
A Framework for Adaptive Matchmaking in Distributed

Computing

K. Sigdel, K. Bertels, B. Pourebrahimi, S. Vassiliadis and L. Shuai

Computer Engineering Laboratory, ITS, TU Delft, The Netherlands

email: [kamana,koen,behnaz,stamatis,psamuri]@ce.et.tudelft.nl

Abstract

One of the major issues of a distributed system is load balancing where

workloads are distributed throughout the network. For this, it is nec-

essary to assign new tasks to idle resources and reduce the workload

for some other overloaded nodes in the same network. This process

of assigning workloads to the resources is called matchmaking process.

On the continuum from centralized to peer-to-peer mechanisms, we

are interested in designing a matchmaking mechanism that enables the

network to change its internal matchmaking mechanism from P2P to

a more centralized form or vice versa whenever that is required. This

will allow the distributed system to adapt itself dynamically to changing

conditions and always have the most appropriate matchmaking infras-

tructure available. This approach boils down to, for instance the idea of

multiple matchmakers where the entire system can be partitioned into

segments such that every segment has a matchmaker. Agents can then

interact with each other in a local neighborhood, and matchmaking in

different segments can take place in parallel. Completely centralized

or completely localized matchmaking mechanisms each have their effi-

ciencies and deficiencies. This paper defines a framework for an adap-

tive system architecture that offers a dynamic infrastructure in which

the distributed system can manage itself according to the changing cir-

cumstances to switch between completely decentralized and completely

centralized or any state in between these two.

1 Introduction

The sharing of resources is a main motivation for constructing distributed
systems in which multiple computers are connected by a communication net-
work. The problem in such systems is how resource allocation should be done
in the case where some resources are lying idle and could be linked with other
overloaded nodes in the network. This assumes some kind of matchmaking that
is the process of finding an appropriate provider of resources for a requester[15].
Given the variety of approaches for matchmaking, it is important to be able to
determine the conditions under which particular mechanisms are more perform-
ing than others. A framework that defines a set of criteria can be used to assess
the usefulness of a particular mechanism. In this paper, we define a framework
allowing an adaptive approach of matchmaking that can automatically conform
to the most appropriate matchmaking methods for task and resource allocation



depending on its network structure and characterstic. The word adaptive here
denotes an aggregated and self-operating or self-regulating system that can au-
tomatically initiate a modification according to changing circumstances of the
system (for instance when computing nodes leave or re-join the network).

The paper is structured as follows: the next section of the paper will discuss
the related research. We then describe the matchmaking approach with multiple
matchmakers, discuss problems associated with the centralized and p2p mecha-
nism and introduce the need for the adaptive approach. The later portion of the
paper will discuss the proposed system model with multiple matchmakers and
its target implementation with planetlab.

2 Related Research

Previous research on matchmaking[15] and distributed resource allocation
[7] [5][10] proposed different methods for matchmaking [11][14] and resource
scheduling (with matchmakers or without matchmakers) that represents both
dynamic as well as distributed approach of problem solving. In general, match-
making mechanism for multi-agent system can be classified into 3 categories:
First, market bidding mechanisms where bids and offers are broadcasted to all
the agents in the market. Second, matchmaking using broker or middle agent
where brokers keep some kind of information directory of the entire system and
match accordingly between the service requester and the service provider based
on this information. Third, peer-to-peer communication where agents can only
interact within a local neighborhood without having any central controlling en-
tities [9][13]. In [3], we defined a model of agents with producers, consumers and
matchmakers. Consumers send to the matchmaker the number of tasks they
want to delegate and the producers will announce in the same way how much
processing time they have available. With this information, the matchmaker
matches the consumer requests and producer bids in centralized manner. In
this process, it was observed that there is some kind of population size beyond
or below which either the matching efficiency remains constant or goes down
respectively. This seems to indicate that, when the population size in the net-
work grows, single matchmaker will not be efficient to entertain all the agents
and it is necessary to introduce another matchmaker to ensure the matchmaking
capacity.

3 Matchmaking with Multiple Matchmakers

Whenever a computing node needs some additional resources to perform its
assigned task, the node needs to locate the available resource and make use
of it. This assumes some kind of matchmaking enabling collaboration between
computing node and the additional resources available. This approach can be
either centralized matchmaking [3] or peer to peer [4].



3.1 Problems Associated with Centralized matchmaking

The centralized matchmaking works with one node in the center maintaining
central directory of information from requesters(about resource request) and
providers(about resource) [3]. Centralized matchmaking has good throughput
for certain population size (as the system grows since matching time increases
will decrease the throughput) and guarantees that an agent finds the match if
it exists and it allows agent to find the best match system wide. At the same
time, it has low scalability (it is efficient only for a certain range of population
size) because of the bottleneck associated with the central matchmaker when
population grows[6][3]. Furthermore, this mechanism has least robustness since
the whole system might fail when matchmaker leaves the network or goes down
due to hardware or network failure.

3.2 Problems Associated with peer to peer

In P2P system, computing nodes distribute resources via direct exchange be-
tween computers without having centralized control or hierarchical organization
[12][8]. In P2P, the system employs distributed resources to perform functions
in a decentralized manner. Since, it works in a decentralized manner, it has no
single point of failure. However, it has low matching rate and will not guarantee
to find matches even if it exists in the system. In localized matchmaking, agents
only interact within a local neighborhood, that is only a small subset of the
entire agents whose addresses are known to that agent. So, peer to peer has low
throughput when there is no interaction between nodes’ neighborhood.

3.3 Adaptive Approach

As discussed above in sections 3.1 and 3.2, the completely centralized or
completely localized matchmaking mechanisms each have their efficiencies and
deficiencies. To design a dynamic architecture, the first question that needs to
be addressed is to determine the conditions under which either of the above
approaches is most efficient and usable. The next step then becomes to define
a mechanism that allows the system to restructure itself to the changing states.
The connection network of loosely coupled computing nodes can always grows or
shrinks as nodes can leave or join the system continuously. Here, we are talking
about an open and dynamic system of producers, consumers and match-

makers where these agents can come, go and can change its purpose and role
whenever required. Consumers are the processing nodes wanting some resources
to solve its jobs and producers are the nodes which can provide these resources.
Matchmakers are the mediator agents that match the producer’s bid with the
consumer’s request [11][14]. Producers, consumers and matchmakers have a
common functional structure which can be enabled/modified among themselves
while having their own attributes and methods (for detail see section 4). In this
way producer/consumer can become a matchmaker and matchmaker can again
returns to ’normal’ producer/consumer state. The figures 1, 2 and 3 show the



different views of such system.

Fig. 1: matchmaking with
multiple matchmakers

Fig. 2: meta view of the
systems

The adaptive approach embraces basically two levels of adaptation viz: sys-

tem level adaptation and node level adaption. In system level adaptation,
the system adapts according to the changing circumstance of the network and
accommodates itself based on it’s alternating behavior of growing and shrinking
of population size and/or workload etc. For instance, with growth in population
size or/and increase in workload, the central matchmaker would not be able to
handle all the agents efficiently. One of the way to solve this problem would
be to re-structure the system by introducing new matchmakers to reduce the
overhead of the central matchmaker. For this a new matchmaker can be defined
in a localized manner and a new segment of producers, consumers and match-
maker can be created. This would create a view of the system with segments,
each segment having its own matchmaker (see fig 1). Similar mechanism could
be applied when workload reduces or/and population size shrinks i.e to combine
the segments and avoid matchmakers to increase the throughput. The node level
adaptation enables for the system level adaptation. In node level adaptation,
nodes can be transformed from one form to another form. When system needs
more matchmakers, producer or consumer can be promoted as a matchmaker
with little modification. And when these matchmakers are no more required in
the system, it can be changed back to producer or consumer.

In addition to the general matchmaking, we also introduce the notion of a
meta-matchmaker. Its function is twofold: first, to allow arbitrage between dif-
ferent segments for the remaining requests. Second, it will allow to introduce a
self organizing mechanism that will enable the change in number of matchmak-
ers. One of the major issues in adaptive system is the load balancing between
segments. In every segment, a matchmaker takes care of finding matches be-
tween requesters and producers and when there are some tasks/resources with
no matches, the matchmaker should introduce them to other segments. Commu-
nication and cooperation between matchmakers can be done in different ways.
One possibility is having a flat structure with a meta-matchmaker that manages



the interaction between matchmakers as mentioned above. The other possibility
is having a hierarchical structure in which every matchmaker acts as a child for
a higher level matchmaker. Every matchmaker can interact with other match-
makers only through its parent or its child matchmaker like a tree structure. The
third possibility is considering matchmakers as peers in a pure p2p system so
that every peer knows its neighbors. Whenever these peers want to interact with
each other, the interaction message will be propagated in the system through
the neighboring nodes.

4 System Architecture

The figure 3 shows the system model. In order to introduce self configu-
ration, we propose a system/node architecture which is highly modular with
clearly defined interfaces (fig 3). The system contains three types of entities
viz: producer, consumer and matchmaker. Each of these entities has its own
methods and attributes as shown below:

• Consumer ⇒ {resource manager, job manager, request manager, ex-
change manager}

• Producer ⇒ {resource manager, job manager, request manager, exchange
manager}

• Producer ⇒ {resource manager, job manager, request manager, exchange
manager, consumer list, producer list, matchmaking function}

Fig. 3: System Model

Components that are common to producer, consumer and matchmaker are:
• Resource Manager: It monitors and manages the system resources in

each node. System resources can be memory, CPU cycles, power etc.
Whenever there are some idle resources in the node then resource manager
reports it to the request manager to make an offer to sell that resource.



• Job Manager: Computing nodes maintain the job queue of all the task
to be processed and the queue has its job manager. The job manager
manages the task queue that is being processed by the node and asks for
additional resources whenever it runs out of resources.

• Request Manager: It is the responsible for handling all the requests form
the job manager. The request can be the request for buying resources
(from consumer) or offer of selling the resources (from producer). The
request manager receives the requests from job manager and transmits
them to matchmaker. It is the only component that can interact with the
matchmaker .

• Exchange Manager: It is the responsible for executing the transactions
between consumer and producer. Once a matching has taken place, the ex-
change manager needs to transfer the data and instruction to the receiving
producer or accept data and instruction from the requesting consumer.

In order to become a matchmaker following components need to be enabled:

• List manager: List manager in matchmaker manages the consumer list
and the producer list. Whenever there is a new request for resources
or an offer for resources, it updates the producer list and consumer list
accordingly. It is also responsible for removing the requests from list when
they are timed out or no more available.

• Matchmaking Function: It is the main matchmaking logic (e.g. first-
Match, MinDifference or MinDistance) for the matchmaker to match be-
tween producer and consumer. It continuously scans producer and con-
sumer list to find the appropriate match between them.

• Producer List: contains the list of the producers with free resources.
It contains the address of the producers with the corresponding column
containing the type of free resources. (For easiness, this list can be sorted
by the type of the resources.)

• Consumer List: contains the list of the consumers with pending task. It
contains the consumer address and its task with the corresponding column
containing resource type required for that task.

We intend to implement this architecture in the PlanetLab[2] environment. Plan-
etlab and Globus[1] are the infrastructure platforms that sit on top of Internet
and provide an environment for deploying, evaluating and accessing distributed
services with geographically distributed resources and users. Planetlab focuses
more on network intensive applications while Globus is more oriented towards
computational intensive aplications. As we are studying low level interaction
rather than real computation we chose Planetlab as an implementation plat-
form.

5 Research Issues

Given the variety of approaches for matchmaking, it is important to be able
to determine the conditions under which particular mechanisms are more per-



formant than others. The first issue of the research is to determine the criteria
to assess the usefulness of a particular mechanism. These criteria can be:

• Scalability : Scalability requires that an increase in the number of new
agents and resources has no noticeable effect on performance nor on ad-
ministrative complexity.

• Dynamic and flexible behavior : Multi agent systems need to manage
problems like increases and fluctuation of the number of agents, changes
of task profile and drop-outs of agents. They should be able to determine
the most appropriate organizational structure by themselves at run-time
(self-building) and to change this structure as their environment changes
(adaptivity).

• Throughput : Throughput is defined as the number of tasks that could be
allocated to available resources. It is an important element to be considered
especially while considering very large scale systems.

• Robustness: It is the ability of the system to remain operational even
when minor or major disrupting events occur. This is a vital characteristic
of a distributed environment and the matching mechanism should therefore
also have this property.

In addition to the criteria, it is also important to establish the dimensions of the
matchmaking mechanism on which the criteria should be applied. Examples of
such dimensions are population size, task size, task and resources distribution.
Beside these, there are some additional research issues that should be addressed:

• Should matchmaking process involve some kind of pecuniary system? If
so, what are the implications of the decision making process?

• Should we include differentiation between nodes to have some kind of mul-
tilayered network? Certain nodes would then be differentiated in terms of
processing resources, memory etc, How does the matchmaking mechanism
should be modified to ’automatically’ make use of such ’supernode’?

• Should we consider some kind of ’cascade’ scheduling approach allowing
the supplier of resources to reschedule itself certain tasks to other nodes?
What are the implication of such an approach?

• Should the matchmaking function take bandwith into account? How about
the communication and computation cost associated with it?

6 Conclusion and Future Work

In this paper, we presented a framework for implementing an adaptive re-
source management for distributed computing considering the advantages and
disadvantages of centralized and localized matchmaking mechanism. The adap-
tation is both at the node and the system level. Individual nodes are respon-
sible for timely execution of the tasks and can request additional tasks and re-
sources when necessary. At node level, producers/consumers can be transformed
to matchmakers and vice-versa. At the system level, an efficient matchmak-
ing is envisioned by providing the capability of introducing(or deleting) match-
makers in order to guarantee a high(both in quality and quantity) number of



matches. Future research will involve the implementation of the proposed frame-
work and experimental tests to study the conditions under which the adapta-
tion (node/system) will take place and how they perform under varying circum-
stances.

References

1. www.globus.org.

2. www.planet-lab.org.

3. K. Bertels, N. Panchanathan, S. Vassiliadis, and B. Pourebrahimi. Centralized

matchmaking for minimal agents. In Proceedings of the Conference on Parallel
and Distributed Computer Systems, page 9, November 2004.

4. S. Camorlinga, K. Barker, and J. Anderson. Multiagent systems for resource

allocation in peer-to-peer systems. In Proceedings of the winter international
synposium on Information and communication technologies, pages 1–6, 2004.

5. L. Cuihong and K. Sycara. A stable and efficient scheme for task allocation via

agent colition formation. In Algorithms for Cooperative Systems. World Scientific,

2004.

6. S. Jha, P. Chalasani, O. Shehory, and K. P. Sycara. A formal treatment of

distributed matchmaking. In Agents, pages 457–458, 1998.

7. J.Modi, H. Jung, M. Tamble, W. Shen, and S. Kulkarni. A dynamic distributed

constraint satisfaction approach to resource allocation. In Proceedings of Au-
tonomous Agents and Multi-Agent Systems Workshop on Distributed Constraint
Reasoning, 2002.

8. K. Kant, R. Iyer, and V.Tewari. On the potential of peer-to-peer comput-

ing:classification and evaluation. In Proceedings. of CCGrid, Berlin, Germany,
2002.

9. M. Koubarakis. Multi-agent systems and p2p computing: Methods, systems

and challenges. In Proceedings of the 7th International Workshop on Cooperative
Information Agents (CIA 2003), Helsinki, Finland, pages 46–61, August 2003.

10. J. Kurose and R. Simha. A microeconomic approach to optimal resource alloca-

tion in distributed computer systems. IEEE Transactions on computers, pages

705–717, May 1989.

11. M. Luck, P. McBurney, and C. Preist. A manifesto for agent technology towards

next generation computing. Journal of Autonomous Agents and Multi-Agent Sys-
tem, pages 203–252, 2004.

12. D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,

S. Rollins, and Z. Xu. Peer-to-peer computing, March 2002.

13. E. Ogston and S. Vassiliadis. Matchmaking among minimal agents without a

facilitator. In Proceedings. 5th International Conference on Autonomous Agents,
pages 608–615, May 2001.

14. K. P. Sycara, S. Widoff, M. Klush, and J. Lu. Larks: Dynamic matchmak-

ing among heterogeneous software agents in cyberspace. Autonomous Agent and
multiagent system, pages 173–203, 2002.

15. Z. Zhang and C. Zhang. An improvement to matchmaking algorithms for middle

agents. In Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 1340–1347, 2002.


