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Abstract— With the advent of modern nano-scale technology,
it has become possible to implement multiple processing cores on
a single die. The shrinking transistor sizes however have made
reliability a concern for such systems as smaller transistors are
more prone to permanent as well as transient faults. To reduce
the probability of failures of such systems, online fault tolerance
techniques can be applied. These techniques need to be efficient
as they execute concurrently with applications running on such
systems. This paper discusses the challenges involved in online
fault tolerance and existing work which tackles these challenges.
We classify fault tolerance into four different steps which are
proactive fault management, error detection, fault diagnosis and
recovery and discuss related work for each step, with focus on
techniques for shared memory multicore/multiprocessor systems.
We also highlight the additional difficulties in tolerating faults for
parallel execution on shared memory multicore/multiprocessor
systems.

I. INTRODUCTION

It has become possible to integrate billions of transistors
on a single die with modern nano-scale technology and
therefore allow many processing cores to be implemented
on the same chip. While this advancement allows software
with a large level of parallelism to execute very efficiently on
such processors, it has also introduced reliability issues as the
small transistors are more susceptible to both transient [2] and
permanent [18] faults. This necessitates the implementation of
efficient and scalable online fault tolerance (FT) techniques to
reduce the probability of failures of such systems.

Fault tolerance of programs running sequentially on unipro-
cessors is well understood and many efficient solutions exist
for that purpose. On the other hand, programs running in
parallel on shared memory multicore processors present a
greater challenge due to shared memory accesses, which are a
frequent source of non-determinism. This paper gives a survey
of work done on fault tolerance with primary focus on work
for shared memory multicore systems.

Section II, discusses the basic concepts of a system, faults,
failures and fault tolerance. Then we classify fault tolerance
into four different steps: proactive fault management (dis-
cussed in Section III), error detection (discussed in Sec-
tion IV), fault diagnosis (discussed in Section V) and recovery
(discussed in Section VI). Redundant execution for fault
tolerance is discussed in Section VII. We finally conclude this
paper with Section VIII.
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Fig. 1. Fault propagation and fault tolerance

II. BASIC CONCEPTS

In this section, we present the basic concepts related to
the field of fault tolerance. Our discussion is based on the
way a system behaves and interacts with other systems in its
environment [38].

A system is an entity that interacts with other systems.
A system can be hardware based, for example a processor,
or software based, such as a running application. A system
consists of components which can be systems themselves. The
service delivered by a system is its behavior as perceived by
other systems using it. The total state of a system is the set
of its internal and external states. A system is said to fail
when its external state deviates from the correct state. The
cause of this failure is fault(s) within the system or external
to it. Fault propagation is illustrated in Figure 1. When a fault
becomes active, it would impact the total state of one or more
components of the system. The deviation of the total state
of a component from the correct state is known as an error.
When an error propagates to affect the external state of the
system, the error is said to be activated. When the error is
activated, failure of the system is said to have occurred. The
time between fault activation and failure is known as error
latency. In other words, a fault might lead to an error which
in turn might lead to the failure of the system.

A. Faults

Faults can be classified into four different classes depending
on their pesistence, effect, source and boundary.

With respect to persistence, a fault can be permanent,
intermittent or transient. Permanent faults are continuous in
time, while a transient fault is random and occurs for only



a short period of time. An intermittent fault is a repetitive
malfunction of a device or system that occurs at intervals.

With respect to effect, a fault can be either activated or
dormant. An activated fault is one which has produced an
error, while a dormant fault is one that has yet to produce an
error. An activated fault can be further classified into latent
and detected, where a latent fault is one which has produced
an error that has still not been detected by the system.

The source of a fault can be either software or hardware.
Software faults can be for example design faults or malicious
attacks like trojan horses.

Lastly, a fault can be either due to a component internal to
the system or external to it.

A fault can produce a number of errors in a computing
system, such as, control-flow errors, data corruption errors,
logical errors, buffer overflows, memory leaks, data races,
deadlocks/livelocks, infinite loops and wild memory writes etc.

B. Failures

Failures can be classified into three different classes based
on their domain, action and consistency.

In terms of domain, failures can be either timing related or
content related. Timing failures mean that the failing system
either responds too early or too late. On the other hand, content
failures mean that the content of the information delivered by
the system is in corrupt state.

In terms of action taken by a failing system, failures can
be divided into halt and erratic failures. By halt failure, we
mean that the system stops responding on failure, while erratic
failure means that the failing system keeps responding but in
an abnormal manner. Halting on failure is a good property, as
errors are not propagated to other systems in the environment.
Systems which halt on failure, are known as fail-stop systems.

In terms of consistency, there can be byzantine and con-
sistent failures. When a byzantine failure happens, some or all
users of the system will perceive different service. On the other
hand, for consistent failures, all users will perceive identical
service.

Service failure of a system causes a permanent or transient
external fault for other system(s) that receive service from that
system.

C. Fault tolerance

Fault tolerance means to avoid failures in the presence of
faults. A system is said to be fault tolerant if faults do not
affect the external state of that system. It can however allow its
components to fail, as long as they do not corrupt its external
state. A fault tolerant system must be able to detect errors
and recover from them. The time between fault activation and
error detection is known as error detection latency.

Figure 2 shows the steps which are taken to make a system
fault tolerant. These steps are proactive fault management,
error detection, fault diagnosis and recovery. In coming
sections, we discuss these steps and the related work done
with special focus on shared memory multicore/multiprocessor
systems.
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III. PROACTIVE FAULT MANAGEMENT

Proactive fault management means predicting failures of
components before they happen and taking precautionary steps
to prevent them, as illustrated in Figure 1.

Software rejuvenation [11] is a proactive fault management
technique that tries to avoid faults due to software aging.
Software aging is the degradation of an application or system
with time. Degradation can happen due to resource leakage,
such as memory leaks or accumulation of numerical errors for
example. In multithreaded applications, deadlocks may also
appear due to software aging. Software rejuvenation tends to
avoid these aforementioned problems by periodically restarting
applications in a clean state.

Another way of performing Proactive fault management is
to proactively check for errors in the system, that is check for
errors when system is idle for example or by doing system
monitoring. One such technique is memory scrubbing [21]
in which memories are periodically checked for errors and
corrected, even while they are not in use. Another example of
a system which uses proactive error checking is [23] which
predicts faults through system monitoring. In case of abnormal
behavior detection, such as aberrant temperature or disk errors
in a node, the tasks executing on it are migrated to a healthy
node.

IV. ERROR DETECTION

Error detection is the process of detecting errors in the
system. Timing errors are normally detected by using watch-
dog timers, while for content errors, redundant execution is
normally applied.

A. Watchdog timers and processors

A watchdog timer is a timer that is used to check if a system
or a subsystem in it, is stuck, for example due to an infinite
loop, in which case it triggers a corrective measure by the
system.

A watchdog processor is a coprocessor that is used to detect
system level errors by monitoring the behavior of the system.
A survey of different kinds of watchdog processors is given
in [16]. Watchdog processors can be used to check control
flow errors. This is done by associating signatures at each node
of a program and providing same signatures to the watchdog
processor. [15] shows that 90 percent of control flow errors
can be detected through watchdog processors with very low
hardware and memory overhead.

B. Redundancy

Redundancy is a technique in which multiple processing
elements are used to process the same data. One such tech-
nique is dual modular redundancy (DMR) in which two
elements are used. An error is detected when the contents
of the two processing elements diverge. Another technique is
triple modular redundancy (TMR) or N-modular redundancy,
which in addition to detecting errors can also locate the faulty
element through majority voting. Moreover, the system can
continue to execute by masking the faulty element. In such



Fault tolerance

[ |
Proactive fault
management

Error detection

|
Fault diagnosis

‘ Content ‘ ‘ Timing ‘ ‘ Location ‘

‘ S ‘

Error handling Fault handiing

it

Checkpoint and

Reconfiguration Reassignment

Repair

‘ Masking ‘ ‘ Isolation

Fig. 2. Classification of steps used for Fault tolerance

systems, the voter also needs to be reliable as it can become
a single point of failure.

While N-modular redundancy is used to tolerate hardware
faults, N-diversity is used to tolerate software faults, such as,
logical bugs left during development. The main idea is that
if there is a fault in one version, it can be masked out by
using majority voting. Authors in [24] discuss various software
fault tolerance techniques using design and data diversity. [7]
and [6] are examples of systems which use this technique for
tolerating software faults.

For error detection of software running on a single core,
fault tolerant systems commonly employ redundant execution
at different levels of abstractions, at instruction level [20],
process level [22] or virtual machine level [4]. Schemes which
work at instruction level have low error detection latencies,
while schemes which work at process and virtual machine
level allow error to propagate before detecting it. In the
absence of faults, these schemes need to make sure that each
replica start with the same initial state, executes input data
in the same order and perform the same computations. This
method is not straightforward to implement, especially for
parallel programs running on shared memory multicore/multi-
processor systems. SectionVII discusses the related work done
to tackle this problem.

V. FAULT DIAGNOSIS

Fault diagnosis is the process of identifying location and
type of a fault. Location of a fault can be determined either
preemptively, that is, before its activation, or after error has
been detected due to its activation, as shown in Figure 1.

Failure identification of a fail-stop component is relatively
easy as it stops responding when it fails. Time-out is a common
mechanism to detect failures of fail-stop components. For
example, in a message passing environment, a permanent
failure of a processor would be assumed if it stops sending
messages.

In TMR systems, faulty component can be located by a
majority voter. Another method to locate faulty components is
online self-tests. Through this mechanism, a system can find
permanent and sometimes intermittent faults in it by testing
itself.

Online self tests can be applied concurrently with applica-
tion execution and therefore can proactively detect dormant
faults by locating failed hardware components. Online self
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tests can be performed using pure hardware built-in self-
test (BIST) [39] approaches or using software based self test
(SBST) [26]. The benefit of software based approaches is
that they do not require any change to the system hardware.
Software based techniques are becoming more relevant with
increasing number of cores as a core can be dedicated to
perform the self tests on the system.

An example of an online self test scheme is [8] which de-
scribes and evaluate three different scheduling policies to find
permanent and intermittent faults. In this scheme, the online
self test can be performed through either special hardware
(BIST) or software (SBST). When a test is performed on a
processor, it is logically isolated from the rest of the system,
while the task which was being executed by that processor is
migrated to another processor for continued operation. In the
proposed system, only one task can execute at a time on a
processor. Self tests are done periodically and the scheduling
policies try to select the idle processors or those which are
running low priority tasks for testing. Since the test is per-
formed concurrently with application execution, intermittent
faults, such as those that occur during burst of a computing
in processor, can also be detected.

Type of a fault can be found by using retry/replay methods.
For example, in [25], the same BIST test is applied twice in a
row. Knowing that transient faults occur infrequently, it can be
assumed that transient fault would not occur twice in a row.
Hence, if the test fails both times, the failure is considered
permanent. mSWAT [40] can also differentiate between a
hardware fault and software bugs for a multithreaded program
running on a multicore system. After an error is detected,
execution is restarted from the last checkpoint. If no error
is detected this time, fault is assumed to be transient or a
non-deterministic software bug, otherwise a permanent fault or
deterministic software bug is assumed. In that case, execution
is replayed on different cores. If the same error occurs again,
deterministic software bug is assumed, otherwise permanent
fault is assumed. In that case, mSWAT does another replay
for further analysis to find the faulty core.

VI. RECOVERY

When a fault is detected, it is important to recover from
it. As shown in Figure 1, in a fault tolerant system, recovery
must be done before failure of the system occurs. It can be
done by either performing error handling, fault handling or
both. Error handling means to eliminate errors from the system



without removing the source of the fault. On the other hand,
fault handling is the process of removing the source of fault,
to prevent reoccurrence of the fault. Error handling is enough
for recovering from transient faults, as it is not necessary to
locate the source of the fault for transient faults.

A. Error handling

Two different schemes can be used for error handling,
namely checkpoint and repair and masking. In checkpoint
and repair, the state of the system is periodically saved
(checkpointed) and when an error is detected, it is rollbacked
to a previously valid state by using the checkpoint. The
benefit of this scheme is that it can be used to tolerate long
error detection latencies [12]. On the other hand, in masking,
the erroneous components are masked out by using majority
voting on the states of redundant components. The state of an
erroneous component may be restored by using the state of one
of the non-erroneous redundant components [22]. It is a more
efficient technique than checkpoint and repair, as no rollback
is required. However, it is unable to tolerate long error detec-
tion latencies. Therefore, introduction of latent faults in such
systems needs to be avoided as they may eventually corrupt
most of the redundant states to make recovery impossible [36].

Checkpointing can be mainly categorized into coordinated
checkpointing and uncoordinated checkpointing. In coordi-
nated checkpointing [30], each process in the system co-
ordinate with each other to take the checkpoint, while in
uncoordinated checkpointing, each process separately takes its
own checkpoint. The recovery is achieved through a special
recovery phase which reforms the global state of the system
to perform recovery. Uncoordinated checkpointing is usually
avoided however due its proneness to domino effects [37].

Commodity shared memory multicore processors are
equipped with memory management unit (MMU) which al-
lows accelerating the checkpointing process by using copy-on-
write techniques. It allows incremental checkpointing, that is
only saving pages dirtied since the last checkpoint. Authors in
[27] and [28] were the first one to implement checkpointing for
parallel programs running on shared memory multiprocessor
systems by using this technique. Their scheme allows original
application to continue execution while checkpointing is per-
formed. This is made possible by giving read only access to
the memory pages of the program when starting checkpointing,
so whenever something is written to a page for the first time,
page fault is trapped by the OS and content of that page saved
in the checkpoint besides giving write access back to that
page. Authors in [29], improve upon [28] by using translation
lookaside buffer (TLB) misses to record data. This avoids the
overhead of setting write accesses of pages.

Normally checkpoints are stored in a non-volatile memory
due to its reliability. However, schemes like Respec [14] keep
the checkpoint as a forked process in linux. This improves
efficiency of both storing and restarting from a checkpoint,
especially in systems with large amount of RAM. This method
is less reliable though. However, its reliability can be increased
by using memory scrubbing.
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B. Fault handling

Fault handling involves isolation of the faulty component
and recovering the system from the fault. Moreover, tasks
which were being computed on a faulty core need to be
reassigned to a working core or a spare core. This is known as
reassignment. Repair of a faulty component can be done in
a reconfigurable system through reconfiguration [34]. When
hardware resources are exhausted, a reconfigurable system
might also emulate a hardware component in software [35],
so that system continues to perform albeit with degraded
performance.

Isolation of a faulty component is done to make the fault
originating from it dormant, so that error is not propagated
to the other components in the system. In typical shared
memory multicore processors, different processes are run on
separate address spaces by using the virtual memory system
supported by the MMU. This makes sure that a wild write
in one process, due to an uninitialized pointer for example,
do not affect the execution of other processes in the system.
Therefore the virtual memory provides an efficient scheme
for isolation and error confinement. However virtual memory
alone would not be not enough to confine errors in case when
different processes are communicating through shared memory
or at kernel level, since the kernel is itself managing the
virtual memory. An error in kernel could bring down the whole
operating system.

Hive [31] addresses this issue by using independent kernels
known as cells. In this way, a fault damages only one cell
rather than the whole system. To prevent wild writes from one
cell to the memory of another one, each cell uses a firewall
hardware. On failure of a cell, pages writable from that cell
are discarded, which prevents any cell from reading data from
those pages. This requires prompt detection of failure of a cell,
which Hive does by applying an aggressive fault detection
scheme, which includes heuristic checks and a distributed
agreement protocol.

Hypervisor based fault tolerance [4] takes a step further
by running different guest operating systems in isolated envi-
ronments. This isolation make sure that failure of one guest
OS does not affect the other guest OSs. Moreover, authors
in [32] and [33] have exploited the isolation provided by a
hypervisor to execute device drivers inside virtual machines for
fault tolerance and portability. Due to the isolation provided
by the hypervisor, a faulty driver does not impact the rest of
the system.

VII. REDUNDANT EXECUTION FOR FAULT TOLERANCE

Process level and virtual machine level fault tolerant systems
apply redundant techniques for fault tolerance. This requires
deterministic execution of the redundant components with
respect to each other. For this purpose, these systems need to
cater for non-deterministic events, such as interrupts, signals,
DMAs and non-deterministic functions, such as time of the
day. As an example, [13] uses hardware performance counters
to count instructions so as to identify the point at which



TABLE I
COMPARISON OF DIFFERENT METHODS FOR DETERMINISTIC REDUNDANT EXECUTION OF SHARED MEMORY MULTITHREADED PROGRAMS

Property / Technique Language based (e.g., SHIM)

Record / Replay (e.g., Karma)

Deterministic execution of programs (e.g., Calvin)

Scalability Reasonable Reasonable

Poor

Programmability Difficult for arbitrary programs | Easy

Easy

Deadlock prevention | Can be difficult to prevent

Does not prevent

Mutex-based deadlocks can be eliminated

an interrupt occurred in the primary replica and execute the
interrupt at the same point of execution in the other replicas.

In multithreaded programs running on multicore processors,
there is one more source of non-determinism, which is shared
memory accesses and these accesses are much more frequent
than interrupts or signals. Therefore, efficient deterministic
execution of replicas in such systems is much more difficult
to achieve and therefore an active area of research.

Comparison of the different methods that can be used for de-
terministic redundant execution is shown in Table I. One way
for executing replicas in a deterministic fashion is to use de-
terministic parallel languages. Examples of such languages are
Streamlt [44], SHIM [5] and Deterministic Parallel Java [1].
However, porting programs written in traditional languages to
deterministic languages is difficult as learning curve is high for
programmers used to programming in traditional languages.
Moreover, in languages which are based on the Kahn Process
Network Model, such as SHIM, it is difficult to write programs
without introducing deadlocks [41].

Deterministic redundant execution at runtime can be done
either through hardware, software or a combination of both.
Some hardware schemes use record and replay method for
achieving deterministic execution. In this method, all inter-
leavings of shared memory accesses by different processors
are recorded in a log, which can be replayed to have a replica
which follows the original execution. Examples of schemes
using this method are Rerun [10] and Karma [42]. These
schemes intercept cache coherence protocols to record inter-
processor data dependencies, so that they can be replayed later
on, in the same order. While Rerun only optimizes recording,
Karma optimizes both recording and replaying, thus making
it suitable for online fault tolerance. It shows good scalability
as well.

Unlike the record/replay method, Calvin [9] executes pro-
grams deterministically, that is, given the same input, a pro-
gram always has the same output. It does so by executing
instructions in the form of chunks and later committing them
at barrier points. It uses a relaxed memory model, where
instructions are committed in such a way that only the total
store order (TSO) of the program has to be maintained. An
advantage of this method is that mutex-based deadlocks can
be eliminated [43]. Moreover, no inter-replica communication
is required, thus making this method more dependable than
record/replay. The disadvantage of this method though is
scalability, as it depends upon barriers to commit chunks.

The disadvantage of existing hardware methods for deter-
ministic execution is that they are applied at system level.
They cannot for example, perform deterministic execution of
different applications running on a system. Capo [17] is the
first scheme to address this issue. It implements a virtualization
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layer that allows different applications to use the hardware
resources for deterministic replay. Non-deterministic events,
such as interrupts and signals are handled by the software
while for shared memory access interleavings, the underlying
hardware for deterministic replay can be used.

Besides hardware methods, software only methods for deter-
ministic execution also exist. One such method is CoreDet [3]
that uses bulk synchronous quantas along with store buffers
and relaxed memory model to achieve determinism. Therefore,
it is similar to Calvin, but implemented in software. Since it is
implemented in software, it has a very high overhead, 1-11x
for 8 cores, as compared to 0.5x-2x for Calvin.

Kendo [19] is a software approach that works only on
programs without data races, that is, those that access shared
memory only through synchronization objects. It executes
threads deterministically and performs load balancing by only
allowing a thread to complete a synchronization operation
when its clock becomes less than those of the other threads.
Clock is calculated from retired stores, is paused when waiting
for a lock and resumed after lock is acquired. Since this
method requires global communication among threads for
reading clock values, it also has limited scalability.

Respec [14] is a record/replay software approach that only
logs synchronization objects rather than every shared memory
access. If divergence is found between the replicas, it roll-
backs and re-execute from a previous checkpoint. However,
if divergence is found again on re-execution, a race condition
is assumed. At that point, a stricter deterministic execution is
performed, which can induce a large overhead.

VIII. CONCLUSION

In this paper we discussed related work done on online
fault tolerance techniques with focus on techniques for shared
memory multicore/multiprocessor systems. We have discussed
steps which are taken to achieve fault tolerance, which are
proactive fault management, error detection, fault diagnosis
and recovery. Proactive fault management is a precautionary
step to prevent failures of components in the system, whereas
error detection is performed to detect errors before they lead
to failure of the system. We also discussed fault diagnosis
techniques which are used to locate failed components and to
check the type of a fault. Moreover, we discussed recovery
techniques such as checkpoint and repair, reconfiguration and
reassignment. Finally we discussed related work to perform
deterministic redundant execution of parallel programs running
on shared memory multicore/multiprocessor systems, which is
still an active area of research.
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