 6.0 6.0 6.0 6.0 6.0
σ – 0 0 0 0

P µ 5.7 3.7 4.1 4.0 4.1 4.3
σ 0.2 0.9 0.5 0.4 0.7

B µ 5.2 3.1 2.4 2.2 2.8 3.1
σ 0.3 1.4 0.4 0.5 0.7

Blocks/slice I µ – 264 270 264 264 266
σ – 0 0 0 0

P µ 257 80 171 167 155 166
σ 9 33 26 27 56

B µ 234 38 61 71 88 98
σ 14 27 23 32 45

Blocks/{picture,frame} I µ – 3960 8100 9504 7920 n/a
σ – 0 0 0 0

P µ 9236 1202 5120 5997 4481 n/a
σ 236 198 0 221 0

B µ 8432 573 1823 2563 1324 n/a
σ 258 93 26 718 62

Macroblocks with blocks/slice I µ – 44 45 44 44 n/a
σ – 0 0 0 0

P µ 45 22 42 41 36 n/a
σ 0 8 3 5 11

B µ 45 11 24 31 29 n/a
σ 0 5 7 10 11

Coded macroblocks/slice I µ – 44 45 44 44 n/a
σ – 0 0 0 0

P µ 45 44 44 43 38 n/a
σ 0 0 1 3 10

B µ 45 42 45 44 34 n/a
σ 0 5 1 1 11

Slices/{picture,frame} I µ – 15 30 36 30 n/a
P µ 36 15 30 36 30 n/a
B µ 36 15 30 36 15 n/a

170

Bibliography

[1] ***. IEEE Standard Specifications for the Implementations of 8× 8 Inverse
Discrete Cosine Transform. IEEE Std 1180-1990, March 1991.

[2] ***. TM-1000 Data Book. Philips Electronics North America Corpora-
tion, TriMedia Product Group, 811 E. Arques Avenue, Sunnyvale, Califor-
nia 94088, U.S.A., 1998.

[3] ***. Book 2 – Cookbook. Part D: Optimizing TriMedia Applications. TriMe-
dia Technologies, Inc., TriMedia Technologies, Inc., 1840 McCarthy Boule-
vard, Milpitas, California 95035, U.S.A., 2000.

[4] ***. Book 4 – Software Tools. Part A: C Language Users Guide. TriMe-
dia Technologies, Inc., TriMedia Technologies, Inc., 1840 McCarthy Boule-
vard, Milpitas, California 95035, U.S.A., 2000.

[5] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami. A DAG-Based Design
Approach for Reconfigurable VLIW Processors. In IEEE Design and Test
Conference in Europe, IEEE Computer Society Press, pages 778–780, Mu-
nich, Germany, March 1999.

[6] G.M. Amdahl, G.A. Blaauw, and F.P. Brooks, Jr. Architecture of the IBM
System/360. In IBM Journal of Research and Development, 8(2):87–101,
1964.

[7] P.M. Athanas and H.F. Silverman. Processor Reconfiguration through
Instruction-Set Metamorphosis. In IEEE Computer, 26(3):11–18, March
1993.

[8] J. Babb, R. Tessier, and A. Agarwal. Virtual Wires: Overcoming Pin Limi-
tations in FPGA-based Logic Emulators. In IEEE Workshop on FPGAs for
Custom Computing Machines (FCCM ’93), IEEE Computer Society Press,
pages 142–151, Napa Valley, California, April 1993.

171

[9] N.B. Bhat and K. Chaudhary. Field Programmable Logic Device with
Dynamic Interconnections to a Dynamic Logic Core. U.S. Patent No.
5,596,743, January 1997.

[10] R.A. Bittner, Jr. and P.M. Athanas. Wormhole Run-time Reconfiguration. In
5th ACM/SIGDA International Symposium on Field Programmable Gate Ar-
rays (FCCM ’97), ACM Press, pages 79–85, Monterey, California, February
1997.

[11] M. Bolotski, A. DeHon, and T. Knight, Jr. Unifying FPGAs and SIMD
Arrays. In Second International ACM/SIGDA Workshop on FPGAs, ACM
Press, pages 1–10, Berkeley, California, February 1994. ACM.

[12] F. Bonomini, F. De Marco-Zompit, G.A. Milan, A. Odorico, and
D. Palumbo. Implementing an MPEG2 Video Decoder Based on the
TMS320C80 MVP. Application Report SPRA332, Texas Instruments,
Paris, France, September 1996.

[13] G. Brebner. Field-Programmable Logic: Catalyst for New Comput-
ing Paradigms. In 8th International Workshop on Field-Programmable
Logic and Applications (FPL ’98). From FPGAs to Computing Paradigm,
Springer-Verlag, Lecture Notes in Computer Science (LNCS), Vol. 1482,
pages 49–58, Tallin, Estonia, September 1998.

[14] S. Brown and J. Rose. Architecture of FPGAs and CPLDs: A Tutorial. In
IEEE Transactions on Design and Test of Computers, 13(2):42–57, 1996.

[15] D.A. Buell and K.L. Pocek. Custom Computing Machines: An Introduction.
In Journal of Supercomputing, 9(3):219–230, 1995.

[16] S. Cadambi, J. Weener, S.C. Goldstein, H. Schmit, and D.E. Thomas. Man-
aging Pipeline-Reconfigurable FPGAs. In 6th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’98), ACM Press,
pages 55–64, Monterey, California, February 1998.

[17] S.M. Casselman. Virtual Computing and the Virtual Computer. In IEEE
Workshop on FPGAs for Custom Computing Machines (FCCM ’93), IEEE
Computer Society Press, pages 43–48, Napa Valley, California, April 1993.

[18] S.-F. Chang and D.G. Messerschmitt. Designing High-Throughput VLC
Decoder. Part I – Concurrent VLSI Architectures. In IEEE Transactions on
Circuits and Systems for Video Technology, 2(2):187–196, June 1992.

172

[19] K. Chaudhary, H. Verma, and S. Nag. An Inverse Discrete Cosine Transform
(IDCT) Implementation in Virtex for MPEG Video Application. Application
Note 208, Xilinx Corporation, San Jose, California, December 1999.

[20] Computer Engineering Laboratory, Electrical Engineering Department,
Delft University of Technology, Delft, The Netherlands. The MOLEN
Project. http://ce.et.tudelft.nl/MOLEN/.

[21] Altera Corporation. Configuring APEX 20K, FLEX 10K & FLEX 6000
Devices. Application Note 116, San Jose, California, December 1999.

[22] Altera Corporation. ACEX 1K Programmable Logic Family. Datasheet,
San Jose, California, April 2000.

[23] Atmel Corporation. AT6000 Series Configuration. Application Note, San
Jose, California, September 1999.

[24] Atmel Corporation. AT6000(LV) Series. Coprocessor Field Programmable
Gate Arrays. Datasheet, San Jose, California, October 1999.

[25] Xilinx Corporation. XC6200 Field Programmable Gate Arrays. Datasheet,
San Jose, California, October 1996.

[26] D.C. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling. Ar-
chitecture Design of Reconfigurable Pipelined Datapaths. In Advanced Re-
search in VLSI, pages 23–40, 1999.

[27] A. DeHon. DPGA-Coupled Microprocessors: Commodity ICs for the Early
21st Century. In 2nd IEEE Workshop on FPGAs for Custom Computing
Machines (FCCM ’94), pages 31–39, Napa Valley, California, April 1994.

[28] A. DeHon. Reconfigurable Architectures for General-Purpose Comput-
ing. A. I. 1586, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, October 1996.

[29] A. DeHon, T. Knight Jr., E. Tau, M. Bolotski, I. Eslick, D. Chen, and
J. Brown. Dynamically Programmable Gate Array with Multiple Context.
U.S. Patent No. 5,742,180, April 1998.

[30] A. DeHon. The Density Advantage of Configurable Computing. In IEEE
Computer, 33(4):41–49, April 2000.

[31] A. Donlin. Self Modifying Circuitry - A Platform for Tractable Virtual Cir-
cuitry. In 8th International Workshop on Field-Programmable Logic and

173

Applications (FPL ’98). From FPGAs to Computing Paradigm, Springer-
Verlag, Lecture Notes in Computer Science (LNCS), Vol. 1482, pages 199–
208, Tallin, Estonia, September 1998.

[32] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A Multiprocessor SOC for
Advanced Set-Top Box and Digital TV Systems. In IEEE Design & Test of
Computers, 18(5):21–31, September-October 2001.

[33] C. Ebeling, D.C. Cronquist, and P. Franklin. RaPiD – Reconfigurable
Pipelined Datapath. In 6th International Workshop on Field Programmable
Logic and Applications (FPL ’96). Field-Programmable Logic: Smart Ap-
plications, New Paradigms and Compilers, Springer-Verlag, Lecture Notes
in Computer Science (LNCS), Vol. 1142, pages 126–135, Darmstadt, Ger-
many, September 1996.

[34] M.J. Flynn. Some Computer Organizations and Their Effectiveness. In
IEEE Transactions on Computers, C-21(9):948–960, September 1972.

[35] T. Garverick, J. Sutherland, S. Popli, V. Alturi, A. Smith, Jr., S. Pickett, D.
Hawley, S.-P. Chen, S. Moni, B.S. Ting, R.C. Camarota, S.-M. Day, and F.
Furtek. Versatile and Efficient Cell-to-Local Bus Interface in a Configurable
Logic Array. U.S. Patent No. 5,298,805, March 1994.

[36] K.L. Gilson. Integrated Circuit Computing Device Comprising a Dynam-
ically Configurable Gate Array Having a Microprocessor and Reconfig-
urable Instruction Execution Means and Method Therefor. U.S. Patent No.
5,361,373, November 1994.

[37] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Reed Taylor,
and R. Laufer. PipeRench: A Coprocessor for Streaming Multimedia Ac-
celeration. In The 26th International Symposium on Computer Architecture,
pages 28–39, Atlanta, Georgia, May 1999.

[38] J. P. Gray and T. A. Kean. Configurable Hardware: A New Paradigm for
Computation. In Proceedings of the Decennial Caltech Conference, pages
279–295, Pasadena, California, March 1989.

[39] S.A. Guccione and M.J. Gonzales. Classification and Performance of
Reconfigurable Architectures. In 5th International Workshop on Field-
Programmable Logic and Applications (FPL ’95), Springer-Verlag, pages
439–448, Oxford, United Kingdom, August-September 1995.

174

[40] R. Haerkens and J. Sannen. Variable-Length Decoding in Software – A Gen-
eral Purpose Video Decoding Coprocessor. SwTV 176, Philips Research
Laboratories, Eindhoven, The Netherlands, December 1997.

[41] R.W. Hartenstein, J. Becker, and R. Kress. Custom Computing Machines
versus Hardware/Software Co-Design: From a Globalized Point of View.
In 6th International Workshop on Field Programmable Logic and Appli-
cations (FPL ’96). Field-Programmable Logic: Smart Applications, New
Paradigms and Compilers, Springer-Verlag, Lecture Notes in Computer Sci-
ence (LNCS), Vol. 1142, pages 65–76, Darmstadt, Germany, September
1996.

[42] R.W. Hartenstein, A.G. Hirschbiel, K. Schmidt, and M. Weber. A Novel
Paradigm of Parallel Computation and its Use to Implement Simple High-
Performance Hardware. In Future Generation Computer Systems, (7):181–
198, 1991/1992.

[43] R.W. Hartenstein, R. Kress, and H. Reinig. A New FPGA Architecture
for Word-Oriented Datapaths. In 4th International Workshop on Field-
Programmable Logic and Applications (FPL ’94). Field-Programmable
Logic: Architectures, Synthesis and Applications, Springer-Verlag, Lec-
ture Notes in Computer Science (LNCS), Vol. 849, pages 144–155, Prague,
Czech Republic, September 1994.

[44] B.G. Haskell, A. Puri, and A.N. Netravali. Digital Video: An Introduction
to MPEG-2. Kluwer Academic Publishers, Norwell, Massachusetts, 1996.

[45] S.A. Hauck. The Future of Reconfigurable Systems. In Proceedings of
the 5th Canadian Conference on Field Programmable Devices, Montreal,
Canada, June 1998.

[46] S.A. Hauck. The Roles of FPGA’s in Reprogrammable Systems. In Pro-
ceedings of the IEEE, 86(4):615–638, April 1998.

[47] S.A. Hauck, T.W. Fry, M.M. Hosler, and J.P. Kao. The Chimaera Recon-
figurable Functional Unit. In 5th IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM ’97), pages 87–96, Napa Valley, California,
April 1997.

[48] J.R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Reconfig-
urable Coprocessor. In 5th IEEE Symposium on FPGAs for Custom Com-
puting Machines (FCCM ’97), pages 12–21, Napa Valley, California, April
1997.

175

[49] G.J. Hekstra, G.D. La Hei, P. Bingley, and F.W. Sijstermans. TriMedia
CPU64 Design Space Exploration. In Proceedings of International Con-
ference on Computer Design, pages 599–606, Austin, Texas, October 1999.

[50] J. Hoogerbrugge and L. Augusteijn. Instruction Scheduling for TriMedia.
In Journal of Instruction-Level Parallelism, 1(1), February 1999.

[51] International Organization for Standardization. Information technology –
Coding of moving pictures and associated audio for digital storage media at
up to about 1.5 Mbit/s – Part 2: Video. ISO/IEC 11172-2: 1993.

[52] International Telecommunication Unit. Studio Encoding Parameters of Dig-
ital Television for Standard 4:3 and Wide-Screen 16:9 Aspect Ratios. ITU-R
Recommendation BT.601-5, October 1995.

[53] International Telecommunication Unit. Information technology – Generic
coding of moving pictures and associated audio information: Video. ITU-T
Recommendation H.262, February 2000.

[54] C. Iseli and E. Sanchez. A Superscalar and Reconfigurable Processor. In
4th International Workshop on Field-Programmable Logic and Applications
(FPL ’94). Field-Programmable Logic: Architectures, Synthesis and Appli-
cations, Springer-Verlag, Lecture Notes in Computer Science (LNCS), Vol.
849, pages 168–174, Prague, Czech Republic, September 1994.

[55] D. Ishii, M. Ikekawa, and I. Kuroda. Parallel Variable Length Decoding
with Inverse Quantization for Software MPEG-2 Decoders. In Proceedings
of the IEEE Workshop on Signal Processing Systems (SiPS97), pages 500–
509, Leicester, United Kingdom, November 1997. IEEE.

[56] J.A. Jacob and P. Chow. Memory Interfacing and Instruction Specifica-
tion for Reconfigurable Processors. In 7th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays (FPGA ’99), pages 145–154,
Monterey, California, February 1999.

[57] W.M. Johnson. Superscalar Microprocessor Design. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1991.

[58] D. Jones and D.M. Lewis. A Time-Multiplexed FPGA Architecture for
Logic Emulation. In Proceedings of the IEEE 1995 Custom Integrated Cir-
cuits Conference, pages 487–494, Santa Clara, California, May 1995.

176

[59] B. Kastrup, A. Bink, and J. Hoogerbrugge. ConCISe: A Compiler-Driven
CPLD-Based Instruction Set Accelerator. In 7th IEEE Symposium on FP-
GAs for Custom Computing Machines (FCCM ’99), pages 92–100, Napa
Valley, California, April 1999.

[60] B. Kastrup, J. van Meerbergen, and K. Nowak. Seeking (the right) Problems
for the Solutions of Reconfigurable Computing. In 9th International Work-
shop on Field-Programmable Logic and Applications (FPL ’99), Springer-
Verlag, Lecture Notes in Computer Science (LNCS), Vol. 1673, pages 520–
525, Glasgow, Scotland, September 1999.

[61] S. Kinouchi and A. Sawada. Huffman Code Decoding Circuit. U.S. Patent
No. 5,617,089, April 1997.

[62] G. Kuzmanov and S. Vassiliadis. Arbitrating Instructions in an ρµ–coded
CCM. In 13th International Conference on Field-Programmable Logic and
Applications (FPL 2003). Reconfigurable Machines: a New Paradigm of
Computing, Springer-Verlag., Lecture Notes in Computer Science (LNCS),
Lisbon, Portugal, September 2003 (accepted for publication).

[63] S.-M. Lei and M.-T. Sun. An Entropy Coding System for Digital HDTV
Applications. In IEEE Transactions on Circuits and Systems for Video Tech-
nology, 1(1):147–155, March 1991.

[64] A. Lew and R. Halverson, Jr. A FCCM for Dataflow (Spreadsheet) Pro-
grams. In 3rd IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM ’95), pages 2–10, Napa Valley, California, April 1995.

[65] H.-D. Lin and D.G. Messerschmitt. Finite State Machine has Unlimited
Concurrency. In IEEE Transactions on Circuits and Systems, 38(5):465–
475, May 1991.

[66] H.-D. Lin and D.G. Messerschmitt. Designing a High-Throughput VLC
Decoder. Part II – Parallel Decoding Methods. In IEEE Transactions on
Circuits and Systems for Video Technology, 2(2):197–206, June 1992.

[67] C. Loeffler, A. Ligtenberg, and G.S. Moschytz. Practical Fast 1-D DCT Al-
gorithms with 11 Multiplications. In Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing – ICASSP ’89, pages
988–991, 1989.

[68] W.H. Mangione-Smith and B.L. Hutchings. Reconfigurable Architectures:
The Road Ahead. In Reconfigurable Architectures Workshop, RAW ’97,
pages 81–96, Geneva, Switzerland, April 1997.

177

[69] W.H. Mangione-Smith, B.L. Hutchings, D. Andrews, A. DeHon, C. Ebel-
ing, R.W. Hartenstein, O. Mencer, J. Morris, K. Palem, V.K. Prasanna, and
H.A.E. Spaanenburg. Seeking Solutions in Configurable Computing. In
IEEE Computer, 30(12):38–43, December 1997.

[70] J.L. Mitchell, W.B. Pennebaker, C.E. Fogg, and D.J. LeGall. MPEG Video
Compression Standard. Chapman & Hall, New York, New York, 1996.

[71] T. Miyamori and K. Olukotun. A Quantitative Analysis of Reconfigurable
Coprocessors for Multimedia Applications. In 6th IEEE Symposium on FP-
GAs for Custom Computing Machines (FCCM ’98), pages 2–11, Napa Val-
ley, California, April 1998.

[72] T. Miyamori and K. Olukotun. REMARC: Reconfigurable Multimedia Ar-
ray Coprocessor. In IEEE Transactions on Information and Systems, E82-
D(2):389–397, February 1999.

[73] E. Moscu-Panainte, K. Bertels, and S. Vassiliadis. Compiling for the
Molen Programming Paradigm. In 13th International Conference on Field-
Programmable Logic and Applications (FPL 2003). Reconfigurable Ma-
chines: a New Paradigm of Computing, Springer-Verlag, Lecture Notes in
Computer Science (LNCS), Lisbon, Portugal, September 2003 (accepted for
publication).

[74] MPEG Software Simulation Group. MPEG-2 Video Codec.
http://www.mpeg.org/MPEG/MSSG/

[75] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Ox-
ford University Press, New York, New York, 2000.

[76] Y.-G. Park. High Speed Variable Length Code Decoding Apparatus. U.S.
Patent No. 5,561,690, October 1996.

[77] K. Patel, B.C. Smith, and L.A. Rowe. Performance of a Software MPEG
Video Decoder. In Proceedings of the ACM Multimedia 93 Conference,
pages 75–82, Anaheim, California, 1993.

[78] G.G. Pechanek, C.W. Kurak, C.J. Glossner, C.H.L. Moller, and S.J. Walsh.
M.F.A.S.T.: A Highly Parallel Single Chip DSP with a 2D IDCT Example.
In Proceeding of the International Conference on Signal Processing Ap-
plications and Technology, pages 69–72, Boston, Massachusetts, October
1995.

178

[79] G.G. Pechanek and S. Vassiliadis. The ManArray Embedded Processor Ar-
chitecture. In Proceedings of the 26th Euromicro Conference: “Informatics:
inventing the future”, pages 348–355, Maastricht, The Netherlands, Septem-
ber 2000. IEEE.

[80] E.-J.D. Pol, B.J.M. Aarts, Jos T.J. van Eijndhoven, P. Struik, F.W. Sijster-
mans, M.J.A. Tromp, J.W. van de Waerdt, and P. van der Wolf. TriMedia
CPU64 Application Development Environment. In Proceedings of Inter-
national Conference on Computer Design, pages 593–598, Austin, Texas,
October 1999.

[81] E.-J.D. Pol, Jos T.J. van Eijndhoven, K.A. Vissers, and B. Riemens.
PROMMPT-2 Project Plan. SwTV 001, Philips Research Laboratories,
Eindhoven, The Netherlands, September 1999.

[82] E.-J.D. Pol. VLD Performance on TriMedia/CPU64. Private Communica-
tion, May 2000.

[83] C. Poynton. A Technical Introduction to Digital Video. John Wiley & Sons,
January 1996.

[84] B. Radunović and V. Milutinović. A Survey of Reconfigurable Comput-
ing Architectures. In 8th International Workshop on Field-Programmable
Logic and Applications (FPL ’98). From FPGAs to Computing Paradigm,
Springer-Verlag, Lecture Notes in Computer Science (LNCS), Vol. 1482,
pages 376–385, Tallin, Estonia, September 1998.

[85] K.R. Rao and P. Yip. Discrete Cosine Transform. Algorithms, Advantages,
Applications. Academic Press, San Diego, California, 1990.

[86] T.G. Rauscher and P.M. Adams. Microprogramming: A Tutorial and Survey
of Recent Developments. In IEEE Transactions on Computers, C-29(1):2–
20, January 1980.

[87] R. Razdan and M.D. Smith. A High Performance Microarchitecture with
Hardware-Programmable Functional Units. In 27th Annual International
Symposium on Microarchitecture – MICRO-27, pages 172–180, San Jose,
California, November 1994.

[88] A.K. Riemens, K.A. Vissers, R.J. Schutten, F.W. Sijstermans, G.J. Hekstra,
and G.D. La Hei. TriMedia CPU64 Application Domain and Benchmark
Suite. In Proceedings of International Conference on Computer Design,
pages 580–585, Austin, Texas, October 1999.

179

[89] C.R. Rupp. CLAyFun Reference Manual. National Semiconductor Corp.,
Santa Clara, California, July 1995.

[90] C.R. Rupp, M. Landguth, T. Garverick, E. Gomersall, and H. Holt. The
NAPA Adaptive Processing Architecture. In 6th IEEE Symposium on FP-
GAs for Custom Computing Machines (FCCM ’98), pages 28–37, Napa Val-
ley, California, April 1998.

[91] Z. Salcic and B. Maunder. CCSimP – An Instruction-Level Custom-
Configurable Processor for FPLDs. In 6th International Workshop on Field
Programmable Logic and Applications (FPL ’96). Field-Programmable
Logic: Smart Applications, New Paradigms and Compilers, Springer-
Verlag, Lecture Notes in Computer Science (LNCS), Vol. 1142, pages 280–
289, Darmstadt, Germany, September 1996.

[92] S. Sawitzki, A. Gratz, and R.G. Spallek. Increasing Microprocessor Perfor-
mance with Tightly-Coupled Reconfigurable Logic Arrays. In 8th Interna-
tional Workshop on Field-Programmable Logic and Applications (FPL ’98).
From FPGAs to Computing Paradigm, Lecture Notes in Computer Science
(LNCS), Vol. 1482, pages 411–415, Tallin, Estonia, September 1998.

[93] S.M. Scalera and J.R. Vázquez. The Design and Implementation of a Con-
text Switching FPGA. In 6th IEEE Symposium on FPGAs for Custom Com-
puting Machines (FCCM ’98), pages 78–85, Napa Valley, California, April
1998.

[94] M. Sima. Color Space Conversion on TriMedia/CPU64. Private Communi-
cation, August 2002.

[95] M. Sima, S.D. Cotofana, Jos T.J. van Eijndhoven, S. Vassiliadis, and K.A.
Vissers. 8× 8 IDCT Implementation on an FPGA-augmented TriMedia. In
9th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM 2001), Rohnert Park, California, April 2001.

[96] M. Sima, S.D. Cotofana, S. Vassiliadis, Jos T.J. van Eijndhoven, and K.A.
Vissers. MPEG Macroblock Parsing and Pel Reconstruction on an FPGA-
augmented TriMedia Processor. In IEEE International Conference on Com-
puter Design, pages 425–430, Austin, Texas, September 2001.

[97] M. Sima, S.D. Cotofana, S. Vassiliadis, and Jos T.J. van Eijndhoven. Vari-
able Length Decoder Implemented on a TriMedia/CPU64 Reconfigurable
Functional Unit. In 12th Annual Workshop on Circuits, Systems and Signal

180

Processing (ProRISC 2001), pages 211–218, Veldhoven, The Netherlands,
November 2001.

[98] M. Sima, S.D. Cotofana, S. Vassiliadis, J.T.J. van Eijndhoven, and K.A.
Vissers. MPEG-compliant Entropy Decoding on FPGA-augmented TriMe-
dia/CPU64. In 10th Annual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM 2002), pages 261–270, Napa Valley, Cal-
ifornia, April 2002.

[99] M. Sima, E.-J.D. Pol, J.T.J. van Eijndhoven, S.D. Cotofana, and S. Vassil-
iadis. Entropy Decoding on TriMedia/CPU64. In 2nd Workshop on System
Architecture MOdeling and Simulation (SAMOS 2002), STW Press, Samos,
Greece, July 2002.

[100] M. Sima, S. Vassiliadis, S.D. Cotofana, J.T.J. van Eijndhoven, and K.A.
Vissers. Field-Programmable Custom Computing Machines. A Taxonomy.
In 12th International Conference on Field-Programmable Logic and Appli-
cations (FPL 2002), Springer-Verlag, Lecture Notes in Computer Science
(LNCS), Vol. 2438, pages 79–88, Montpellier, France, September 2002.

[101] H. Singh, M.-H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M. Chaves
Filho. MorphoSys: An Integrated Reconfigurable System for Data-Parallel
and Computation-Intensive Application. In IEEE Transactions on Comput-
ers, 49(5):465–481, May 2000.

[102] M.-T. Sun. VLSI Architecture and Implementation of a High Speed Entropy
Decoder. In IEEE International Symposium on Circuits and Systems, pages
200–203, 1991.

[103] M.-T. Sun. VLSI Implementations for Image Communications, volume 2,
chapter Design of High-Throughput Entropy Codec, pages 345–364. Else-
vier Science Publishers B.V., Amsterdam, The Netherlands, 1993.

[104] M.-T. Sun and K.-H. Tzou. High-Speed Flexible Variable-Length-Code De-
coder. U.S. Patent No. 5,173,695, December 1992.

[105] Lucent Technologies. ORCA Series 2 Field-Programmable Gate Arrays.
Datasheet, Allentown, Pennsylvania, June 1999.

[106] Lucent Technologies. ORCA Series 3C and 3T Field-Programmable Gate
Arrays. Datasheet, Allentown, Pennsylvania, June 1999.

[107] S.M. Trimberger. Microprocessor-based FPGA. International Patent Appli-
cation under P.C.T., No. WO 95/04402, February 1995.

181

[108] S.M. Trimberger. Reprogrammable Instruction Set Accelerator. U.S. Patent
No. 5,737,631, April 1998.

[109] S.M. Trimberger. Reprogrammable Instruction Set Accelerator Using a Plu-
rality of Programmable Execution Units and an Instruction Page Table. U.S.
Patent No. 5,748,979, May 1998.

[110] S.M. Trimberger, D. Carberry, A. Johnson, and J. Wong. A Time-
Multiplexed FPGA. In 5th IEEE Symposium on FPGAs for Custom Com-
puting Machines (FCCM ’97), pages 22–28, Napa Valley, California, April
1997.

[111] P.P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall, En-
glewood Cliffs, New Jersey, 1993.

[112] J.T.J. van Eijndhoven. 16-bit compliant software IDCT on TriMe-
dia/CPU64. Internal Report NL-TN 171, Philips Research Laboratories,
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands, December 1997.

[113] J.T.J. van Eijndhoven, F.W. Sijstermans, K.A. Vissers, E.-J.D. Pol, M.J.A.
Tromp, P. Struik, R.H.J. Bloks, P. van der Wolf, A.D. Pimentel, and H.P.E.
Vranken. TriMedia CPU64 Architecture. In Proceedings of International
Conference on Computer Design, pages 586–592, Austin, Texas, October
1999.

[114] J.T.J. van Eijndhoven and F.W. Sijstermans. Data Processing Device and
method of Computing the Cosine Transform of a Matrix. U.S. Patent No.
6,397,235, March 2002.

[115] J.T.J. van Eijndvhoven, G.A. Slavenburg, and S. Rathnam. VLIW Processor
has different functional units operating on commands of different widths.
U.S. Patent No. 6,076,154, June 2000.

[116] S. Vassiliadis, B. Juurlink, and E. Hakkennes. Complex Streamed Instruc-
tions: Introduction and Initial Evaluation. In Informatics: inventing the fu-
ture. Proceedings of the 26-th Euromicro Conference (EUROMICRO ’00),
volume 1, pages 400–408, Maastricht, The Netherlands, September 2000.

[117] S. Vassiliadis, S. Wong, and S.D. Cotofana. The MOLEN ρµ-coded Pro-
cessor. In 11th International Conference on Field-Programmable Logic and
Applications (FPL 2001), Springer-Verlag, Lecture Notes in Computer Sci-
ence (LNCS), Vol. 2147, pages 275–285, Belfast, Northern Ireland, United
Kingdom, August 2001.

182

[118] S. Vassiliadis, S. Wong, and S.D. Cotofana. Microcode Processing: Posi-
tioning and Directions. In IEEE Micro, 23(4):21–30, July 2003.

In 11th International Conference on Field-Programmable Logic and Ap-
plications (FPL 2001), Springer-Verlag, Lecture Notes in Computer Science
(LNCS), Vol. 2147, pages 275–285, Belfast, Northern Ireland, United King-
dom, August 2001.

[119] J. Villasenor and W.H. Mangione-Smith. Configurable Com-
puting. Scientific American, pages 55–59, June 1997.
http://www.sciam.com/0697issue/0697villasenor.html.

[120] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Sil-
verman, and S. Ghosh. PRISM-II Compiler and Architecture. In IEEE
Workshop on FPGAs for Custom Computing Machines (FCCM ’93), pages
9–16, Napa Valley, California, April 1993.

[121] M. Edward Wazlowski. A Reconfigurable Architecture Superscalar Copro-
cesor. PhD thesis, Brown University, Providence, Rhode Island, May 1996.

[122] M.J. Wirthlin and B.L. Hutchings. A Dynamic Instruction Set Computer. In
3rd IEEE Symposium on FPGAs for Custom Computing Machines (FCCM
’95), pages 99–109, Napa Valley, California, April 1995.

[123] M.J. Wirthlin, B.L. Hutchings, and K.L. Gilson. The Nano Processor: A
Low Resource Reconfigurable Processor. In 2nd IEEE Workshop on FPGAs
for Custom Computing Machines (FCCM ’94), pages 23–30, Napa Valley,
California, April 1994.

[124] R.D. Wittig and P. Chow. OneChip: An FPGA Processor With Reconfig-
urable Logic. In 4th IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM ’96), pages 126–135, Napa Valley, California, April 1996.

183

184

Samenvatting

In dit verslag presenteren we een uitbreiding van de TriMedia–CPU64™ VLIW
processor met een Field-Programmable Gate Array (FPGA) en stellen we de
potentiële prestatie vast van zulke hybriden voor media georiënteerde taken.
De FPGA is aangesloten op de TriMedia–CPU64 net als elk ander functioneel
apparaat, omdat alleen kleine veranderingen van de processor organisatie
toegestaan zijn. De resulterende kruising wordt hierna gerefereerd als ρ–TriMedia.
We beschrijven eerst een uitbreiding van de TriMedia–CPU64 instructie set
architectuur, die ondersteuning bevat voor de FPGA. In essentie wordt er een
kernel van nieuwe instructies gegeven, zijnde SET en EXECUTE. De SET
instructie regelt de herconfiguratie van de FPGA en de EXECUTE instructie start
de operaties op die door de FPGA-mapped rekenkundige blokken worden uit-
gevoerd. De aanpak is algemeen, waardoor de gebruiker de vrijheid heeft om
elk aangepast rekenkundig blok te definiëren en te gebruiken. Bovendien kan
een groot aantal herconfigureerbare operaties gecodeerd worden, terwijl er maar
één plaats voor de EXECUTE instructie toegewezen moet worden in de opcode
ruimte, als men de opcode velden gebruikt van aangrenzende VLIW instructie
sloten om een argument te definieren voor de EXECUTE opcode. Op deze manier
creëert de herconfigureerbare operatie geen druk op de instructie decoder, past het
netjes in het bestaande instructieformaat, past de bestaande verbindingsstructuur
met het register file en heeft daardoor maar weinig hardware controle nodig. Om
dan de potentiële prestaties van de ρ–TriMedia vast te kunnen stellen, richten we
ons op de MPEG standaard en gebruiken we een aantal media kernels die veel
berekeningen vereisen: Inverse Discrete Cosine Transform, Inverse Quantization,
Entropy Decoder en YCC-naar-RGB kleurenspectrum omzetter. Voor elke kernel
is er FPGA-gebaseerd rekenkundig blok ontworpen. Als herconfigureerbare kern
werd de ACEX™ EP1K100 FPGA van Altera gebruikt. De experimenten, die uit-
gevoerd werden op een cyclus accurate TriMedia–CPU64 simulator, duiden erop
dat een versnelling van meer dan 40% met de ρ–TriMedia bereikt kan worden bij
een aantal objecten volgens de MPEG2 standaard. Uit het feit dat de TriMedia–

185

CPU64 een 5 instructie slot VLIW processor is met een 64-bit datapad met een
grote instructie set, georiënteerd op media operaties, kan geconcludeerd worden
dat zo’n verbetering binnen zijn doel van het domein van media berekeningen, met
een relatief klein FPGA, duidt op een veelbelovende aanpak van FPGA-uitgebreide
TriMedia–CPU64 (ρ–TriMedia).

186

Rezumat ı̂n limba română

Lucrarea intitulată ,,Procesorul reconfigurabil TriMedia” (ρ–TriMedia) se
ı̂ncadrează ı̂n domeniul procesoarelor VLIW care au setul de instrucţiuni optimizat
pentru prelucrari multimedia. În particular, am prezentat o modalitate de a ataşa o
structură reconfigurabilă la procesorul TriMedia–CPU64 dezvoltat de firma olan-
deză Philips şi am evaluat câştigul ı̂n viteză de calcul care se obţine. Ideea fun-
damentală ı̂n mărirea performanţei procesorului gazdă este de a defini resurse de
calcul ce sunt optimizate pentru aplicaţia considerată şi de a le configura pe struc-
tura reconfigurabilă. Astfel, operaţii complexe sunt executate ı̂n hardware (recon-
figurabil) ı̂n loc de software. Execuţia codului pe procesorul extins cuprinde două
faze: SET, ı̂n cadrul căreia se realizează configurarea structurii reconfigurabile, şi
EXECUTE, când se lansează ı̂n execuţie unităţile de calcul ce au fost configurate
ı̂n faza anterioară. Întrucât abordarea este generică, aplicaţii dintre cele mai di-
verse pot utiliza resursele de calcul menţionate. Ca studiu de caz, am ales o etapă
importantă din decodarea MPEG şi anume reconstrucţia imaginii codate până la
nivel de pixel. Alegerea nu este ı̂ntâmplătoare, ı̂ntrucât gama de prelucrări nece-
sare reconstrucţii imaginii se regăseşte şi ı̂n alte standarde ı̂nrudite cu MPEG, cum
ar fi, de exemplu, JPEG sau MJPEG. În particular, patru nuclee de funcţii multi-
media au fost analizate şi anume: transformata cosinus discretă inversă, cuantizare
inversă, decodare entropică şi conversie de culoare din spaţiul YCC către spaţiul
RGB. Pentru fiecare nucleu ı̂n parte, a fost proiectată o resursă de calcul opti-
mizată pentru configurare pe FPGA. Drept structură reconfigurabilă, am utilizat o
arie de porţi programabilă de capacitate relativ redusă şi anume ACEX EP1K100
dezvoltată de firma Altera. Rezultatele experimentale arată o mărire a vitezei de
calcul a procesorului extins de peste 40% ı̂n raport cu viteza procesorului de bază.
Întrucât TriMedia–CPU64 este un procesor VLIW pe 64 de biţi, care are cinci slo-
turi pentru lansarea ı̂n paralel a operaţiilor, prezentând ı̂n acelaşi timp un foarte
bogat set de instrucţiuni care este, ı̂n plus, optimizat pentru prelucrări multime-
dia, ı̂mbunătăţirea de performanţă manţionată demonstrează că procesorul extins
(ρ–TriMedia) reprezintă o structură viabilă.

187

188

����́���� ��	
������	́

�

� 	����́�� ���
���
́ 	�������́����� ��� �	��́�
�

�� �	�������

́
TriMedia–CPU64 VLIW �� ��́� ���́
��
 ����́� �	������
�σσ�́���
 �����
́�
(FPGA) ��� ���������́��
�� ���

���́� �	���́����
�� ������́�� ��
��́ ��
�́

� ��
�́���
 �������́� �� 	������
������́ �
� 	�����́��� �	���
́ �	�
��́	��
��
��́�� ���́���
��
��	�	��
́����

� ����́���
�
�� �	�������

́
 FPGA
�����́�
�� �
�� TriMedia–CPU64 VLIW �́	�� ��� ��́!� �́��
 ��́����
���������́�
 ���
������
́ ����́��� "� ����́��� 	�� 	����́	
�� ���#�́��
�� ��
�–TriMedia� �������́#���� 	��́
� ��� �	�́�
��

� ����
��
����
́�
�� ��

��
���́�
�� TriMedia 	�� ������
�́��� �	��

́���
 ���

� FPGA� $�
�́
��́�
 	���́��
�� �́��� 	��
́��� ��́�� ��
���́� ��

� �����σ�́� SET ���
EXECUTE� % ��
��
́ SET ���́����
�� �	���	��������
����́

� FPGA
���
 ��
��
́ EXECUTE ��
����́
�� ���
�����́�� 	�� 	�����
�	����́� ��
���
����#
��́��� �	�́

� FPGA �	������
���́� ����́���� % 	��σ�́����
 ��́���
�����
́ ����	�́� 	���́��
�� �
� ��
́�

 ����!���́� �� ��!���́��� ��� ��
��
����	����́ �	����
́	�
� 	����������́�
 �	������
��
́ ����́��� �	�	��́�� ��
��
́�

�� 	���́��
�� ������́� ��
���́� �� ���
������́� ��
����

�́� ���́���
VLIW ���
�� ��!������́ ���́� ���́���
��
�� ��́���� ��
���́�

� EXECUTE
��́��� ����

́
 ������	��́
�
 ����́��� ���!���́ �	���	��������
���́�����
���
������́� �� ��� ��́�� �	�
́ ��
���́���
 ���

� ��
��
́ EXECUTE �
�
	���́�
�� ������́� ��
���́�� &�
��
��́	� ��
�́
 �	���	��������
���́���

���
�����́� ��� �	�����́���
�� �	�������	��

́ ��
���́� ��́��� �	�́��
�
�����

́ ��

� �	�́������ ���#
́ ��
���́� ��!�́� ���

� �	�́������ ���
́
���σ�́����
� ��
� �����́� ��
����

�́
 ��� �� ��
��́
�� �	��
��́ ���́���

��
�������
��
́ �	���́����
� '��

� ������́�
�

�� ���

���́� �	���́����

�� �–TriMedia ��
��́����� �
� 	��́
�	� MPEG ��� ���
�́����� �́���
���!��́ 	��
́��� 	�����́��� ��
��́� �	������
���́� �	��

́����()�
�́�
��#��
���́���
�� ���
��
������
́� &�
���
��
����́� (Inverse Discrete Cosine
Transform))�
�́�
��#�� $���
����́� (Inverse Quantization) ��
��	��
́
)	�������	��́
�
 (Entropy Decoding) ��� &�
�
��	
́ *����́
�� YCC ��

���

RGB (YCC-to-RGB Color Space Conversion)� '�� ��́!� 	��
́�� ������́��
��
��� �	������
��
́ ����́�� �������́�
 �

� FPGA� Ω� �	���	�������
���́�����
	��
́��� ��
����	����́
��
 ACEX EP1K100 FPGA

� Altera� "� 	����́��
�
	�� �́����� �� �́��� 	��������

́ �������́� ��́���� (cycle-accurate simulator)
TriMedia–CPU64 ��
�������́��� �́
� �
�� �–TriMedia �	�
����́��
��
���́

�
+,- ������́
��
 �� ���́�
 ��
��
�	���́ TriMedia–CPU64 ��� ��� �����́ ��
��́�
	�� ������#�́���
�� ��
� MPEG2� ������́��� �́
� � TriMedia–CPU64 ��́���
�́��� �	�������

́� VLIW . ���́��� �� ��́���� ������́��� 64-bit ��� ���!�́
��
�́�� �����
�́��� 	���́��� ��
 ��
���́� �� 	������
������́ �
� 	�����́�� ��́�

�́
��� ���
�́��
 �
��
���́� �	������σ�́�� 	�����́��� 	�� �	�
����́��
�� ��
��́� ���
���́ ����
́ FPGA ��!��
�́
�� �	���
��́�� �� FPGA TriMedia–CPU64
/�–TriMedia0 �� ��́� 	����́ �	����́���
 	��σ�́����
�

190

List of Publications

Journal Papers

1. Mihai Sima, Sorin Cotofana, Stamatis Vassiliadis, Jos T.J. van Eijndhoven,
and Kees Vissers, “Pel Reconstruction on FPGA-augmented TriMedia,” in
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, in press.

2. Mihai Sima, Sorin Cotofana, Jos T.J. van Eijndhoven, Stamatis Vassiliadis,
and Kees Vissers, “IEEE-compliant IDCT on FPGA-augmented TriMedia,”
in Journal of VLSI Signal Processing-Systems for Signal, Image, and Video
Technology, Kluwer Academics, in press.

International Conferences

3. Mihai Sima, Stamatis Vassiliadis, Sorin Cotofana, Jos T.J. van Eijndhoven,
“Color Space Conversion for MPEG Decoding on FPGA-augmented TriMe-
dia Processor,” in The 14th IEEE International Conference on Application-
specific Systems, Architectures, and Processors (ASAP 2003), The Hague,
The Netherlands, June 2003, pp. 250-259.

4. Mihai Sima, Stamatis Vassiliadis, Sorin Cotofana, Jos T.J. van Eijndhoven,
and Kees Vissers, “Field-Programmable Custom Computing Machines. A
Taxonomy,” in International Workshop on Field-Programmable Logic and
Applications (FPL 2002), Montpellier, France, September 2002, Springer-
Verlag, Lecture Notes in Computer Science, Vol. 2438, pp. 79–88.

5. Jari Nikara, Stamatis Vassiliadis, Jarmo Takala, Mihai Sima, and Petri Li-
uha, “Parallel Multiple-Symbol Variable-Length Decoding,” in IEEE Inter-
national Conference on Computer Design (ICCD 2002), Freiburg, Germany,
September 2002, pp. 126–131.

191

6. Mihai Sima, Evert-Jan Pol, Jos T.J. van Eijndhoven, Sorin Cotofana, and
Stamatis Vassiliadis, “Entropy Decoding on TriMedia/CPU64,” in System
Architecture MOdeling and Simulation Workshop (SAMOS 2002), Samos,
Greece, July 2002.

7. Mihai Sima, Sorin Cotofana, Stamatis Vassiliadis, Jos T.J. van Eijnd-
hoven, and Kees Vissers, “MPEG-compliant Entropy Decoding on FPGA-
augmented TriMedia/CPU64,” in IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM 2002), Napa Valley, California, April
2002, pp. 261–270.

8. Mihai Sima, Sorin Cotofana, Stamatis Vassiliadis, Jos T.J. van Eijndhoven,
and Kees Vissers, “MPEG Macroblock Parsing and Pel Reconstruction on
an FPGA-augmented TriMedia Processor,” in IEEE International Confer-
ence on Computer Design (ICCD 2001), Austin, Texas, September 2001,
pp. 425–430, Best Paper Award.

9. Mihai Sima, Sorin Cotofana, Stamatis Vassiliadis, Jos T.J. van Eijndhoven,
and Kees Vissers, “A Reconfigurable Functional Unit for TriMedia/CPU64:
A Case Study,” in System Architecture MOdeling and Simulation Workshop
(SAMOS 2001), Samos, Greece, July 2001, Springer-Verlag, Lecture Notes
in Computer Science, Vol. 2268, pp. 224–241.

10. Mihai Sima, Sorin Cotofana, Jos T.J. van Eijndhoven, Stamatis Vassiliadis,
and Kees Vissers, “8 × 8 IDCT Implementation on an FPGA-augmented
TriMedia,” in IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM 2001), Rohnert Park, California, April 2001.

11. Dragos Burileanu, Claudius Dan, Mihai Sima, and Corneliu Burileanu, “A
Parser-Based Text Preprocessor for Romanian Language TTS Synthesis,” in
6th European Conference on Speech Communication and Technology (Eu-
rospeech ’99), Budapest, Hungary, September 1999, pp. 2063–2066.

12. Dragos Burileanu, Mihai Sima, and Adrian Neagu, “A Phonetic Converter
for Speech Synthesis in Romanian,” in 14th International Congress of Pho-
netic Sciences (ICPhS ’99), San Francisco, California, August 1999, pp.
503–506.

13. Mihai Sima, Dragos Burileanu, Corneliu Burileanu, and Victor Croitoru,
“Full-Custom Software for Start/End Point Detection of Isolated-Spoken
Words,” in 12th International Conference on Control System and Computer
Science (CSCS12), Bucharest, Romania, May 1999, pp. 19–24.

192

14. Mihai Sima, Dragos Burileanu, Corneliu Burileanu, and Victor Croitoru,
“Application of Neural Network Paradigms in Speech Recognition for a Ro-
manian Voice Dialing System,” in International Conference on Communica-
tions (Comm ’98), Bucharest, Romania, November 1998, pp. 233–238.

15. Dragos Burileanu, Mihai Sima, Corneliu Burileanu, and Victor Croitoru, “A
Neural Network-Based Speaker Independent System for Word Recognition
in Romanian Language,” in Workshop on Text, Speech, Dialogue (TSD ’98),
Brno, Czech Republic, September 1998, pp. 177–182.

Local Conferences

16. Dragos Burileanu, Mihai Sima, Cristian Negrescu, and Victor Croitoru,
“Robust Recognition of Small-Vocabulary Telephone-Quality Speech,” in
Second Conference on Speech Technology and Human-Computer Dialogue
(SpeD 2003), Bucharest, Romania, April 2003, pp. 145-154.

17. Mihai Sima, Stamatis Vassiliadis, Jos T.J. van Eijndhoven, and Sorin
Cotofana, “YUV-to-RGB Color Space Conversion on FPGA-augmented
TriMedia-32 Processor,” in Workshop on Circuits, Systems and Signal Pro-
cessing (ProRISC 2002), Veldhoven, The Netherlands, November 2002.

18. Mihai Sima, Sorin Cotofana, Stamatis Vassiliadis, and Jos T.J. van Eijnd-
hoven, “Variable Length Decoder Implemented on a TriMedia/CPU64 Re-
configurable Functional Unit,” in Workshop on Circuits, Systems and Signal
Processing (ProRISC 2001), Veldhoven, The Netherlands, November 2001.

19. Mihai Sima, Sorin Cotofana, Stamatis Vassiliadis, and Jos T.J. van Eijnd-
hoven, “An 8-Point IDCT Computing Resource Implemented on a TriMe-
dia/CPU64 FPGA-based Reconfigurable Functional Unit,” in Workshop on
Embedded Systems (PROGRESS 2001), Veldhoven, The Netherlands, Octo-
ber 2001, pp. 211–218.

20. Mihai Sima, Stamatis Vassiliadis, Sorin Cotofana, Jos T.J. van Eijndhoven,
and Kees Vissers, “A Taxonomy of Custom Computing Machines,” in Work-
shop on Embedded Systems (PROGRESS 2000), Utrecht, The Netherlands,
October 2000, pp. 87–93.

21. Mihai Sima and Victor Croitoru, “Experiments on Isolated-Spoken Word
Recognition” in Romanian Academy Workshop on Acoustics, Book 29,
Bucharest, Romania, 1999, pp. 209–212 (in Romanian).

193

22. Mihai Sima, Victor Croitoru, and Dragoş Burileanu, “Performance Analysis
on Speech Recognition using Neural Networks,” in Development and Appli-
cation Systems Conference, Suceava, Romania, May 1998, pp. 259–266.

23. Mihai Sima and Victor Croitoru, “Outlook on Intelligent Networks,” in
Journal of Electronics and Computer Science, Vol. 1, Technical University
of Piteşti, Piteşti, Romania, 1996.

24. Victor Croitoru, Georgel Savu, Mihai Sima, and Ion Vonica, “Phone Direc-
tory for Voice and Data Integrated Terminals,” in Symposium on Electronics
and Telecommunications, Timişoara, Romania, 1994.

25. Mihai Sima, “Gasoline Electronic Economizer,” in New Ideas in Automo-
bile Construction Symposium, Piteşti, Romania, 1989.

26. Mihai Sima, “MOS Integrated Circuit for Dual-Tone Multifrequency Sig-
nals Decoding,” in The Student Research National Conference, Timişoara,
Romania, 1989.

27. Georgel Savu, and Mihai Sima, “MOS Integrated Circuit for Dual-Tone
Multifrequency Signals Generation,” in The Student Research National Con-
ference, Iaşi, Romania, 1988, Best Poster Award.

194

Curriculum Vitae

Mihai SIMA was born in Bucharest, Romania on the
5th of August, 1965. From 1979 he took the secondary
education at the ‘Mihai Viteazul’ Lyceum in Bucharest,
where he graduated in 1983 with the Baccalaureate
degree. In 1984 he became a student of the Faculty of
Electronics and Telecommunications, Polytechnical
Institute of Bucharest, Romania. He obtained the Electrical
Engineer degree in the Electronics and Telecommunica-
tions specialization in 1989.

From 1990 to 1993 he had been with ‘Microelectronica’ (MOS IC) company
in Bucharest, Romania, as a Design and Test engineer. His work was focused
on DC characterisation of CMOS integrated circuits. He was also involved in
Instrumentation Electronics, with an emphasize on magnetic field and temperature
measurements.

During 1993-1999 he had been with the Department of Telecommunica-
tions, Faculty of Electronics and Telecommunications, Polytechnical Institute of
Bucharest, Romania as Research Engineer. His research was focused on speaker-
independent speech recognition and text-to-speech synthesis by means of neural
networks.

In 1999 he joined the Electrical Engineering Department, Delft University of
Technology, Delft, The Netherlands, where he carried out a PhD stage with the
Computer Engineering group under the supervision of Prof.dr. Stamatis Vassil-
iadis. His research activity was supported by a doctoral fellowship from Philips
Research Laboratories, where he worked as a Guest Scientist. The outcome of this
work is presented in this dissertation.

His research interests include computer architecture and engineering, recon-
figurable computing, field-programmable gate arrays, multimedia processing, and
speech recognition.

195

196

The ability of providing
a hardware platform which
can be metamorphosed un-
der software control is a new
approach in processor de-
signing, very promising in
terms of performance/cost
ratio. The main idea is
to give the programmer the
freedom to adapt the pro-
cessor functionality accord-
ing to the characteristics of

the program to be run. In this way, the designer decisions regarding the
processor functionality are no longer suspicious to become a constraint for
different application classes. Therefore, the designer decisions become the
programmer decisions and a new processor can be defined on-the-fly. That is,
you can actually have a new processor in microseconds rather than years.

The Computer Engineering Laboratory logo symbolizes
the Antikythera Mechanism, the oldest known computing
engine made by Human, which accurately reproduces the
motion of the Sun and the Moon against the background
of fixed stars. The mechanism was discovered in 1900 in
a sunken ship just off the coast of Antikythera, an island
between Crete and the Greek mainland. Several kinds of
evidence point to 80 B.C. for the date of the shipwreck.

